
Annals of Pure and Applied Logic 174 (2023) 103167
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Induction and Skolemization in saturation theorem proving

Stefan Hetzl ∗, Jannik Vierling
Vienna University of Technology, Institute of Discrete Mathematics and Geometry, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 August 2021
Received in revised form 17
February 2022
Accepted 6 July 2022
Available online 27 July 2022

MSC:
03F30
68V15
03B70
03H15

Keywords:
Inductive theorem proving
Weak arithmetical theories
Skolemization
Saturation theorem proving

We consider a typical integration of induction in saturation-based theorem provers
and investigate the effects of Skolem symbols occurring in the induction formulas.
In a practically relevant setting we establish a Skolem-free characterization of
refutation in saturation-based proof systems with induction. Finally, we use this
characterization to obtain unprovability results for a concrete saturation-based
induction prover.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Automated inductive theorem proving (AITP) is a branch of automated deduction that aims at automat-
ing the process of finding proofs that involve mathematical induction. In first-order automated theorem
proving (ATP) we try to establish validity whereas in automated inductive theorem proving (AITP) one
is usually interested to prove that a formula is true in the standard model of some inductive type, such as
natural numbers, lists, trees, etc. By Gödel’s incompleteness theorems, truth in the standard model is in
general not semi-decidable (even worse, it is in general not even arithmetically definable). Hence, for AITP
there is a lot more freedom in the choice of proof systems, than there is for ATP. In practice we see methods
that make use of typical first-order induction schemata, Hilbert-style induction rules (for example [31,29]),
and even more exotic cyclic calculi (see [9,4]) that can exceed the power of the first-order induction schema
[11,12].

* Corresponding author.
E-mail addresses: stefan.hetzl@tuwien.ac.at (S. Hetzl), jannik.vierling@tuwien.ac.at (J. Vierling).
https://doi.org/10.1016/j.apal.2022.103167
0168-0072/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.apal.2022.103167
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2022.103167&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:stefan.hetzl@tuwien.ac.at
mailto:jannik.vierling@tuwien.ac.at
https://doi.org/10.1016/j.apal.2022.103167
http://creativecommons.org/licenses/by/4.0/

2 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
The most prominent applications of automated inductive theorem proving are found in formal methods
for software engineering. For example, the formal verification of software relies strongly on one or another
form of induction since any non-trivial program contains some form of loops or recursion. Besides the
applications in software engineering, AITP methods have applications in the formalization of mathematics.
For instance, AITP methods can be employed by proof assistants to explore a theory in order to provide
useful lemmas [28], [26].

A wide variety of methods for automated inductive theorem proving have been developed: there are
methods based on recursion analysis [8,41,13], proof by consistency [17], rippling [10], cyclic proofs [4],
extensions of saturation-based provers [5,31,29,18,19,22,36,23,46], tree grammar provers [21], theory explo-
ration based provers [15], rewriting induction [34], encoding [38], extensions of SMT solvers [35]. Many
methods integrate the induction mechanism more or less tightly within a proof system that is well-suited
for automation. Therefore, these methods exist mainly at lower levels of abstraction, often close to an actual
implementation. Such methods are traditionally evaluated empirically on a set of benchmark problems such
as the one described by Claessen et al. [16]. Formal explanations backing the observations obtained by the
empirical evaluation are still rare. As of now, it is difficult to classify methods according to their strength
and to give theoretical explanations of an empirically observed failure of a given method in a particular
context.

The work in this article is part of a research program that aims at analyzing methods for AITP by
applying techniques and results from mathematical logic. The purpose of this is twofold. Firstly, formal
analyses allow us to complement and to explain the empirical knowledge obtained by the practical eval-
uations of AITP methods. Secondly, the analyses carried out during this program will inevitably lead to
a development of the logical foundations of automated inductive theorem proving. In particular, we be-
lieve that practically relevant negative results are especially valuable in revealing the features a method is
lacking. Thus, negative results may drive the development of new methods. Moreover, we believe that this
research program will strengthen the link between the research in automated inductive theorem proving
and mathematical logic, and therefore, may lead to cross-fertilization by providing interesting theoretical
techniques from mathematical logic and new problems for mathematical logic.

As part of this research program Hetzl and Wong [25] have given some observations on the logical
foundations of inductive theorem proving. Vierling [43] has analyzed the n-clause calculus [31,29] resulting
in an estimate of the strength of this calculus. Building on this analysis Hetzl and Vierling [24] have further
abstracted the n-clause calculus and situated this calculus with respect to some logical theories. The authors
are currently also working on an unprovability result for the n-clause calculus.

The subject of AITP has recently increasingly focused on integrating mathematical induction in
saturation-based theorem provers [31,29,18,19,46,22,36,23]. In this article we propose abstractions of these
systems and investigate how Skolemization interferes with induction in such a system. In a fairly general yet
practically relevant setting we are able to show that Skolem symbols take the role of induction parameters.
We use this insight to provide unprovability results for a family of methods using induction for quantifier-
free formulas. This allows us in particular to obtain unprovability results for the concrete method described
in [36,23].

In this article we will provide a unified view of a commonly used strategy to integrate induction into
saturation-based theorem proving and concentrate on the role of Skolemization in these systems. To our
knowledge the interaction between induction and Skolemization has not been investigated in the related
literature. Section 2 introduces all the necessary notations related to our logical formalism, our presentation
of Skolemization, and the arithmetic theories used in this article. We will give a precise presentation of
Skolemization, that imposes a concrete naming schema which will be particularly useful in dealing with
the languages generated by saturation systems. In Section 3 we give an abstract description of saturation-
based proof systems and describe abstractly a common strategy to integrate induction in such systems.
We furthermore present a restriction of this system that generalizes a way to handle induction found in

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 3
most practical saturation systems with induction. Section 4 gives a very clear characterization of refutation
in saturation systems with an unrestricted induction rule (see Theorem 4.11) and analyzes the effects of
Skolemization on the induction. In Section 5 we analyze the effect of Skolemization in syntactically restricted
systems that are closer to the practical methods. This section culminates in a Skolem-free characterization
of these systems (see Theorem 5.23). Finally in Section 6 we make use of the results from Section 5 to
provide practically relevant unprovability results for a family of methods using quantifier-free induction
formulas (see Theorem 6.6) and apply this result to the concrete method presented in [36,23].

2. Preliminary definitions

In this section we settle the details of the logical formalism that we use throughout the article. For
the sake of clarity we try to adhere as much as possible to standard terminology, but we introduce some
non-standard notations where it is beneficial for the presentation. In Section 2.1 we describe our logical
formalism and the related notations such as clauses. Section 2.2 introduces some definitions and well-known
results related to Skolemization and in particular the naming schema for Skolem symbols that we adopt in
this article. Finally, in Section 2.3 we recall some notions of formal arithmetic and introduce a particular
theory of formal arithmetic that will be of use at various occasions.

2.1. Formulas, theories, and clauses

We work in a setting of classical single-sorted first-order logic with equality. That is, besides the usual
logical symbols we have a logical binary predicate symbol = denoting equality. In the context of automated
theorem proving it is common to work in a many-sorted setting, but in order to keep the presentation simple
we only use one sort. All our definitions and results easily generalize to the many-sorted case. A first-order
language L is a countable set of function symbols and predicate symbols with their respective arities. Let
σ be a (function or predicate) symbol, then we write σ/n to denote that σ has arity n ∈ N. Terms are
constructed from function symbols and variables. Formulas are constructed as usual from atomic formulas,
the connectives ¬, ∨, ∧, →, and the quantifiers ∃ and ∀. In order to save some parentheses we assume the
following order of precedence for the propositional connectives: ¬, ∨, ∧, →. By F(L) we denote the set of L
formulas. The notions of bound variables and free variables are defined as usual. By FV(ϕ) we denote the
set of free variables of a formula ϕ. A formula that has no free variables is called a sentence. By (∃!y)ϕ(�x, y)
we abbreviate the formula

(∃y)ϕ(�x, y) ∧ (∀y1, y2)(ϕ(�x, y1) ∧ ϕ(�x, y2) → y1 = y2).

In this article we are more interested in the axioms of a theory, rather than the deductive closure of these
axioms. Hence, we define a theory as a set axioms and manipulate the deductive closure by means of the
first-order provability relation (see Definition 2.2).

Definition 2.1 (Theories). Let L be a first-order language, then a first-order L theory T is a set of L sentences
called the axioms of T .

For the sake of legibility we often present the axioms of a theory as a list of formulas with free variables,
with the intended meaning that these formulas are universally closed. By L(T) we denote the language of
the theory T . When no confusion arises we sometimes write T in places where L(T) is expected.

Definition 2.2 (Provability). Let ϕ be a sentence and T a theory, then we write T � ϕ to denote that ϕ is
provable in first-order logic from the axioms of T . Let Γ be a set of sentences, then we write T � Γ to denote
that T � ϕ for all sentences ϕ ∈ Γ. Let T1 and T2 be theories, then we write T1 ≡ T2 if T1 � T2 and T2 � T1.

4 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
Let ϕ(�x) be a formula and T a theory, then in order to ease the notation we will sometimes write T � ϕ(�x)
in place of T � (∀�x)ϕ(�x).

Definition 2.3 (Conservativity). Let T1 and T2 be theories, and Γ a set of formulas. We say that T1 is Γ-
conservative over T2 (in symbols T1
Γ T2), if, for all ϕ ∈ Γ, T1 � ϕ implies T2 � ϕ. We write T1 ≡Γ T2 if
T1
Γ T2 and T1 �Γ T2. If Γ = F(L) for some first-order language L, then we may simply write T1
L T2
for T1
F(L) T2.

Automated theorem provers—in particular saturation systems—usually do not operate directly on for-
mulas but instead operate on clauses and clause sets (see Section 3).

Definition 2.4 (Literals and clauses). Let L be a first-order language. An L literal is an L atom or the
negation thereof. An L clause is a finite set of L literals. An L clause set is a set of clauses. By � we denote
the empty clause. Let C and D be clauses, then we write C ∨D for the union of the clauses C and D. Let C
be a clause set and D a clause, then we write C ∨D to denote the clause set {C ∨D | C ∈ C}. Furthermore,
we write L(C) to denote the language of C, that is, the set of non-logical symbols that occur in clauses of C.

Whenever the language L is clear from the context or irrelevant, we simply speak of clauses and clause
sets instead of L clauses and L clause sets.

We will now recall basic some model-theoretic concepts and notations. Let L be a language, then an L
structure is a pair M = (D, I), where D is a non-empty set and I is an interpretation. The interpretation
I is a function that assigns to each symbol σ/k ∈ L an interpretation σI such that if σ is a predicate
symbol, then σI ⊆ Dk and if σ is a function symbol, then σI : Dk → D. Let ϕ(x1, . . . , xn) be an L formula
and d1, . . . , dn ∈ D, then we write M, {xi → di | i = 1, . . . , n} |= ϕ if ϕ is true in M under the variable
assignment that assigns di to xi for i = 1, . . . , n.

Definition 2.5 (Notation). Let L be a language, M = (D, I) an L structure, then we define |M | = D.
Moreover, we sometimes write d ∈ M if d ∈ D and for a symbol σ ∈ L, we also denote its interpretation σI

in M by σM . Let ϕ(x1, . . . , xn) be an L formula and d1, . . . , dn ∈ D|�x|, then we write M |= ϕ(d1, . . . , dn)
if M, {xi → di | i = 1, . . . , n} |= ϕ. Furthermore, we write M |= ϕ, if M, {xi → di | i = 1, . . . , n} |= ϕ,
for all d1, . . . , dn ∈ M . Similarly, we write M |= C for an L clause C with free variables x1, . . . , xn, if
M, {xi → di | i = 1, . . . , n} |= C for all d1, . . . , dn ∈ M . Let Δ be a set of formulas and clauses, then we
write M |= Δ if M |= δ for each δ ∈ Δ. We write Λ |= Δ if for every model M of Λ we have M |= Δ.

Definition 2.6. Let L be a language and M a first-order structure, then we define

Th(M) := {ϕ | M |= ϕ,ϕ is an L sentence}.

We are often interested in the formulas that have a certain structure.

Definition 2.7. We say that a formula is ∃0 (or ∀0 or open) if it is quantifier-free. We say that a formula is
∃n+1 (∀n+1) if it is of the form (∃�x)ϕ(�x, �y) ((∀�x)ϕ(�x, �y)), where ϕ is ∀n (∃n) and �x is a possibly empty vector
of variables. Let L be a first-order language, then by Literal(L), Open(L), ∃n(L), and ∀n(L) we denote the
set of literals, open formulas, ∃n formulas, and ∀n formulas of the language L. We say that a theory is ∀n
(∃n) if all of its axioms are ∀n (∃n).

As mentioned above, automated theorem provers often work on sets of clauses, rather than formulas.
Hence, it is necessary to discuss how formulas are associated with clause sets. In the following definition we
fix one such translation that we use throughout the article.

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 5
Definition 2.8. By CNF we denote a fixed function that assigns to any ∀1 sentence ϕ, a clause set Cϕ such that
L(ϕ) = L(Cϕ) and ϕ and Cϕ are logically equivalent. Let T be a ∀1 theory, then CNF(T) :=

⋃
ϕ∈T CNF(ϕ).

The function CNF fixed by the definition above could for example be the translation to conjunctive normal
form that proceeds by moving negations inwards and by distributing disjunction over conjunction. We did
not fix this particular translation because it is irrelevant for us how a conjunctive normal form is obtained as
long as the translation preserves the language and is logically equivalent to the original sentence. Since this
article focuses on the interaction of induction and Skolemization, we choose to exclude conjunctive normal
form translations that do not preserve the language. The question how these more advanced transformations
interact with induction is clearly also important and should be investigated separately.

2.2. Skolemization

We essentially use inner Skolemization with canonical names. On the one hand this form of Skolemization
is convenient from a theoretical point of view, because it can be described as a function on formulas. In
particular, the canonical naming schema for Skolem symbols allows us to be precise about the languages
generated during the saturation processes considered in this article. On the other hand, inner Skolemization
performs comparatively well with respect to proof complexity [7], and furthermore using canonical Skolem
symbols does not increase proof complexity. Hence, this form of Skolemization is also a reasonable choice
from the perspective of automated deduction.

We start by defining an operator describing all the Skolem symbols that can be obtained by Skolemizing
a single quantifier over a given language L. This operator is then iterated on the language L in order to
produce all the Skolem symbols that are required to Skolemize L formulas.

Definition 2.9. Let L be a first-order language, then we define

SQ(L) := {s(Qx)ϕ/n | ϕ is an L formula, |FV((Qx)ϕ)| = n},

where Q ∈ {∀, ∃}. We set S(L) := S∀(L) ∪S∃(L). Now we define sk(L) := L ∪S(L). By ski(L) we denote
the i-fold iteration of the sk operation. Finally, we define skω(L) :=

⋃
i<ω ski(L). We call the stage of a

symbol the least i ∈ N such that the symbol belongs to the language ski(L). A first-order language L is
Skolem-free if it does not contain any of its Skolem symbols, that is, if L ∩S(skω(L)) = ∅.

Now we can define the universal and existential Skolem form of a formula.

Definition 2.10. We define the functions sk∀, sk∃ : F(skω(L)) → F(skω(L)) mutually inductively as follows

skQ(P (�t)) := P (�t),

skQ(A ∧B) := skQ(A) ∧ skQ(B),

skQ(A ∨B) := skQ(A) ∨ skQ(B),

skQ(¬A) := ¬skQ(A),

skQ((Qx)A(x, �y)) := skQ(A(s(Qx)A(x,�y)(�y), �y)), (*)

skQ((Qx)A) := (Qx)skQ(A),

for Q ∈ {∀, ∃}, ∀ = ∃, ∃ = ∀, and where in (*) �y are exactly the free variables of (Qx)A. Let Γ be a set of
formulas, then we define skQ(Γ) := {skQ(ϕ) | ϕ ∈ Γ}.

6 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
Before we discuss some details of the sk∃ function in more detail, we will look at an example that
illustrates how the function sk∃ operates.

Example 2.11. Let P/3 be a predicate symbol, then the existential Skolem form of the sentence
(∃x)(∀y)(∃z)P (x, y, z) is given by

sk∃((∃x)(∀y)(∃z)P (x, y, z)) = sk∃((∀y)(∃z)P (c, y, z))

= (∀y)(sk∃((∃z)P (c, y, z))))

= (∀y)(sk∃(P (c, y, f(y)))) = (∀y)P (c, y, f(y)),

where c = s(∃x)(∀y)(∃z)P (x,y,z) and f = s(∃z)P (c,y,z) = s(∃z)P (s(∃x)(∀y)(∃z)P (x,y,z),y,z).

Observe that the symbols that are introduced by sk∃ depend on the names of the variables. Thus, in
particular, the symbols introduced for two formulas that only differ in the names of bound variables may
not be the same. For example, let P be a unary predicate symbol, then

sk∃((∃x)P (x)) = P (s(∃x)P (x)) �= P (s(∃y)P (y)) = sk∃((∃y)P (y)).

Clearly, we could build the equivalence of formulas up to renaming into the Skolemization function. However,
we prefer not to draw logical reasoning into the definition of the Skolemization function. Identification of
provably equivalent formulas can be added by means of additional axioms, such as the Skolem axioms given
in Definition 2.13.

The following property of Skolemization is well-known.

Proposition 2.12. Let L be first-order language and ϕ an skω(L) formula. Then � sk∃(ϕ) → ϕ and � ϕ →
sk∀(ϕ).

In general we do not have the converse of the above implications. We will now introduce Skolem axioms.
These axioms essentially correspond to the existential Skolem form of the logical axioms ϕ → ϕ.

Definition 2.13. Let L be a first-order language, and ϕ(x, �y) an skω(L) formula, then we define

SA∃
xϕ := (∃x)ϕ → ϕ(s(∃x)ϕ(�y), �y),

SA∀
xϕ := ϕ(s(∀x)ϕ(�y), �y) → (∀x)ϕ.

We define L-SA := {(∀�y)SAQ
x ϕ | Q ∈ {∀, ∃}, s(Qx)ϕ(x,�y) ∈ skω(L)}.

The Skolem axioms allow us to also obtain the converse of Proposition 2.12.

Proposition 2.14. Let L be a first-order language, ϕ an skω(L) formula, and Q ∈ {∀, ∃}. Then we have
L-SA � ϕ ↔ skQ(ϕ).

Proof. Straightforward. �
Skolem axioms over a Skolem-free theory have the following well-known conservation property.

Proposition 2.15. Let L be a Skolem-free first-order language and T be an L theory, then L-SA + T ≡L T .

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 7
With the property above we now immediately obtain the well-known fact that Skolemizing a theory
results in a conservative extension of that theory.

Lemma 2.16. Let L be a Skolem-free language and T be an L theory, then

sk∃(T) ≡L T.

Proof. The direction sk∃(T)
L T is an immediate consequence of Proposition 2.12. For the other direction
we have T ≡Prop. 2.15

L L-SA + T ≡Prop. 2.14 L-SA + sk∃(T). Hence T ≡L sk∃(T). �
This also immediately gives us the following weaker statement that is perhaps more familiar in automated

deduction.

Corollary 2.17. Let L be a Skolem-free language and T be theory, then T is consistent if and only if sk∃(T)
is consistent.

2.3. Induction and arithmetic

We conclude the preliminary definitions with the definition of some notions related to formal arithmetic.
Let us start by discussing the setting for induction that we use in this article. In automated inductive theorem
proving it is customary to work with various inductively defined objects such as the natural numbers, lists,
trees, and mutually recursive constructions. Typically inductive theorem proving concentrates on a multi-
sorted setting where a subset of the sorts is interpreted as the term algebra constructed over a set of function
symbols, called the constructors. Such a construction, while of great practical relevance, incurs significant
notational complexity. Therefore, in order to avoid overloading the presentation, we restrict our setting to
the natural numbers. However, we expect that our results straightforwardly carry over to the more general
case mentioned above, because the structure of the induction axiom remains essentially the same.

Definition 2.18. By 0/0 and s/1 we denote the function symbols representing the natural number 0 and the
successor function, respectively. Moreover, we let L0 := {0/0, s/1}.

We can now define induction axioms and the first-order structural induction schema.

Definition 2.19. Let L be a language, and ϕ(x, �z) be an L formula, then the L ∪L0 formula Ĩxϕ is given by

(ϕ(0, �z) ∧ (∀x)(ϕ(x, �z) → ϕ(s(x), �z))) → (∀x)ϕ(x, �z).

We refer to the variable x as the induction variable and to the variables �z as the induction parameters.
Moreover we define the induction axiom Ixϕ by Ixϕ := (∀�z)Ĩxϕ. Let Γ be a set of L formulas, then the set
of L ∪ L0 sentences Γ-IND is given by {Ixγ | γ(x, �z) ∈ Γ}.

By an arithmetical language we understand a first-order language containing the symbols 0/0, s/1, and
possibly some symbols representing primitive recursive functions. In the following definition we recall some
standard terminology for arithmetic.

Definition 2.20. Let L be an arithmetical language. By NL the structure whose domain is the set of natural
numbers and that interprets the non-logical symbols of L in the natural way. An arithmetical theory is a
theory over an arithmetical language. Let T be an L theory. We say that the theory T is sound if NL |= T .
Furthermore, we say that T is ∃1-complete if NL |= ϕ implies T � ϕ for all ∃1 L sentences.

8 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
We conclude this section by describing the setting of linear arithmetic that will in particular serve us in
Section 6.2 for obtaining unprovability results for the methods [36,23]. The language of linear arithmetic
contains besides 0/0 and s/1 only the function symbols p/1 and +/2 as infix symbol, where p denotes the
predecessor function and + denotes the addition. Clearly, the setting of linear arithmetic is closely related
to Presburger arithmetic. However, we are not interested in the theory of the standard interpretation, but
rather in its subtheories such the ones that were already studied by Shoenfield [40]. This setting of linear
arithmetic turns out to be quite useful in the analysis of methods for automated inductive theorem proving,
because on the one hand it is simple enough to still allow for straightforward model-theoretic constructions,
yet it is complex enough to provide interesting independence results.

Let us fix some notational conventions. Let m ∈ N and t be a term, then by m · t we denote the term
t + (t + · · · + (t + t) · · ·). Let f be a unary function symbol, then fm(t) stands for f(· · · f(t) · · ·). By m we
denote the term sm(0). Our base theory for linear arithmetic is defined as follows.

Definition 2.21. By T we denote the theory axiomatized by the universal closure of the following formulas

0 �= s(x), (A1)

p(0) = 0, (A2)

p(s(x)) = x, (A3)

x + 0 = x, (A4)

x + s(y) = s(x + y), (A5)

We conclude with two basic observations about the theory T . We shall make use of these observations
at several occasions and will for the sake of readability not mention them explicitly every time.

Lemma 2.22. T � s(x) = s(y) → x = y.

Proof. Use (A3). �
Proposition 2.23. T is sound and ∃1-complete.

Proof. The soundness part is obvious. For the ∃1-completeness observe that T decides ground formulas. �
3. Saturation-based systems and induction

Induction can be integrated into a saturation proving system in different ways. One possibility is to
contain the induction mechanism in a separate module that may use a saturation prover to discharge
subgoals. Moreover, the induction module may receive additional information from the saturation prover,
for instance information about failed proof attempts [5]. Another, currently more popular, way is to integrate
the induction mechanism more tightly into the saturation system as some form of inference rule [31,29],
[36,23], [18,19], [46], [22]. In this section we give an abstract framework for AITP methods integrating
induction in saturation-proof systems in terms of a general induction rule. This framework will allow us
to investigate in Sections 4 and 5 the role of Skolem symbols in these systems. In Section 6 we show
that the methods described in [36,23] fit into our framework. In Section 3.1 we define saturation systems
abstractly and introduce some related notions. After that, Section 3.2 introduces the notion of induction
rule as a general way to integrate induction into a saturation system and presents a practically relevant
specialization of this induction rule.

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 9
3.1. Saturation-based proof systems

Saturation is a technique of automated theorem proving that consists of computing the closure of a set
of formulas or clauses under some inference rules. The saturation process goes on until some termination
condition, such as the derivation of the empty clause, is met or until no more “new” formulas can be
generated. Typically saturation-based theorem provers operate in a clausal setting because clauses have less
structure and are therefore better suited for automated proof search.

In what follows we concentrate on the refutational setting, because most state-of-the art theorem provers
are refutation provers. That is, in order to determine for some theory T whether a given sentence ϕ is
provable in T , the prover saturates the clause set CNF(sk∃(T + ¬ϕ)) until the empty clause is derived.
However our definitions can be easily adapted to the positive case by dualizing them, so as to cover for
example connection-like methods.

Practical saturation proof systems are usually based on a variant of the superposition calculus. In order
not to get involved in the technical details of these saturation-based proof systems we will abstractly think
of a such a prover as a state transition system whose current state is a set of derived clauses and whose
state transitions are inference rules that generate new clauses. In particular, our notion of saturation system
does not have any notion of redundancy mechanisms such as simplification rules and deletion rules. Since
this article is mostly about upper bounds on the logical strength of AITP methods, the assumption that
clauses are never deleted is unproblematic.

Definition 3.1 (Saturation systems). A saturation system S is a set of inference rules of the form

C
D
,

also written as C/D where C is a set of clauses D is a finite set of clauses. Let S1 and S2 be two saturation-
based proof systems, then by S1 + S2 we denote the system obtained by the union of the inference rules of
S1 and S2.

Informally, an inference rule C/D indicates that if the system is in the “state” C, then the system changes
into the “state” C ∪D. The reason why we consider inference rules of this form is that they allow us to keep
track of global properties of the prover such as for example the language of the currently derived clauses.
Observe that our notion of inference rules is very general since C may be infinite. Hence we could formulate
an ω-rule for saturation systems. However, we will only work with inference rules that operate with the
language of C and a finite set of clauses C0 ⊆ C.

Example 3.2. The resolution rule can be presented as follows:

{l ∨ C} ∪ {m ∨D} ∪ C
Res,

{(C ∨D)μ}

where C is a clause set, C and D are clauses, and μ is the most general unifier of the literals l and m.

Definition 3.3 (Deduction, refutation). Let C0 be a set of clauses and S a saturation-based proof system. A
deduction from C0 in S is a finite sequence of clause sets D0, . . . , Dn such that C0 = D0 and Di+1 = Di ∪Bi

such that Di/Bi is an inference rule of S for 0 ≤ i < n. We say that a clause C is derivable from C0 in S
if there exists a deduction D0, . . . , Dn such that C ∈ Dn. A deduction D0, . . . , Dn is called a refutation if
� ∈ Dn.

10 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
Since we are usually interested in extending saturation systems for pure first-order logic by inference
rules for induction we need to introduce the notion of soundness and refutational completeness.

Definition 3.4. Let S be a saturation system. We say that S is sound if whenever a clause C is derivable from
a clause set C0 in S, then L(C) ⊆ L(C0) and C0 |= C. The saturation system S is said to be refutationally
complete if there is a refutation from C0 if C0 is inconsistent.

3.2. Induction rules

Typically induction is integrated in a saturation prover by a mechanism, that, upon some condition,
selects some clauses out of the generated clauses and constructs an induction formula based on the selected
clauses. After that, the resulting induction axiom is clausified and the clauses are added to the search space
[31,29,36,23,18,46]. The systems differ in the heuristics that are used to construct the induction formula,
in the shape of the resulting induction formulas and in the conditions upon which an induction axiom is
added to the search space. For instance, Kersani and Peltier’s method [31,29] carries out an induction only
once, namely when the generated clauses are sufficient to derive the empty clause. Thus this method does,
technically speaking, not even generate clauses. We abstract the induction mechanisms of the aforementioned
methods by the following induction rule.

Definition 3.5. The induction rule INDR is given by

C INDR

CNF(sk∃(Ixϕ(x, �z)))

where C is a set of clauses, ϕ(x, �z) is a L(C) formula.

Despite being limited to natural numbers, the induction rule presented above is very general in the sense
that it does not impose any restrictions on the complexity of the induction formulas. None of the methods
known to us comes even close to making use of the full power offered by that rule. Nevertheless, it will serve
us as a useful tool for theoretical analyses.

There is an important observation that we can make about this induction rule. First of all, in a sat-
uration system with this induction rule Skolemization may happen at any time and not just once before
the saturation process begins, as is the case in saturation systems for pure first-order logic. Secondly, the
induction rule INDR permits Skolem symbols to appear in induction formulas. In other words, the induction
INDR iteratively extends the language of the induction formulas by Skolem symbols. Interestingly, a similar
situation has been considered in the literature on mathematical logic [3]. In saturation systems for pure
first-order logic, the role of Skolemization is clear: It allows us to obtain an equiconsistent formula without
existential quantifiers (see Corollary 2.17). In saturation systems with the induction rule INDR the role of
Skolemization is not clear anymore, in the sense of Corollary 2.17. This raises the question how the extension
of the language of induction formulas by Skolem symbols affects the power of the system. Also note that
this feature is not artificial but actually appears in the concrete methods mentioned above.

We shall address this question in Section 4. In particular we will provide a logical characterization of
refutability in a sound and complete saturation system extended by the induction rule INDR in terms of a
theory with an induction schema (see Theorem 4.11). As a corollary we obtain the soundness of the rule
INDR (see Corollary 4.12).

The following example illustrates how to use the above induction rule.

Example 3.6. Let us work in the setting of linear arithmetic and let S be a sound and refutationally complete
saturation system. We will now outline a refutation in S + INDR of the clause set C0 given by

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 11
CNF(sk∃(T + ¬(∀x)(∀y)x + y = y + x)).

Let sk∃(¬(∀x)(∀y)x + y = y + x) = (c1 + c2 �= c2 + c1), then we have c1 ∈ L(C0) and

C0 |= c1 + c2 �= c2 + c1. (1)

Let ϕ1(x) := (c1 + x = x + c1), then we may apply the induction rule INDR to obtain the clause set
C1 := C0 ∪ CNF(sk∃(Ixϕ1(x))). Let sk∃(Ixϕ1(x)) = (ϕ1(0) ∧ (ϕ1(c3) → ϕ1(s(c3)))) → ∀xϕ1(x), then we
have c3 ∈ L(C1) and furthermore by (1) we have

C1 |= ¬ϕ1(0) ∨ ¬(ϕ1(c3) → ϕ1(s(c3))). (2)

Since C1 |= c1 = c1 + 0, we have C1 |= ϕ(c1, 0) ↔ c1 = 0 + c1. Let ϕ2(x) := x = 0 + x, then we apply
the induction rule INDR in order to obtain the clause set C2 := C1 ∪ CNF(sk∃(Ixϕ2)). Let sk∃(Ixϕ2) :=
(ϕ2(0) ∧ (ϕ2(c4) → ϕ2(s(c4)))) → (∀x)ϕ2, then by (2) we have

CNF(C2) |= ¬ϕ2(0) ∨ ¬(ϕ2(c4) → ϕ2(s(c4))) ∨ ¬(ϕ1(c3) → ϕ1(s(c3))). (3)

Now observe that T |= 0 = 0 +0 and T |= 0 +s(c4) = s(0 +c4). Hence, T |= c4 = 0 +c4 → s(c4) = s(0 +c4),
that is, T |= ϕ2(c4) → ϕ2(c4) and T |= ϕ2(0). Therefore, by (3) we obtain

C2 |= ¬(ϕ1(c3) → ϕ1(s(c3))). (4)

Recall that ϕ1(x) = (c1 + x = x + c1). Since T |= c1 + s(x) = s(c3 + x), we have by (4), C2 |= ϕ1(c3) ↔
s(c3 + c1) �= s(c3) + c1. Let ϕ3(x) = (s(c3 + x) = s(c3) + x), then by the above we obtain

C2 |= ¬ϕ3(c3). (5)

Now we apply the induction rule INDR in order to obtain the clause set C3 := C2 ∪ CNF(sk∃(Ixϕ3)). Let
sk∃(Ixϕ3) = (ϕ3(0) ∧ (ϕ3(c5) → ϕ3(c5))) → (∀x)ϕ3, then by (5) we have

C3 |= ¬ϕ3(0) ∨ ¬(ϕ3(c5) → ϕ3(s(c5)).) (6)

Since CNF(T) |= s(c3 + 0) = s(c3) = s(c3) + 0, we have C3 |= ϕ(0). Moreover, CNF(T) |= s(c3 + s(c5)) =
s(s(c3 + c5)), hence CNF(T) |= ϕ3(c5) → ϕ3(s(c5)). Hence, by (6), we have C3 |= ⊥. Hence, by the
refutational completeness of S we obtain a refutation of C3. Therefore, by combining the applications of
INDR used to obtain C3 with the S refutation of C3 we obtain a S + INDR refutation of C0.

Analyzing the rule INDR will give us some general insights about the role of Skolem symbols in saturation
systems with induction, however in order to be more specific about particular methods we have to consider
some restricted forms of this induction rule. We start by introducing some additional terminology. We call
initial Skolem symbols those Skolem symbols that arise from the Skolemization of the input problem and
induction Skolem symbols those Skolem symbols that are generated by an application of the induction rule.

Before we introduce a restriction of the induction rule that is of practical relevance we will discuss some
remarkable design choices encountered in practical methods that we will incorporate into the induction rule:

• Syntactical restriction of induction formulas: The methods presented in [36,23] restrict induction formu-
las to literals, [31,29] restricts induction formulas to ∃1 formulas, and [18,19] restricts induction formulas
to ∀1 formulas.

12 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
• Control over occurrences of Skolem symbols: The practical induction mechanisms exert control over
occurrences of the induction Skolem symbols either by avoiding the introduction of Skolem symbols
altogether [31,29] or by introducing nullary Skolem symbols only [36,23], [18,19]. In particular none
of these methods allows for parameters in the induction formula. As a consequence induction Skolem
symbols trivially occur as subterms of ground terms.

Restrictions on the shape of the induction formulas are a feature that is common to all methods for auto-
mated inductive theorem proving because it is currently still difficult to search efficiently for a syntactically
unrestricted induction formula. We incorporate this feature into the induction rule by parameterizing it by
a set of formulas from which the induction formulas are constructed. The second feature is only slightly
more complicated to generalize. If we are to allow induction formulas with quantifier alternations, then
Skolemizing the corresponding induction axioms introduces Skolem symbols that are not nullary. Hence
variables may occur in the scope of induction Skolem symbols. Therefore we generalize the second feature
by explicitly requiring that variables do not occur within the scope of a Skolem symbol. In other words we
require that Skolem symbols may appear in the induction formula only in subterms of ground terms. Both
generalized features are captured by the following restricted induction rule.

Definition 3.7. Let Γ be a set of formulas, then the rule Γ-GINDR is given by

C Γ-GINDR,
CNF(sk∃(Ixϕ(x,�t)))

where C is a set of clauses, ϕ(x, �z) ∈ Γ, and �t is a vector of ground L(C) terms.

Remark 3.8. This restriction on occurrences of Skolem symbols is not only motivated by abstracting the
current practice in AITP, it is also of independent theoretical interest: As described in [20], Skolemization
without this restriction in simple type theory makes the axiom of choice derivable, hence this restriction has
been introduced in [33]. This restriction is also used as an assumption for proving elementary deskolemization
of proofs with cut in [6], [30].

Let us again consider an example to illustrate the rule.

Example 3.9. Consider the refutation carried out in Example 3.6. We have used the induction rule three
times to derive the clause sets CNF(sk∃(Ixc1+x = x +c1)), CNF(sk∃(Ixx = 0 +x)), and CNF(Ixs(c3+x) =
s(c3) +x). All three induction formulas are equational atoms in which only nullary Skolem symbols appear.
Hence the refutation outlined in Example 3.6 is also a refutation in S+Eq(T)-GINDR, where Eq(L) denotes
the set of equational atoms over the language L.

As with the rule INDR we now have to ask the question how the system behaves. There are two major
cases that we need to distinguish depending on whether the set of formulas Γ may contain initial Skolem
symbols. By letting Γ be a set of Skolem-free formulas, we can restrict the occurrences of all Skolem symbols
in the induction formulas. In Section 5 we mainly concentrate on this case and provide a characterization
for the refutability in a sound and refutationally complete saturation system with the rule Γ-GINDR, thus,
settling the question. In practical systems the initial Skolem symbols usually can appear in the induction
formulas without restriction, that is, these systems correspond to the case where the formulas in Γ may
contain initial Skolem symbols. However, this case is actually part of a more general open problem concerning
occurrences of Skolem symbols in axiom schemata, that we will not address in this article (see Remark 3.8).
Nevertheless, we can handle the simple case when the initial Skolem symbols are nullary. We will mainly

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 13
deal with this case in Section 6 in order to provide an unprovability result for the methods described in [36]
and [23].

4. Unrestricted induction and Skolemization

In the previous section we have abstractly described a common integration of induction into a saturation
system via the induction rule INDR. In this section we will first represent a sound and refutationally
complete saturation system extended by the rule INDR as a logical theory. After that we make use of this
representation in order to investigate the interaction between Skolemization and the induction rule.

4.1. Representation as logical theory

A useful technique when analyzing AITP methods is to reduce the system to an “equivalent” logical
theory. Alternatively, when such a theory cannot be found it is a good practice to approximate the system
by a logical theory as closely as possible. The construction of that theory usually reveals the essential
features of the method. Moreover, we can then make use of powerful techniques from mathematical logic in
order to study the theory. In particular, we can compare methods in terms of their representative theories.

Definition 4.1. Let T be a theory, then we define the Skolem induction operator SI by

SI(T) := T + sk∃(L(T)-IND)

By SIi(T) we denote the i-fold iteration of SI on T . Finally, we define SIω(T) :=
⋃

i<ω SIi(T).

In the following we will show that the theory SIω(T) is a faithful representation of a saturation system
extended by the induction rule INDR and operating on an initial clause set corresponding to a theory
T . In other words, we will show that for a sound and refutationally complete saturation system S and a
theory T , the saturation system S + INDR refutes the clause set CNF(sk∃(T)) if and only if SIω(sk∃(T))
is inconsistent. Intuitively, we can see that this is the case because the operation SI(T) corresponds to a
simultaneous application of INDR to all L(T) formulas. However, by the compactness theorem for first-
order logic, only finitely many of these induction formulas actually appear in a proof of the inconsistency
of SIω(sk∃(T)). Hence we can derive the same induction axioms with the induction rule INDR.

Lemma 4.2. Let S be a sound saturation system and T be a theory. If S +INDR refutes CNF(sk∃(T)), then
the theory SIω(sk∃(T)) is inconsistent.

Proof. We show the slightly stronger claim that for a S + INDR deduction C0 ⊆ C1 ⊆ · · · ⊆ Cj from
CNF(sk∃(T)), we have L(Cj) ⊆ L(SIj(sk∃(T))) and SIω(sk∃(T)) |= Cj . We proceed by induction on j.
For the induction base j = 0 we have SIω(sk∃(T)) |= C0 and L(C0) ⊆ L(SI0(sk∃(T)) = L(sk∃(T)), since
C0 ⊆ CNF(sk∃(T)). For the induction step we consider the clause set Cj+1. If Cj+1 is obtained by an inference
from S, then by the soundness of S we have L(Cj+1) = L(Cj) and Cj |= Cj+1. Hence by the induction
hypothesis we have SIω(sk∃(T)) |= Cj+1 and clearly L(Cj+1) = L(Cj) ⊆ L(SIj(sk∃(T))) ⊆ L(SIj+1(sk∃(T))).
If Cj+1 is obtained by an application of the INDR rule, then Cj+1 = Cj ∪ CNF(sk∃(Ixϕ(x, �z))), where
ϕ is an L(Cj) formula. Since L(Cj) ⊆ L(SIj(sk∃(T))) we have sk∃(Ixϕ(x, �z)) ∈ SIj+1(sk∃(T)), hence
L(Cj+1) ⊆ SIj+1(sk∃(T)). Moreover since SIj(sk∃(T)) |= Cj we clearly have SIj+1(sk∃(T)) |= Cj+1. �
Lemma 4.3. Let S be a refutationally complete saturation-based proof system and T be a theory. If the theory
SIω(sk∃(T)) is inconsistent, then S + INDR refutes CNF(sk∃(T)).

14 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
Proof. Assume that SIω(sk∃(T)) is inconsistent, then by the compactness theorem there exists a finite subset
S of SIω(sk∃(T)) such that S is inconsistent. Furthermore there clearly exist sets S0, S1, . . . , Sn with n ∈ N

such that S0 ⊆ sk∃(T), S ⊆ Sn, and Si = Si−1 ∪{sk∃(Ii)}, with Ii ∈ SIi−1(sk∃(T))-IND and L(Ii) ⊆ L(Si),
for i = 1, . . . , n.

Now we can easily construct a refutation of CNF(sk∃(T)) in S + INDR by letting C0 = CNF(sk∃(T)),
and obtaining Ci = Ci−1∪CNF(sk∃(Ii)) for i = 1, . . . , n by the INDR rule. Clearly, Cn is logically equivalent
to Sn, therefore we obtain a refutation from Cn because of the refutational completeness of S. �

We summarize the results so far in the following proposition.

Proposition 4.4. Let S be a sound and refutationally complete saturation-based proof system and T be a
theory. Then S + INDR refutes CNF(sk∃(T)) if and only if the theory SIω(sk∃(T)) is inconsistent.

Proof. An immediate consequence of Lemma 4.2 and Lemma 4.3. �
The theory SIω(sk∃(T)) is still not very convenient to work with. By working it a bit we can on the

one hand eliminate the recursion that interleaves induction and Skolemization and secondly we can even
“factor” out the Skolemization part. We start by analyzing which Skolem symbols occur in the theories
generated by SIω(·). Our first observation is that induction axioms that do not bind a free variable of the
inducted upon formula allow us to introduce all the Skolem symbols.

Lemma 4.5. Let ϕ(�y) be a formula and u a variable which does not occur in ϕ. Then L(sk∃(Ĩuϕ)) =
L(sk∃(ϕ → ϕ)) and moreover � sk∃(Ĩuϕ) ↔ sk∃(ϕ → ϕ).

Proof. Since the variable u does not occur in ϕ, we clearly have

sk∃(Ĩuϕ) = sk∀(ϕ) ∧ sk∀(∀u(ϕ → ϕ)) → sk∃((∀u)ϕ)

= sk∀(ϕ) ∧ (sk∃(ϕ) → sk∀(ϕ)) → (∀u)(sk∃(ϕ)).

Since sk∃(ϕ → ϕ) = sk∀(ϕ) → sk∃(ϕ) we clearly have L(sk∃(Ĩuϕ)) = L(sk∃(ϕ → ϕ)). Furthermore, sk∃(Ĩuϕ)
clearly is logically equivalent to sk∃(ϕ → ϕ). �

The formulas of the form sk∃(ϕ → ϕ) are of interest because they correspond, roughly speaking, to
Skolem axioms.

Remark 4.6. The requirement in Lemma 4.5 that the induction formula does not contain the induction
variable is peculiar, but convenient to handle. A similar result as Lemma 4.5 can be achieved without this
assumption by working, for example, with induction formulas of the form u = u ∧ ϕ, where the variable u is
not free in the formula ϕ. In practice a system does usually not intentionally use its induction mechanism to
introduce Skolem axioms. Instead some systems (for example [18,19]) provide a lemma rule that introduces
the clauses CNF(sk∃(ϕ → ϕ)) into the search space.

Lemma 4.7. Let T be a theory, then L(SIω(T)) = skω(L(T) ∪ L0).

Proof. The inclusion ⊆ is obvious. For the inclusion ⊇ observe that

L(SIω(T)) =
⋃

L(SIk(T)).

k<ω

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 15
Hence, it suffices to show that for every symbol σ ∈ skω(L(T) ∪ L0), there exists k ∈ N such that σ ∈
L(SIk+1(T)). We proceed by induction on the stage of the symbol σ. For the base case let σ have stage 0,
then it belongs to L(T) ∪ L0 and we already have σ ∈ L(SI1(T)). Now if σ ∈ skω(L(T) ∪ L0) has stage
n > 0, then it is a Skolem symbol of the form σ = s(Qx)ϕ with Q ∈ {∀, ∃} and (Qx)ϕ only contains symbols
of stage less than n. Hence by the induction hypothesis L((Qx)ϕ) ⊆ L(SIk+1(T)) for some k ∈ N. Therefore
sk∃(Iu(Qx)ϕ) ∈ SIk+2(T), thus by Lemma 4.5 the symbol s(Qx)ϕ belongs to L(SIk+2(T)), where u is a
variable that does not occur freely in (Qx)ϕ. �

With this in mind we see that SIω(T) contains the existential Skolemization of the skω(L(T)) induction
schema. This allows us to eliminate the iteration of the operator SI(·) that was used to build up the language
of the induction.

Lemma 4.8. Let T be a theory, then SIω(T) � sk∃(skω(L(T) ∪ L0)-IND).

Proof. Let ϕ be an skω(L(T) ∪ L0) formula. By Lemma 4.7 we have L(SIω(T)) =
⋃

k<ω L(SIk(T)) =
skω(L(T) ∪L0). Hence, there exists k ∈ N such that L(ϕ) ⊆ L(SIk(T)). Therefore, SIk+1(T) � sk∃(Ixϕ). �

Again by using Lemma 4.5 it is straightforward to see that by Skolemizing the induction schema
skω(L)-IND we actually obtain all the Skolem axioms.

Lemma 4.9. Let L be a first-order language, then sk∃(skω(L)-IND) � L-SA.

Proof. Let ϕ(x, �y) be an skω(L) formula and u be a variable not occurring freely in ϕ. Work in
sk∃(skω(L)-IND), then in particular we have sk∃(Ĩu((∀x)ϕ(x, �y))). We apply Lemma 4.5 to Ĩu((∀x)ϕ) in
order to obtain

sk∀((∀x)ϕ(x, �y)) → sk∃((∀x)ϕ(x, �y)).

By Proposition 2.12 we have � sk∃((∀x)ϕ) → (∀x)ϕ, and hence we obtain

sk∀((∀x)ϕ(x, �y)) → (∀x)ϕ(x, �y).

Now observe that sk∀((∀x)ϕ(x, �y)) = sk∀(ϕ(s(∀x)ϕ(x,�y)(�y), �y)). Again by Proposition 2.12 we have � ψ →
sk∀(ψ) for all skω(L) formulas ψ. Therefore, we obtain the desired Skolem axiom

ϕ(s(∀x)ϕ(�y), �y)) → (∀x)ϕ.

Now in order to obtain SA∃
xϕ we start with sk∃(Ĩu(¬(∃x)ϕ)) and apply Lemma 4.5 to obtain

sk∀(¬(∃x)ϕ) → sk∃(¬(∃x)ϕ).

From this we clearly obtain ¬sk∃((∃x)ϕ) → ¬sk∀((∃x)ϕ), thus, we get

sk∀((∃x)ϕ) → sk∃((∃x)ϕ).

Now by Proposition 2.12 we first obtain (∃x)ϕ → sk∃(ϕ(s(∃x)ϕ(�y), �y)). Since sk∃((∃x)ϕ(x, �y)) =
sk∃(ϕ(s(∃x)ϕ(�y), �y)), we get (∃x)ϕ → ϕ(s(∃x)ϕ(�y), �y) by another application of 2.12. �
Proposition 4.10. Let T be a theory, then

SIω(sk∃(T)) ≡ (L(T) ∪ L0)-SA + T + skω(L(T) ∪ L0)-IND.

16 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
Proof. First of all observe that skω(L(sk∃(T)) ∪L0) = skω(L(T) ∪L0) and therefore (L(sk∃(T)) ∪ L0)-SA =
(L(T) ∪ L0)-SA. For the direction from right to left we observe that

(L(T) ∪ L0)-SA + T + skω(L(T) ∪ L0)-IND �

sk∃(T) + sk∃(skω(L(T) ∪ L0)-IND).

With this in mind it is straightforward to see that (L(T) ∪ L0)-SA+T +skω(L(T) ∪ L0)-IND � SIω(sk∃(T)).
For the direction from left to right, we observe that by Lemmas 4.8, 4.9 we have

SIω(sk∃(T)) � (L(T) ∪ L0)-SA + sk∃(T) + sk∃(skω(L(T) ∪ L0)-IND).

Hence, by Proposition 2.14 we obtain

SIω(sk∃(T)) � (L(T) ∪ L0)-SA + T + skω(L(T) ∪ L0)-IND. �
As an immediate consequence of the results above we obtain the following characterization of refutability

in a sound and refutationally complete saturation based system extended by the induction rule INDR.

Theorem 4.11. Let S be a saturation system, T a theory, and ϕ an L(T) sentence.

(i) If S is sound and S + INDR refutes CNF(sk∃(T + ¬ϕ)), then

(L(T) ∪ L0)-SA + T + skω(L(T) ∪ L0)-IND � ϕ.

(ii) If S is refutationally complete and

(L(T) ∪ L0)-SA + T + skω(L(T) ∪ L0)-IND � ϕ,

then S + INDR refutes CNF(sk∃(T + ¬ϕ)).

Proof. Statement (i) is an immediate consequence of Lemma 4.2 and Proposition 4.10 and Statement (ii)
is an immediate consequence of Lemma 4.3 and Proposition 4.10. �

As a corollary we obtain the soundness of the INDR rule with respect to the standard model of an
arithmetical language.

Corollary 4.12. Let S be a sound saturation system, L an arithmetical language, T a sound L theory, and
σ an L sentence. If S + INDR refutes the clause set CNF(sk∃(T + ¬σ)), then NL |= σ.

Proof. By (i) of Theorem 4.11 it suffices to show that

L-SA + T + skω(L)-IND
L Th(NL).

This is shown by expanding NL by suitable Skolem functions, just as in the traditional model-theoretic proof
of Proposition 2.15. The resulting structure satisfies skω(L)-IND since NL has induction for all subsets of
N. �

We conclude this section with a remark.

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 17
Remark 4.13. In the presence of the Skolem axioms every formula is equivalent to an open formula. In
particular, for a language L, we have

(L ∪ L0)-SA + Open(skω(L))-IND � skω(L)-IND.

Thus, we can formulate Theorem 4.11 in a slightly more canonical way, by using Open(skω(L))-IND in place
of skω(L)-IND. In other words, in the presence of Skolem axioms Skolem symbols permit us to simulate
quantification. Conceptually, we can thus split the unrestricted induction rule of Definition 3.5 into a lemma
rule and an induction rule for clause sets.

4.2. Conservativity

In the previous section we have characterized the extension of a sound and refutationally complete
saturation system by the induction rule INDR in terms of a theory with induction over formulas that contain
Skolem symbols. This gives rise to the question how the addition of Skolem symbols to the language of the
induction schema affects the strength of the system. In particular, can we provide an equivalent Skolem-free
induction schema? Let L be a Skolem-free language and T an L theory, then a natural candidate for a
Skolem-free characterization of the strength of L-SA + T + skω(L)-IND is the theory T + L-IND.

Question 4.14. Let L be a Skolem-free language and T an L theory, do we have

L-SA + T + skω(L)-IND
L T + L-IND?

In the following we give a partial answer to the above question. The general case remains open. Our
answer relies on the following idea: If a Skolem function is definable in terms of an L formula then wherever
the Skolem symbols occur we can instead use its definition to eliminate the symbol.

Definition 4.15. Let L be a Skolem-free language and M an L structure. A function f : |M |k → |M | is called
L-definable in M if there exists an L formula ϕ(�x, y) such that for all �d ∈ |M |k we have f(�d) = b if and
only if M |= ϕ(�d, b).

Definition 4.16. Let L be a Skolem-free language. We say that an L structure M has definable Skolem
functions if for every L formula ϕ(�x, y) there exists a function f : |M |k → |M | that is L-definable in M and

M |= (∃y)ϕ(�d, y) → ϕ(�d, f(�d)), for all �d ∈ |M |k.

Proposition 4.17. Let T be a Skolem-free theory. If every model M of T + L(T)-IND has definable Skolem
functions, then

L(T)-SA + T + skω(L(T))-IND ≡L(T) T + L(T)-IND.

For the sake of the presentation we have moved the proof of Proposition 4.17 to Appendix A. The proof
essentially proceeds by replacing in each model the occurrences of the Skolem symbols by instances of their
defining formulas.

In order to illustrate Proposition 4.17 we will consider some practically relevant special cases. An impor-
tant special case of Proposition 4.17 is when the Skolem functions are definable already in a theory.

Definition 4.18. Let T be a Skolem-free theory. We say that T has definable Skolem functions if for each
L(T) formula ϕ(�x, y), there exists an L(T) formula ψ(�x, y) such that

18 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
T � (∃y)ϕ(�x, y) → (∃!y)(ψ(�x, y) ∧ ϕ(�x, y)).

Proposition 4.19. Let T be a Skolem-free theory with definable Skolem functions, then every model of T has
definable Skolem functions.

Proof. Let ϕ(�x, y) be an L(T) formula. Since T has definable Skolem function, there exists ψ(�x, y) such
that T � (∃y)ϕ(�x, y) → (∃!y)(ψ(�x, y) ∧ ϕ(�x, y)). Now let

ψ′(�x, y) := (¬(∃y)ϕ(�x, y) ∧ y = 0) ∨ ((∃y)ϕ(�x, y) ∧ ψ(�x, y)).

Let us now show that T � (∃!y)ψ′(�x, y). We work in T , if (∃y)ϕ(�x, y), then there is some y such that
ψ(�x, y) and ϕ(�x, y). Hence we have ψ′(�x, y). If there is no y such that ϕ(�x, y), then we have ψ′(�x, 0). Assume
that ψ′(�x, y1) and ψ′(�x, y2). If (∃y)ϕ(�x, y), then we have ψ(�x, y1) and ψ(�x, y2), thus, y1 = y2. Otherwise if
¬(∃y)ϕ(�x, y), then we have y1 = y2 = 0. �

In particular, a theory has definable Skolem functions if it has a definable well-order. We simply need to
define the Skolem functions in terms of the least of the candidate values in each point.

Definition 4.20. Let L be a language, and θ(x, y) an L formula in two variables. For the sake of legibility
we write θ(x, y) as x ≺θ y and by (∀x≺θy)ψ(x, y) we abbreviate the formula (∀x)(x ≺θ y → ψ(x, y)). The
total order axioms TOθ for θ are given by the universal closure of the following formulas

x ⊀θ x,

x ≺θ y ∧ y ≺θ z → x ≺θ z,

x ≺θ y ∨ y ≺θ x ∨ x = y.

The least number principle L-LNPθ for θ(x, y) consists of the axioms

(∀�z)((∃x)ψ(x, �z) → (∃x)(ψ(x, �z) ∧ (∀x′≺θx)¬ψ(x′, �z))),

where ψ(x, �z) is an L formula. We define L-WOθ := TOθ + L-LNPθ.

Proposition 4.21. Let T be a Skolem-free theory. If there exists an L(T) formula θ(x, y) such that T �
L(T)-WOθ, then T has definable Skolem functions.

Proof. Let ϕ(�x, y) be an L(T) formula. We set ψ(�x, y) = ϕ(x, y) ∧ (∀y′≺θy)¬ϕ(�x, y′). Now work in T
and assume that (∃y)ϕ(�x, y), then by the least number principle there exists y such that ϕ(�x, y) and
moreover (∀y′≺θy)¬ϕ(�x, y′). It remains to show that this y′ is unique. Let u be an element with ϕ(�x, y)
and (∀u′≺θu)¬ϕ(u, y). If u ≺θ y, then we obtain ¬ϕ(�x, u). Analogously we obtain ¬ϕ(�x, y) if y ≺θ u. Hence
u = y. �

These results are quite far-reaching. For example, for every sound arithmetic theory T containing the
symbol +/2 with the usual primitive recursive definition of + we have

T + L(T)-IND � L(T)-WOθ,

where θ := (∃z)x + z = y. Therefore, extending the full induction principle by all the Skolem symbols based
on such a theory results in a system that proves the same L(T) formulas as the Skolem-free system.

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 19
So far we have considered the effects of extending the full induction schema by all Skolem symbols. We
have concluded that not only is this extension always sound but it is also conservative over the Skolem-
free system in a setting where Skolem functions are definable in all models and in particular if the theory
provides a well-order. We have left open the case where there are models in which a Skolem function is not
definable.

5. Restricted induction and Skolemization

In the previous section we have considered some high-level questions about the soundness and conserva-
tivity of Skolemization in saturation theorem proving with an unrestricted induction rule. In this section
we will focus on the role of Skolem symbols in the more practical setting corresponding to the induction
rule Γ-GINDR given in Definition 3.7, where Γ is a set of formulas. We start by providing in Section 5.1
a representation as a logical theory for sound and refutationally complete saturation systems extended by
the induction rule Γ-GINDR. After that we will make use of that characterization in order to clarify the
role of the Skolem symbols in saturation systems extended by the rule Γ-GINDR mostly under the assump-
tion that Γ is Skolem-free. As already mentioned earlier, the restriction to a Skolem-free Γ deviates from
practical systems in which Γ may contain initial Skolem symbols but not induction Skolem symbols. Nev-
ertheless, studying the effect of restricting the occurrences of all Skolem symbols in the induction schema is
an interesting theoretical question and allows us to better understand the overall role of Skolem symbols.

5.1. Representation as logical theory

We will now provide a preliminary representation as a logical theory for sound and refutationally complete
saturation systems extended by the induction rule Γ-GINDR. We start by introducing some additional
notions that will be used throughout this section.

So far we have considered the traditional induction schema with induction parameters. In the following
we introduce a notation for induction without induction parameters. Parameter-free induction schemata
have been investigated in mathematical logic [1,32,2,14,27], hence, we adopt a similar notation.

Definition 5.1. Let Γ be a set of formulas, then the parameter-free induction schema for Γ formulas Γ-IND−

is given by Γ-IND− := {Ixγ | γ(x) ∈ Γ}.

The grounding operator given in the following definition allows us to obtain all instances of a set of
formulas obtained by replacing some of the variables by ground terms.

Definition 5.2. Let Γ be a set of formulas and let L be a language. Then we define

Γ ↓ L :=
{
γ(�x, t1, . . . , tn)

∣∣∣∣ γ(�x, z1, . . . , zn) ∈ Γ,

t1, . . . , tn are ground L terms

}
.

We can now introduce an operator corresponding to the rule Γ-GINDR.

Definition 5.3. Let T be a theory and Γ be a set of formulas.

Γ-GSI(T) := T + sk∃((Γ ↓ T)-IND−).

We define Γ-GSIi(T) as the i-fold iteration of the Γ-GSI(·) operation. Finally, we define Γ-GSIω(T) :=⋃
Γ-GSIi(T).
i<ω

20 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
It is straightforward to see that Γ-GSIω(·) characterizes a sound and refutationally complete saturation-
based proof system extended by the induction rule Γ-GINDR.

Proposition 5.4. Let S be a sound and refutationally complete saturation-based proof system and T be a
theory. Then S + Γ-GINDR refutes CNF(sk∃(T)) if and only if Γ-GSIω(sk∃(T)) is inconsistent.

Proof. Analogous to the proof of Proposition 4.4. �
In Section 5.2 we will have a closer look at the role of the Skolem symbols in such saturation systems.

5.2. Induction parameters and Skolem symbols

The induction rule Γ-GINDR only generates parameter-free induction axioms, but on the other hand
the generated induction axioms may contain Skolem symbols whose role is not yet clear at this point.
Thus, it appears reasonable to begin by comparing sound and refutationally complete saturation systems
extended by the rule Γ-GINDR with the induction schema Γ-IND−. In the setting of linear arithmetic with
Γ := Open(T) and θ(x, y) := y + x = x → y = 0 we readily obtain an example where both systems differ in
strength.

Lemma 5.5. Let S be a sound and refutationally complete saturation system, then S + Open(T)-GINDR

refutes the clause set CNF(sk∃(T + ¬(∀x)θ(x, x))).

Proof. By Proposition 5.4 it suffices to show the inconsistency of the theory

Open-GSI1(sk∃(T + ¬(∀x)θ(x, x))).

Let c := s(∀x)θ(x,x), then Open-GSI1(sk∃(T + ¬(∀x)θ)) � Ixθ(x, c). Hence we now work in the theory
Open-GSI1(sk∃(T +¬(∀x)θ(x, x))) and proceed by induction on x in the formula θ(x, c). For the base case
it suffices to see that c = c + 0 = 0 by (A4). For the induction step we assume that c + x = x → c = 0 and
c + s(x) = s(x). By (A5) we obtain s(c + x) = s(x) and therefore we obtain c + x = x. Hence c = 0 by the
assumptions. Therefore we now obtain θ(c, c) and ¬θ(c, c), that is, ⊥. �

On the other hand we also have the following.

Lemma 5.6. T + Open(T)-IND− � θ(x, x).

The proof of Lemma 5.6 can be found in Appendix B and consists of the elimination of the symbol p
from induction formulas followed by the construction of a model M. The domain of M consists of elements
of the form (b, i) ∈ {0, 1} ×Z such that b = 0 implies i ∈ N. Furthermore, the symbol 0 is interpreted as the
element (0, 0) and + is interpreted as the operation (b1, n1) +M (b2, n2) = (max{b1, b2}, n1 + n2). Hence,
M �|= θ((1, 0), (1, 0)).

Remark 5.7. We clearly have T + Open(T)-IND � θ(x, x) by proceeding by induction on x in the formula
θ(x, y). Hence Lemma 5.6 is highly interesting for AITP because it provides us with a simple formula that
requires induction on a syntactically more complex formula.

The proof of Lemma 5.5 is reminiscent of the obvious proof of θ(x, x) in the theory T + Open(T)-IND.
Thus the proof suggests that the occurrences of Skolem symbols in ground terms of the induction formulas
provide some of the strength of induction parameters. In the following we will confirm this intuition (see
Theorem 5.22).

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 21
We start by showing that the Skolem symbols appearing in the ground terms of the induction axioms of
Γ-GSIω(sk∃(T)) are not more powerful than induction parameters. This is relatively straightforward because
ground terms can be abstracted by induction parameters. In particular, the grounding operation given in
Definition 5.2 is absorbed by parameterized induction.

Lemma 5.8. Let Γ be a set of formulas and L a language, then

Γ-IND � (Γ ↓ L)-IND.

Proof. Observe that � Ixϕ(x, �y, �z) → Ixϕ(x, �y, �t). �
We have announced that this section deals mainly with the case where the set of formulas Γ is Skolem-free.

This corresponds to a saturation system that also restricts the occurrences of the initial Skolem symbols.
In practical systems this is usually not the case, because the restriction mainly applies to induction Skolem
symbols. We briefly address this more general case in the following lemma.

Lemma 5.9. Let L ⊇ L0 be a first-order language, T an L theory, and Γ a set of L formulas, then

Γ-GSIω(T)
L L-SA + T + Γ-IND.

Proof. By the compactness theorem it clearly suffices to show that Γ-GSIn(T)
L L-SA + T + Γ-IND for
all n ∈ N. We proceed by induction on n and show the slightly stronger claim that L-SA + Γ-GSIn(T) +
Γ-IND
L L-SA+T +Γ-IND, for all n ∈ N. The base case is trivial since Γ-GSI0(T) = T . For the induction
step we have

L-SA + Γ-GSIn+1(T)

=Def. 5.3 L-SA + Γ-GSIn(T) + sk∃(Γ ↓ Γ-GSIn(T)-IND)

≡Prop. 2.14 L-SA + Γ-GSIn(T) + Γ ↓ Γ-GSIn(T)-IND

≡Lem. 5.8 L-SA + Γ-GSIn(T) + Γ-IND

ind. hyp. L-SA + T + Γ-IND. �
We can now apply the above lemma to the case that is relevant for us in order to show that allow-

ing occurrences of Skolem symbols in ground terms of induction formulas is not stronger than induction
parameters.

Proposition 5.10. Let L be a Skolem-free first-order language, T an L theory, and Γ a set of L formulas,
then

Γ-GSIω(sk∃(T))
L T + Γ-IND.

Proof. Let L′ = L0∪L ∪L(sk∃(T)), then by Lemma 5.9 we have Γ-GSIω(sk∃(T))
L′ L′-SA+sk∃(T) +Γ-IND.
By Proposition 2.14 we have L′-SA+sk∃(T) +Γ-IND ≡ L′-SA+T +Γ-IND. Since T +Γ-IND is Skolem-free,
we have by Proposition 2.15 L′-SA +T + Γ-IND
L T + Γ-IND. Hence Γ-GSIω(sk∃(T))
L T + Γ-IND. �

In particular this shows that Γ-GSIω(sk∃(T)) is not refutationally stronger than the theory T + Γ-IND.

Corollary 5.11. Let L be a Skolem-free first-order language, T an L theory, and Γ a set of L formulas. If
Γ-GSIω(sk∃(T)) is inconsistent, then T + Γ-IND is inconsistent.

22 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
In the following we will show by a proof-theoretic argument that we even have the converse, that is,
ground Skolem terms behave in the refutational setting exactly as induction parameters. Thus, we start by
recalling the necessary concepts from proof theory. We introduce a partially prenexed form of the induction
schema in which the strong quantifier of the induction step is pulled into the quantifier prefix. Moving this
quantifier into the quantifier prefix will simplify the subsequent arguments.

Definition 5.12. Let γ(x, �z) be a formula, then we define the sentence I ′xγ by

I ′xγ := (∀�z)(∃x)
(
(γ(0, �z) ∧ (γ(x, �z) → γ(s(x), �z))) → (∀w)γ(w,�z)

)︸ ︷︷ ︸
Jxγ(x,�z)

.

Let Γ be a set of formulas, then we define Γ-IND′ := {I ′xγ | γ(x, �z) ∈ Γ}.

This induction schema is clearly equivalent to the usual one given in Definition 2.19.

Lemma 5.13. Γ-IND ≡ Γ-IND′.

We will work with the following Gentzen system, which is essentially a variant of the calculus G1c given
in [42] with atomic logical axioms extended by a cut rule and axioms for equality.

Definition 5.14. A sequent is an expression of the form Γ ⇒ Δ, where Γ and Δ are finite multisets of
formulas.

Definition 5.15. The sequent calculus G consists of the following rules
Axioms:

Ax
A ⇒ A

L⊥
⊥ ⇒

Refl⇒ t = t
Eq

t = r,A[x/t] ⇒ A[x/r]

Rules for weakening, contraction, and cut:

Γ ⇒ Δ LW
F,Γ ⇒ Δ
F, F,Γ ⇒ Δ

LC
F,Γ ⇒ Δ

Γ ⇒ Δ RW
Γ ⇒ Δ, F

Γ ⇒ Δ, F, F
RC

Γ ⇒ Δ, F

Γ ⇒ Δ, F F,Λ ⇒ Π
Cut

Γ,Λ ⇒ Δ,Π

Rules for logical connectives:

Fi,Γ ⇒ Δ
L∧i, i = 0, 1

Γ ⇒ Δ, F Γ ⇒ Δ, G
R∧
F0 ∧ F1,Γ ⇒ Δ Γ ⇒ Δ, F ∧G

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 23
F,Γ ⇒ Δ G,Γ ⇒ Δ
L∨

F ∨G,Γ ⇒ Δ
Γ ⇒ Δ, Fi R∨i, i = 0, 1

Γ ⇒ Δ, F0 ∨ F1

Γ ⇒ Δ, F G,Γ ⇒ Δ
L →

F → G,Γ ⇒ Δ
F,Γ ⇒ Δ, G

R →
Γ ⇒ Δ, F → G

F [x/t],Γ ⇒ Δ
L∀

(∀x)F,Γ ⇒ Δ
Γ ⇒ Δ, F [x/α]

R∀
Γ ⇒ Δ, (∀x)F

F [x/α],Γ ⇒ Δ
L∃

(∃x)F,Γ ⇒ Δ
Γ ⇒ Δ, F [x/t]

R∃
Γ ⇒ Δ, (∃x)F

where Γ, Δ, Λ, Π stand for multisets of formulas, F, G stand for formulas, A stands for atomic formulas, t, r
stand for terms, and for R ∈ {L∀, R∃} the variable α is called the eigenvariable of R and α does not occur
freely in the conclusion of R.

We recall some important notions and properties of the calculus G. The calculus G is sound and complete
for first-order logic.

Lemma 5.16. Let ϕ be a sentence, then � ϕ if and only if there exists a G proof of the sequent ⇒ ϕ.

Proof. See for example [42]. �
The calculus G has the following form of cut elimination.

Definition 5.17. In a cut inference the formula F is called the cut formula. We say that a G proof is in
atomic cut-normal form (ACNF, for short) if all of its cut formulas are atomic.

Lemma 5.18. If a sequent Γ ⇒ Δ is provable in G, then it has a G proof in ACNF.

Proof. See [42]. �
Definition 5.19. The inference rules L∃ or R∀ are called strong quantifier inference rules. Let π be a G proof,
then by sqi(π) we denote the number of strong quantifier inferences in π.

In the argument to follow the number of strong quantifier inferences of a proof will be used as the
induction measure.

Lemma 5.20. Let π be a G proof in ACNF of the sequent Π, Σ ⇒ Δ, Λ, then there exists a proof π′ in ACNF
of Π, sk∃(Σ) ⇒ sk∀(Δ), Λ and sqi(π′) ≤ sqi(π).

Proof. We follow the ancestors of the formulas in Σ and Δ in π and replace eigenvariables of these ancestors
by their respective Skolem terms. �
Proposition 5.21. Let T be a theory with L0 ⊆ L(T) and Γ a set of formulas. If T + Γ-IND is inconsistent,
then Γ-GSIω(sk∃(T)) is inconsistent.

Proof. Assume that T + Γ-IND is inconsistent, then clearly sk∃(T) + Γ-IND′ is inconsistent as well. Hence
by Lemma 5.16 of G there exists a proof π in ACNF of a sequent of the form Π, I ⇒, where Π is a finite

24 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
subset of sk∃(T) and I is a finite subset of Γ-IND′. Observe, furthermore, that we can assume without loss
of generality that the symbol 0 occurs in Π since L0 ⊆ L(T).

Let μ be a proof in ACNF of a sequent of the form Σ, I ⇒ with Π ⊆ Σ ⊆ Γ-GSIω(sk∃(T)). We proceed
by induction on the number of strong quantifier inferences of μ in order to obtain a proof of a sequent Σ′ ⇒
where Σ′ ⊆ Γ-GSIω(sk∃(T)). If μ does not contain strong quantifier inferences, then we obtain a proof of
Σ ⇒ by permuting inferences on ancestors of I downward. For the induction step assume that μ contains at
least one strong quantifier inference. Because μ does not contain non-atomic cuts, we can permute quantifier
inferences toward the bottom of the proof without introducing any new strong quantifier inferences. Since
Σ is free of strong quantifiers any strong quantifier inference takes place on an ancestor of a formula in I.
Hence, by permuting a strong quantifier inference toward the bottom of the proof μ, we obtain a proof ν
with sqi(ν) ≤ sqi(μ) of the form

(ν′(α))
Σ, Jxϕ(α,�t), I ⇒

L∃
Σ, (∃x)Jxϕ(x,�t), I ⇒

L∀∗
Σ, (∀�z)(∃x)Jxϕ(x, �z), I ⇒

LC
Σ, I ⇒

where ϕ(x, �z) is a Γ formula and �t is a vector of ground terms for which we can assume without loss of
generality that L(�t) ⊆ L(Σ). If �t would contain a symbol σ of I that does not already occur in Σ, then there
is a formula γ(�x) ∈ Γ containing σ and we introduce sk∃(Ixγ(0, . . . , 0)) into Σ by a left weakening. Now we
let

c := s(∀x)
(
ϕ(x,�t)→ϕ(s(x),�t)

).
Then by substituting α by c in ν′ we obtain a proof μ′ = ν′(c) of the sequent Σ, Jxϕ(c, �t), I ⇒. We have
sqi(μ′) = sqi(ν′) = sqi(ν) −1. Then by Lemma 5.20 there exists a proof μ′′ in ACNF of Σ, sk∃(Jxϕ(c, �t)), I ⇒
with sqi(μ′′) ≤ sqi(μ′). Now observe that sk∃(Jxϕ(c, �t)) = sk∃(Ixϕ(x, �t)). Finally, we apply the induction
hypothesis to μ′′′ in order to obtain the desired proof.

Now we finish by applying the above procedure to π in order to obtain a proof of Σ ⇒ with Π ⊆ Σ ⊆
Γ-GSIω(sk∃(T)). By Lemma 5.16 it follows that Γ-GSIω(sk∃(T)) is inconsistent. �

We can summarize the results in the following proposition.

Proposition 5.22. Let L be a Skolem-free first-order language, T an L theory with L0 ⊆ L(T), and Γ a set
of L formulas, then Γ-GSIω(sk∃(T)) is inconsistent if and only if T + Γ-IND is inconsistent.

Proof. An immediate consequence of the Propositions 5.10 and 5.21. �
The above result shows that in a refutational setting allowing Skolem symbols to appear in ground terms

of induction formulas corresponds exactly to induction with parameters. This confirms our initial intuition
that Skolem symbols in ground terms behave like induction parameters. We can rephrase the result of
Proposition 5.22 as follows.

Theorem 5.23. Let L be a Skolem-free first-order language, T an L theory, Γ a set of L formulas, ϕ an L
formula such that L0 ⊆ L(T) ∪ L(ϕ), and S a sound and refutationally complete saturation system. Then
S + Γ-GINDR refutes CNF(sk∃(T + ¬ϕ)) if and only if T + Γ-IND � ϕ.

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 25
We have thus obtained a Skolem-free characterization of a sound and refutationally complete saturation-
based proof system with the induction rule Γ-GINDR. We conclude this section with a question about a
generalization of Theorem 5.23.

Question 5.24. Consider again the situation of Lemma 5.9, where we have shown that Γ-GSIω(T) is L
conservative over L-SA + T + Γ-IND where L ⊇ L0 is a first-order language, T an L theory, and Γ a set of
L formulas. This gives rise to the question whether we can characterize a system that allows initial Skolem
symbols to occur in the induction formulas without restriction, but restricts the occurrences of induction
Skolem symbols in an analogous way to Proposition 5.21. In particular, is Γ-GSIω(T) inconsistent if and
only if L-SA + T + Γ-IND is inconsistent?

6. Unprovability

In the previous sections we have studied two forms of induction rules occurring in saturation-based
induction provers. In particular we were able to give a Skolem-free characterization as a logical theory of
the induction rule Γ-GINDR where Γ is a set of Skolem-free formulas. In this section we will make use of
this result in order to provide concrete unprovability results for saturation systems that make use of this
induction rule. In Section 6.1 we will provide unprovability results for saturation-based systems that are
based on the induction rule Open(L)-GINDR, where L stands for the language of the initial clause set.
Then in Section 6.2 we show that the concrete methods described in [36,23] belong to this family and that
therefore we obtain unprovability results for these methods.

6.1. Open induction

The setting of linear arithmetic described in Section 2.3 proves to be a source of very simple and practically
relevant unprovability examples. We make use of an elegant characterization proved by Shoenfield [40].

Definition 6.1. By T ′ we denote the theory having the axioms of T together with the axioms

x �= 0 → x = s(p(x)), (B1)

x + y = y + x, (B2)

(x + y) + z = x + (y + z), (B3)

x + y = x + z → y = z. (B4)

Theorem 6.2 (Shoenfield [40]). T ′ ≡ T + Open(T)-IND.

The following formulas were already studied by Shoenfield in [40]. Their interesting relation to the theory
T ′ will be crucial for our unprovability results.

Definition 6.3. Let m and n be natural numbers, then we define

Cm := (∀x, y)(m · x = m · y → x = y)

Dm,n := (∀x, y)(sn(m · x) �= m · y).

The proof of [40, Theorem 2] given by Shoenfield can be seen to show that T + Open(T)-IND does not
prove any of the formulas Cm and Dm,n with 0 < n < m.

Lemma 6.4 ([40]). Let 0 < n < m, then

26 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
• T + Open(T)-IND � Cm;
• T + Open(T)-IND � Dm,n.

We have now everything at hand to formulate the unprovability result.

Definition 6.5. Let m, n ∈ N, then the clause sets Xm and Ym,n are given by

Xm := CNF(sk∃(T ′ + ¬Cm)),

Ym,n := CNF(sk∃(T ′ + ¬Dm,n)).

Theorem 6.6. Let S be a sound saturation system and C ∈ {Xm, Ym,n | 0 < n < m}, then S +
Open(L(C))-GINDR does not refute the clause set C.

Proof. We consider the case for C = Xm with 1 < m. The other case is treated analogously. Proceed
indirectly and assume that S + Open(L(Xm))-GINDR refutes Xm. Then by Lemma 5.9 we have

L(T)-SA + sk∃(T ′) + Open(L(Xm))-IND � sk∀(Cm)

First of all, observe that sk∃(T ′) = T ′. By applying Proposition 2.14 we obtain

L(T)-SA + sk∃(T ′) + Open(L(Xm))-IND � Cm.

Now observe that since L(Xm) extends L(T) only by constants, we have Open(L(Xm)) = Open(L(T)) ↓
L(Xm) and therefore by Lemma 5.8 we obtain

L(T)-SA + T ′ + Open(L(T))-IND � Cm.

Hence, T ′, Open(L(T))-IND and Cm are Skolem-free, thus, we can apply Proposition 2.15 to obtain

T ′ + Open(L(T))-IND � Cm.

By Theorem 6.2 we furthermore obtain T + Open(L(T))-IND � Cm. This contradicts Lemma 6.4. �
This result begs the question which features a system needs in order to prove the sentences Cm and

Dm,n for 0 < n < m. In the following we briefly mention some extensions of the open induction schema that
would allow us to overcome our unprovability results. The extensions we suggest are purely theoretical in the
sense that we do not take into account whether they can be implemented efficiently in a saturation system.
A possible extension follows from a remark by Shoenfield [40] that Cm and Dm,n with 0 < n < m can be
proved with parameterized double induction (also known as simultaneous induction) on open formulas.

Definition 6.7. Let γ(x, y, �z) be a formula, then the formula Ĩ(x,y)γ is given by

((∀x)γ(x, 0, �z) ∧ (∀y)γ(0, y, �z) ∧ (∀x, y)(γ(x, y, �z) → γ(s(x), s(y), �z)))

→ (∀x, y)γ(x, y, �z).

Let Γ be a set of formulas, then the double induction schema Γ-IND2 for Γ formulas is given by Γ-IND2 :=
{(∀�z)Ĩ(x,y)γ | γ(x, y, �z) ∈ Γ}.

Lemma 6.8. Let m, n ∈ N with 0 < n < m, then

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 27
(i) T + Open(T)-IND2 � Cm;
(ii) T + Open(T)-IND2 � Dm,n.

Proof. Straightforward. �
The second possibility is to extend the induction rule used by the system at least to ∀1 formulas without

parameters.

Lemma 6.9. Let m, n ∈ N with 0 < n < m, then

(i) T + ∀1(T)-IND− � T ′;
(ii) T + ∀1(T)-IND− � Cm;
(iii) T + ∀1(T)-IND− � Dm,n.

Proof. The proof of (i) is left as an exercise. For (ii) we work in T +∀1(T)-IND− and proceed by induction
on the formula (∀y)(m · x = m · y → x = y). For the base case we have to show that m · 0 = m · y → 0 = y.
By Lemma 2.23 we have m · 0 = 0. By (B1) we need to distinguish two cases. If y = 0, then we are done,
otherwise we obtain a contradiction by (A1). For the induction step we assume (∀y)(m · x = m · y → x = y)
and m · s(x) = m · y. We want to obtain s(x) = y. By (A5) and (B2) we obtain sm(m ·x) = m · s(x) = m · y.
By (B1) we can distinguish two cases. If y = 0, then by 2.23 we sm(m · x) = 0, which contradicts (A1).
Hence by Lemma 2.22 we have m ·x = m ·p(y) and it suffices to show x = p(y). By the induction hypothesis
we have m · x = m · p(y) → x = p(y). Thus we obtain x = p(y).

For (iii) we proceed analogously. �
Shoenfield has shown the following interesting theorem.

Theorem 6.10 ([40]). T ′ + {Cm | 1 < m} + {Dm,n | 0 < n < m} is complete for quantifier-free formulas.

From this it follows that at least in the setting of linear arithmetic double induction and parameter-free
∀1 induction are sufficient to prove all true quantifier-free formulas.

In a similar way to what we did in this section we obtain many more unprovability results by using
independence results of Shepherdson [39] and Schmerl [37]. However, these results are formulated in the
language that besides the symbols of linear arithmetic contains the symbols −̇/2 and ·/2 for the truncated
subtraction and multiplication, respectively. The properties that are shown independent of the base theory
with open induction express slightly more complicated properties such as the irrationality of the square
root of two, Fermat’s last theorem for n = 3, and similar diophantine equations. Hence, these independence
results are currently less practically realistic.

6.2. Literal induction: a case study

In the previous section we have provided unprovability results for sound saturation systems that are
extended by the rule Open(L)-GINDR, where L is a Skolem-free language. In this section we will show that
these results apply to the concrete systems described in [36,23].

In [36] Reger and Voronkov describe an AITP system that extends a sound saturation-based proof system
by the induction rule

{l(a) ∨ C} ∪ C
Literal-AINDR

1∀
CNF(¬sk (l(0) ∧ (∀x)(l(x) → l(s(x))))) ∨ C

28 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
where a is a constant, l(x) is a literal free of a, and l(a) ground. We informally refer to this induction rule
as the first analytical literal induction rule. Basically, this induction rule operates as follows: Whenever a
clause of the form l(a) ∨C is encountered, then the rule generates the clauses corresponding to the induction
axiom Ixl(x) and immediately resolves these against l(a) ∨ C. In a practical implementation the rule will
not apply to every clause of the form l(a) ∨ C but only when some additional conditions are satisfied.
We call this induction rule analytical because an induction is carried out only for literals that actually
are generated during the saturation process. The motivation for choosing the very restricted induction
rule Literal-AINDR

1 is to solve problems that require “little” induction reasoning and complex first-order
reasoning [36]. In particular the induction rule is chosen so as to not generate too many clauses, which
otherwise would potentially result in performance issues. Empirical observations [23], however, suggest that
this method is unable to deal even with very simple yet practically relevant problems such as

x + (x + x) = (x + x) + x.

In order to relax the overly restricting analyticity, [23] introduces the following induction rule:

{l(a) ∨ C} ∪ C
Literal-AINDR

2
CNF(¬sk∀ (l(0) ∧ (∀x)(l(x) → l(s(x))))) ∨ C

where l(x) is a literal, a is a constant such that l(a) is ground. This rule reduces the degree of analyticity by
allowing induction to be carried out on slight generalizations of the currently derived literals. This results
in more possibilities to add induction axioms to the search space and thus makes search more difficult, but
the degree of analyticity of the induction is reduced sufficiently to make the method able to prove some
challenging formulas such as for example x +(x +x) = (x +x) +x (see [23] for details). It is clear that the rule
Literal-AINDR

2 is at least as strong as the rule Literal-AINDR
1 . Hence we will in the following concentrate

on the rule Literal-AINDR
2 .

In the next step we will show how the induction rule Literal-AINDR
2 can be expressed in terms of the

restricted induction rule given in Definition 3.7. The proof proceeds in three steps: First we extract the
induction axioms that are introduced with Literal-AINDR

2 ; secondly, we derive these induction axioms with
the induction rule of Definition 3.7; finally, we use first-order inferences to reconstruct a refutation.

Lemma 6.11. Let S be a sound saturation system and D0, . . . , Dn and S + Literal-AINDR
2 deduction. There

exist L(D0) literals

(li(x, c1, . . . , ci−1))i=1,...,k ,

where n < k and cj = s(∀x)(lj(x,c1,...,cj−1)→lj(s(x),c1,...,cj−1)) for 0 < j ≤ k, such that L(Dn) ⊆ L(D0) ∪
{c1, . . . , ck} and

D0 ∪ sk∃({Ixli(x, c1, . . . , ci−1) | 0 < i ≤ k}) |= Dn.

Proof. We start with a straightforward observation. Since the induction rule Literal-AINDR
2 introduces only

nullary Skolem symbols, every literal appearing in an S + Literal-AINDR
2 deduction from D0 is of the form

l(�x, �c), where �c is a vector of induction Skolem symbols and L(l(�x, �y)) ⊆ L(D0).
Now let us proceed by induction on the length n of the deduction from D0. If n = 0, then clearly we

are done. Now assume that the claim holds up to Dn and consider Dn+1. If Dn+1 is derived by from Dn

by an inference from S, then by the soundness of S we have L(Dn+1) ⊆ L(Dn) and Dn |= Dn+1. Hence,
we are done by applying the induction hypothesis to Dn. If Dn+1 is derived from Dn by Literal-AINDR

2 ,
then Dn contains a clause l(a, c1, . . . , ck) ∨ C and Dn+1 = Dn ∪ CNF(sk∃(Ixl(x, c1, . . . , ck)) and moreover

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 29
L(Dn) ⊆ L(D0) ∪{1, . . . , n}. We let lk+1(x, �y) := l(x, �y) and ck+1 = s(∀x)(lk(x,c1,...,ck)→lk(s(x),c1,...,ck)). Hence
we have Dn ∪ {sk∃(Ixlk+1(x, c1, . . . , ck))} |= Dn+1 and L(Dn+1) = L(Dn) ∪ {ck+1}. Therefore, we have
k + 1 < n + 1 and L(Dn+1) ⊆ L(D0) ∪ {c1, . . . , ck+1} and

D0 ∪ sk∃ ({Ixli(x, c1, . . . , ci−1) | 0 < i ≤ k + 1}) |= Dn+1. �
Proposition 6.12. Let S be a sound and refutationally complete saturation system and T a theory. If S +
Literal-AINDR

2 refutes CNF(sk∃(T)), then the saturation system S + Literal(L(sk∃(T)))-GINDR refutes
CNF(sk∃(T)).

Proof. Assume that S + Literal-AINDR
2 refutes CNF(sk∃(T)), then by Lemma 6.11 we obtain k ∈ N and

literals li(x, c1, . . . , ci−1) such that L(li(x, �y)) ⊆ L(sk∃(T)) i = 1, . . . , k. Moreover we have

CNF(sk∃(T)) ∪ sk∃({Ixli(x, c1, . . . , ci−1) | 0 < i ≤ k}) |= �.

Now we start with the clause set CNF(sk∃(T)) and repeatedly apply the induction rule Literal(L(sk∃(T)))-
GINDR to derive the clause sets

Dm = CNF(sk∃(T)) ∪ CNF(sk∃({Ixli(x, c1, . . . , ci−1) | 0 < i ≤ m})),

for m = 1, . . . , k. As shown above, this clause set Dk is inconsistent, hence, by the refutational com-
pleteness of S we obtain a refutation E0, . . . , En from Dk. Hence the sequence (D1, . . . , Dk, E1, . . . , En) is a
S + Literal(sk∃(T))-GINDR refutation of CNF(sk∃(T)). �

As an immediate consequence, we can transfer the previously established unprovability results to the
concrete method described in [36,23].

Theorem 6.13. Let S be a sound and refutationally complete saturation system, then the system S +
Literal-AINDR

2 does neither refute the clause set Xm nor the clause set Ym,n for 0 < n < m.

Proof. We consider the case for the clause set Xm with 1 < m. The other case is analogous. Suppose that
S +Literal-AINDR

2 refutes Xm, then by Proposition 6.12 the saturation system S +Literal(L(Xm))-GINDR

refutes Xm. This contradicts Theorem 6.6. �
Theorem 6.13 gives us a family of simple and practically relevant clause sets that cannot be proved by

the calculi presented in [36,23].
Let us now briefly discuss these results. A possible source of criticism for Theorem 6.13 may be that the

underlying independence results (Lemma 6.4) are overly strong. That is they do not exploit the restriction
of the induction to literals, but instead rely on the fact that the sentences Cm and Dm,n with 0 < n < m

are already unprovable with induction for all quantifier-free formulas. We can address this point by the
following results.

Lemma 6.14. The theory T + Literal(T)-IND proves (B1)–(B4).

Proof. Proving (B2) and (B3) is straightforward. For (B4) we show the contrapositive y �= z → x +y �= x +z.
We assume y �= z and proceed by induction on x in the formula x + y �= x + z. For the base case we have
to show 0 + y �= 0 + z. By (B2) and the definition of + the formula 0 + y �= 0 + z is equivalent to y �= z

which we have assumed. For the induction step we assume s(x) + y �= s(x) + z. By (B2) and (A5) we obtain
s(x + y) �= s(x + z), hence x + y �= x + z and we are done.

30 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
Proving (B1) is slightly more complicated because the induction interacts even more with the context.
We assume x �= 0 and we have to show x = s(p(x)). We proceed by induction on y in the formula x �= y.
The induction base is trivial since we have assumed x �= 0. For the induction step we assume x �= y0 and we
have to show x �= s(y0). Hence we assume x = s(y0). Now we have s(p(x)) = s(p(s(y0))) = s(y0) = x and
we are done. Therefore we obtain the formula (∀y)x �= y and in particular x �= x, which is a contradiction.
Hence we obtain x = s(p(x)). �

In the light of Shoenfield’s theorem it is now clear that induction for literals is as powerful as quantifier-
free induction.

Proposition 6.15. T + Literal(T)-IND ≡ T + Open(T)-IND.

Proof. The direction from right to left is obvious. For the direction from left to right follows from Lemma 6.14
and Shoenfield’s Theorem (Theorem 6.2). �

The underlying independence results are therefore not too strong and it is not possible to improve the
result by taking into account the restriction of the induction to literals. The result may also be interesting
from a practical point of view, because induction for literals is much easier to implement efficiently than
induction for quantifier-free formulas. It would therefore be interesting to investigate under which conditions
induction for quantifier-free formulas collapses to induction for literals. However, we believe that there are
practically relevant theories in which the induction schema for literals is strictly weaker than the induction
schema for quantifier-free formulas. Such a theory could allow us to provide unprovability results that give
a motivation for the development of stronger induction mechanisms.

Another possible source of criticism is that our results focus on abstractions that are quite far from
practical reality. Most importantly, we do not exploit the fact that the induction rules Literal-AINDR

i

(i = 1, 2) attempt induction only for literals of which an instance of the dual literal occurs in the derived
clauses. Selecting the induction literals in this way seems to be a strong theoretical and practical restriction.
However, this restriction is crucial for current practical systems because it permits an efficient operation
of the prover. In practice, the restriction is usually weakened by the usage of heuristics for the selection
of induction formulas [23]. Another promising method for discovering induction formulas is introduced in
[15,44], but it is unclear how to integrate this efficiently into a saturation-based system. We currently do
not have a candidate clause set that exploits the way in which Literal-AINDR

i (i = 1, 2) select induction
literals, but we plan to investigate this restriction in the future.

On the other hand, working with high-level abstractions allows us to obtain results that are robust
against minor refinements of the induction rule from [36] such as the refinement proposed in [23]. Moreover,
the underlying independence results together with Lemmas 6.8 and 6.9 suggest natural, yet not necessarily
practical, extensions of the induction rule by allowing simultaneous induction on multiple variables or by
allowing quantification inside the induction formula.

7. Conclusion, future work, and remarks

In this article we have analyzed a commonly used design principle for the integration of induction into
saturation systems that has recently received increased interest [31,29], [18,19], [46], [22], [36,23].

In Section 4, we have considered a general framework for induction over natural numbers in saturation-
based provers that extend the language by Skolem symbols. By reducing this induction mechanism to a
logical theory (see Theorem 4.11), we have shown that in many relevant cases extending the language
of the induction schema by Skolem symbols does not grant any additional power (see Proposition 4.21).
Furthermore, we have considered, in Section 5, an induction rule that restricts occurrences of Skolem symbols

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 31
to ground terms according to similar restrictions observed in practical systems. We have shown that under
this restriction Skolem symbols correspond to induction parameters (see Theorem 5.22). Finally, in Section 6,
we have used the results from Section 5 and independence results from the literature on mathematical logic to
obtain some practically relevant unprovability results for the systems described in [36,23] (see Theorem 6.13).

We plan to continue the work on induction in saturation-based theorem proving by analyzing the methods
developed by Cruanes [18,19], Wand [46] and Echenim and Peltier [22]. We are particularly interested in
Cruanes’ method because its mode of operation is very similar to the methods described in [36,23]. We
suspect that under reasonable assumptions, the induction in Cruanes’ system corresponds to the restricted
induction rule (see Definition 3.7) over ∀1 formulas. Furthermore, Cruanes’ method also allows induction
on several formulas simultaneously and introduces definitions by the AVATAR splitting mechanism [45].

Furthermore the work in this article has given rise to a number of questions that we hope to address
in the future. In Section 4 we have established some very coarse results concerning the conservativity of
extensions of the language of the induction formulas by Skolem symbols. In particular we have shown that in
many relevant cases extending the induction schema by Skolem symbols does not result in a more powerful
system. We have however left open the general case (see Question 4.14). This question is not proper to
induction but is part of a more general question concerning the extension of the language of an axiom
schema by Skolem symbols. In Section 5 we have mainly considered the case where the occurrences of all
Skolem symbols in the induction formulas are subject to the restriction mentioned above. Practical systems
only impose this restriction on Skolem symbols that are generated by the induction rule. We have left open
the question about a characterization of these systems (see Question 5.24). Finally, it seems worthwhile
to investigate the effects of the analyticity properties of induction rules used in concrete systems such as
[36,23] and their interaction with redundancy rules.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Appendix A

This section provides a proof of Proposition 4.17 and all the related lemmas. The proof essentially
proceeds by replacing each occurrence of a Skolem symbol by its definition. We start by showing that we
can isolate the occurrences of a given function symbol.

Lemma A.1. Let ϕ(�z) be a formula and f a function symbol. Then there exists a formula ψ(�z) such that
� ϕ(�z) ↔ ψ(�z) and f occurs in ψ only in subformulas of the form x = f(�t), where �t is free of f .

Proof. We exhaustively apply the equivalence from left to right

� ϕ(�t(u))) ↔ (∀x)(x = u → ϕ(�t(x))),

where x does not occur freely in ϕ(�t(u)). It is straightforward to see that the logical equivalence of the formula
so obtained is preserved and furthermore this transformation terminates because the overall nesting depth
of f strictly decreases. �

After isolating a function symbol and assuming that it has a definition we can simply replace all the
occurrences by its definition.

32 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
Lemma A.2. Let M be an L structure, ψ(�x, y) be an L formula such that M |= (∃!y)ψ(�x, y). Let furthermore
f be a function symbol and ϕ(�z) an L ∪{f} formula. Let M ′ := M∪{f → fψ}, where fψ(�a) = b with b ∈ |M |
the only choice so that M |= ψ(�a, b). Then there exists an L formula θ(�z) such that M ′ |= ϕ(�z) ↔ θ(�z).

Proof. This is easily seen by first observing that M ′ |= f(�x) = y ↔ ψ(�x, y). Now apply Lemma A.1 to ϕ in
order to obtain a formula in which f occurs only as subformulas of the form y = f(�t) with �t free of f and
replace these occurrences with ψ(�t, y). Clearly the resulting formula is equivalent to ϕ in M ′. �

The assumption that a model has definable Skolem functions only provides us with definitions for Skolem
symbols of L formulas. The definitions for other Skolem symbols that are introduced at later stages need
to be constructed based on the definitions for symbols of lower stages.

Lemma A.3. Let L be a Skolem-free first-order language and M an L structure with definable Skolem func-
tions. Then there exists an expansion M ′ of M to skω(L) such that M ′ |= L-SA and for each Skolem symbol
f of skω(L) then fM ′ is L definable in M ′.

Proof. We show by induction on i ∈ N that there is an expansion Mi of M to the language ski(L) such
that for each Skolem symbol f/m of ski(L) there exists a formula ψf (�x, y) such that Mi |= f(x1, . . . , xm) =
y ↔ ψf (x1, . . . , xm, y). The base case with i = 0 is trivial. For the induction step we assume the claim
for i and consider the case for i + 1. Let f := s(Qy)ϕ(y,�x) be a Skolem symbol of ski+1(L), that does not
belong to ski(L). Let g1/k1, . . . , gn/kn be the Skolem symbols occurring in the formula ϕ. Then clearly
gj belongs to ski(L) for all j = 1, . . . , n. By the induction hypothesis there exist L formulas ψgj (�xj)
such that Mi |= gj(x1, . . . , xkj

) = y ↔ ψgi(x1, . . . , xkj
, y), for j = 1, . . . , n. Then by repeated application of

Lemma A.2 to the formula ϕ, there exists an L formula ψf (�x, y) such that Mi |= ϕ(�x, y) ↔ ψf (�x, y). Since ψf

is an L formula, M has definable Skolem functions, there exists a function h : |M |k → |M | and an L formula
δh(�x, y) such that h is defined in M by δh and M |= (∃y)ψf (�x, y) → ψf (�x, h(�x)). We set fMi+1 := h, then we
have Mi+1 |= f(�x) = y ↔ δh(�x, y). It remains to show that Mi+1 satisfies the Skolem axiom for f . Suppose
we have Mi |= (∃y)ϕ(�d, y), then we have Mi |= (∃y)ψf (�d, y). Hence Mi+1 |= ψf (�d, h(�d)) and therefore
Mi+1 |= ϕ(�d, f(�d)). Hence Mi+1 |= (∃y)ϕ(�x, y) → ϕ(�x, f(�x)). Finally, we obtain M ′ by M ′ :=

⋃
i≥0 Mi. �

Proving Proposition 4.17 is now just a matter of replacing Skolem symbols in induction formulas by their
definitions.

Proof of Proposition 4.17. Let ϕ be an L formula such that T + L-SA + skω(L)-IND � ϕ. We proceed
indirectly and assume T + L-IND � ϕ. Then there exists a model M of T + L-IND such that M �|= ϕ.
By Lemma A.3 there exists an expansion M ′ of M to skω(L) such that M ′ |= L-SA and for every Skolem
symbol f there exists an L formula δf (�x, y) such that M ′ |= f(�x) = y ↔ δf (�x, y). Let θ(x, �z) be an skω(L)
formula and consider the induction axiom Ixθ(x, �z). By Lemma A.2 there exists an L formula θ′(x, �z) such
that M ′ |= θ(x, �z) ↔ θ′(x, �z). Hence we have M ′ |= Ixθ(x, �z) ↔ Ixθ

′(x, �z). Since M |= L-IND, we have
M ′ |= Ixθ(x, �z). Hence M ′ |= skω(L)-IND and therefore M ′ |= T + L-SA + skω(L)-IND but M ′ �|= ϕ.
Contradiction! �
Appendix B

In this section we provide a model theoretic proof of Lemma 5.6. The difficulty consists in showing that a
given structure satisfies the induction schema Open(L(T))-IND−. In order to address this problem we start
by simplifying the language of the induction schema (see Proposition B.6). By L′ we denote the language
L(T) without p.

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 33
Lemma B.1. The theory T + Open(L(T))-IND− proves the following formulas

x = 0 ∨ x = s(p(x)). (7)

x + k = k + x (8)

x + k + 1 �= x, (9)

for all k ∈ N.

Next we show that whenever a p-free term contains a free variable x, then whenever the variable x is
substituted for s(x), we can propagate one occurrence of the successor function to the root of the term.

Lemma B.2. Let t(x) be a non-ground p-free term, then there exists a p-free term t′(x) such that T �
t(s(x)) = s(t′(x)).

Proof. We proceed by induction on the structure of the term t. If t = x, then we are done by letting t′ = t. If
t = s(u(x)), then u is non-ground and p-free. We let t′ = u(s(x)), then we have T � t(s(x)) = s(u(s(x))) =
s(t′(x)). If t = u1 + u2, then we have to consider two cases depending on whether u2 is ground. If u2 is
not ground, then by the induction hypothesis there exists u′

2 such that T � u2(s(x)) = s(u′
2(x)). Then we

have T � u1(s(x)) + u2(s(x)) = u1(s(x)) + s(u′
2(x)) = s(u1(s(x)) + u′

2(x) and we set t′ = u1(s(x)) + u′
2.

If u2 is ground, then u1 is non-ground and by the induction hypothesis there exists u′
1 such that T �

u1(s(x)) = s(u′
1(x)). We have T � t(s(x)) = u1(s(x)) + u2 = s(u′

1(x)) + k = s(sk(u′
1(x))), hence we choose

t′ = sk(u′
1). �

Now we will show that given a term t(x), we can eliminate the occurrences of p in t(sN (x)) when N is
large enough.

Lemma B.3. Let t(x) be a term, then there exists N ∈ N and a p-free term t such that T � t(sN (x)) = t′.

Proof. If t is a ground term, then we have T � t = k for some k and we let t′ = k and N = 0. If t = x, then
we let N = 0 and t = t′. If t = s(u), where u is a term, then by the induction hypothesis there exists N ′ and
a p-free u′ such that T � u(sN ′(x)) = u′. Hence we have T � t(sN (x)) = s(u(sN (x))) = s(u′). Thus we let
N := N ′ and t′ = s(u′). If t = p(u), then by the induction hypothesis we have some N ′ and a p-free u′ such
that T � u(sN ′(x)) = u′. Hence by Lemma B.2 we have T � p(u(sN ′+1(x))) = p(u′(s(x))) = p(s(u′′)) = u′′,
for some p-free term u′′ and we let N := N ′ +1 and t′ = u′′. If t = u1 +u2, then by the induction hypothesis
there exists for i ∈ {1, 2} a natural number Ni and a p-free term u′

i such that T � ui(sNi(x)) = u′
i. Let

N = max{N1, N2}, then we have T � t(sN (x)) = u1(sN (x)) + u2(sN (x)) = u′
1(sN−N1(x)) + u′

2(sN−N2(x)),
thus we let t′ = u′

1(sN−N1(x)) + u′
2(sN−N2(x)). �

Lemma B.4. Let ϕ(x) be a formula, then there exists N ∈ N and a p-free formula ϕ′(x) such that T �
ϕ(sN (x)) ↔ ϕ′.

Proof. Let θ an atom, then θ is of the form t1 = t2, then apply Lemma B.3 twice in order to obtain N1,
N2 and the p-free terms t′1(x) and t′2(x). Now let N := max{N1, N2} and observe that T � θ(sN (x)) ↔
t′1(sN−N1(x)) = t′2(sN−N2(x)).

Let θ1(x), . . . , θn(x) be all the atoms of ϕ. Let i ∈ {1, . . . , n}, then apply the argument above to θi in
order to obtain a natural number Mi and a p-free atom θ′i such that T � θ(sMi(x)) ↔ θ′i. Let M = max{Mi |
i = 1, . . . , n} and obtain ϕ′ by replacing in ϕ(sM (x)) every atom θi(sM (x)) by θ′i(sM−Mi(x)). Clearly we
have T � ϕ(sM (x)) ↔ ϕ′. �

34 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
We can now “factor” the symbols p out of the induction schema. The idea is instead of starting the
induction at 0 we start the induction at some N ∈ N that is large enough, so that we can eliminate p
according to the lemma above.

Lemma B.5. T + (B1) + Open(L′)-IND− � Open(T)-IND−.

Proof. Let ϕ(x) be an L(T) formula. We want to show Ixϕ(x). By Lemma B.4 above we obtain an N ∈ N

and a p-free formula ψ such that T � ϕ(sN (x)) ↔ ψ(x). Now we work in T + (B1) + Open(L′)-IND− and
assume ϕ(0) and ϕ(x) → ϕ(s(x)) and we want to show ϕ(x). Hence by a N − 1 fold application of Lemma
(B1) it suffices to show ϕ(0), ϕ(1), . . . , ϕ(sNpN (x)). By starting with ϕ(0) and iterating ϕ(x) → ϕ(s(x))
we obtain ϕ(n) for all n ∈ N. Hence it remains to show ϕ(sN (pN (x))). We proceed by induction on ψ. For
the induction base we have to show ψ(0) which is equivalent to ϕ(N), hence we are done. For the induction
step we assume ψ(x) and we have to show ψ(s(x)). We have ψ(x) ↔ ϕ(sN (x)) and by (∀x)(ϕ(x) → ϕ(s(x)))
we obtain ϕ(sN (x)) → ϕ(sN+1(x)) thus by modus ponens ϕ(sN+1(x)) which is equivalent to ψ(s(x)). This
completes the induction step. By the induction we thus obtain ψ(x), and in particular ψ(pN(x)) which is
equivalent to ϕ(sNpN (x)). This completes the proof. �

As an immediate consequence of the above lemma we can factor all the occurrences of p/1 in the induction
formulas into a single axiom.

Proposition B.6. T + Open(L(T))-IND− ≡ T + (B1) + Open(L′)-IND−.

Over Z p-free atoms in one variable represent equations between two linear functions as can be easily
seen. Linear functions have the nice property that either they coincide everywhere or else they intersect in
at most one point. This property of linear functions allows us to analyze the truth values of a quantifier-free
formula in one point. The idea is that this property allows us to define a radius, beyond which an atom
behaves on the positive integers just like on the negative integers. We will now define an L(T) structure
that has an analogous property.

Definition B.7. Let M be the L(T) structure whose domain is the set of pairs (b, n) ∈ {0, 1} ×Z such that
b = 0 implies n ∈ N and that interprets the function symbols 0, s, p, and + as follows

0M = (0, 0),

sM((b, n)) = (b, n + 1),

pM((0, n)) = (0, n −̇ 1),

pM((1, n)) = (1, n− 1),

(b1, n1) +M (b2, n2) = (max{b1, b2}, n1 + n2),

where b, b1, b2 ∈ {0, 1} and n, n1, n2 ∈ N.

It is clear that the structure M is indeed an L(T) structure.

Lemma B.8. M |= T + (B1).

Proof. The element 0M clearly has no predecessor. Furthermore pM0M = (0, 0) = 0M. We have
pM(sM(b, n))) = (b, n). Moreover (b, n) +M (0, 0) = (b, n) and

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 35
(b1, n1) +M sM((b2, n2)) = (b1, n1) +M (b2, n2 + 1)

= (max{b1, b2}, n1 + n2 + 1) = sM((max{b1, b2}, n1 + n2))

= sM((b1, n1) +M (b2, n2)).

Finally, observe that every element that is not 0M has a predecessor. �
Lemma B.9. Let t(x) be a p-free term containing the variable x, then

tM((b, n)) = (b, tZ(n)). (10)

Proof. We proceed by induction on the structure of the term t. If t is the variable x, then tM(b, n) =
(b, n) = (b, tZ(n)). If t = t1 + t2, then either t1 or t2 is not ground. If t1 contains x and t2 does not
contain x, then we have by the induction hypothesis tM1 (b, n) = (b, tZ1 (n)) and tM2 (b, n) = (0, tN2). Hence
tM(b, n) = (b, tZ1 (n) +tN2) = (b, tZ(n)). If both t1 and t2 contain x, then we have by the induction hypothesis
tM1 (b, n) = (b, tZ1 (n)) and tM2 (b, n) = (b, tZ2 (n)). Hence tM(b, n) = (b, tZ1 (n) + tZ2 (n)) = (b, tZ(n)). �

The following lemma expresses the informal idea discussed above that an atom is determined outside of
some finite radius.

Lemma B.10. Let θ(x) be a p-free atom, then there exists N ∈ N such that for all n ≥ N

M |= θ((1,−n)) ⇐⇒ N |= θ(n). (11)

Proof. Let θ(x) := (t1 = t2). If t1 and t2 do not contain x, then the claim holds trivially. If t1 and t2 both
contain x, then by Lemma B.9 we have

M |= θ((1,−n)) ⇔ Z |= θ(−n), (12)

for all n ∈ N. In Z the atom θ is an equation between two linear functions. Hence there are two cases to
consider. If θ is true in Z in at most one point, then there exists N ∈ N such that for all m ∈ Z with
|m| ≥ N we have Z �|= θ(m). Thus M �|= θ((1, −m)) and N �|= θ(m) for m ≥ N . Otherwise, if θ is true in
more than one point of Z, then θ is true everywhere in Z and we have M |= θ((1, −m)) and N |= θ(m) for
all m ≥ 0. If t1 contains x, but t2 does not contain x, then clearly M �|= θ((1, m)) for all m ∈ Z. Moreover
M |= θ((0, m)) if and only if N |= θ(m) for all m ≥ 0. Clearly N |= θ(m) for at most one m ∈ N, hence
there exists N ∈ N such that N �|= θ(m) for all m ≥ N . Hence we have M �|= θ((1, −m)) and M �|= θ((0, m))
for all m ≥ N . This completes the proof. �

Thanks to the property shown in the lemma above, we can now quite easily show that M is a model of
Open(L′)-IND−.

Lemma B.11. M |= Open(L′)-IND−.

Proof. Let ϕ(x) be a quantifier-free p-free formula and assume that M |= ϕ(0) and M |= ϕ(x) → ϕ(s(x)).
Let (b, n) ∈ |M|. If b = 0, then the claim follows by a straightforward induction and the definition of the
model M. If b = 1, then we consider the atoms of the formula ϕ(x). By applying Lemma B.10 to the atoms
of ϕ we obtain a natural number M such that for all m ≥ M we have M |= ϕ((1, −m)) ⇔ M |= ϕ((0, m)).
Clearly, there exists a natural number n′ with n′ ≤ n and n′ ≤ −M . Then we have M |= ϕ((1, n′)) because
we have already shown that M |= ϕ((0, −n′)). By applying repeatedly applying the induction step we then
obtain M |= ϕ((1, n′ + k)) for all k ∈ N. In particular we obtain M |= ϕ((1, n)). �

36 S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167
We can now finally give a proof of Lemma 5.6

Proof of Lemma 5.6. By Lemma B.8 and Lemma B.11 we have M |= T + (B1) + Open(L′)-IND−. Now
observe that (1, 0) +M (1, 0) = (1, 0) but (1, 0) �= (0, 0) = 0M. Hence T + (B1) + Open(L′)-IND− � θ(x, x).
Hence by Proposition B.6 we obtain T + Open(L(T))-IND− � θ(x, x). �
References

[1] Zofia Adamowicz, Parameter-free induction, the Matiyasevič theorem and BΣ1, in: F.R. Drake, J.K. Truss (Eds.), Logic
Colloquium ’86, in: Studies in Logic and the Foundations of Mathematics, vol. 124, Elsevier, 1987, pp. 1–8.

[2] Lev D. Beklemishev, Parameter free induction and reflection, in: Georg Gottlob, Alexander Leitsch, Daniele Mundici (Eds.),
Computational Logic and Proof Theory, in: Lecture Notes in Computer Science, vol. 1289, Springer, 1997, pp. 103–113.

[3] Lev D. Beklemishev, Quantifier-free induction schema and the least element principle, Proc. Steklov Inst. Math. 242 (2003)
50–67.

[4] James Brotherston, Nikos Gorogiannis, Rasmus Lerchedahl Petersen, A generic cyclic theorem prover, in: Ranjit Jhala,
Atsushi Igarashi (Eds.), Programming Languages and Systems, in: Lecture Notes in Computer Science, vol. 7705, Springer,
2012, pp. 350–367.

[5] Susanne Biundo, Birgit Hummel, Dieter Hutter, Christoph Walther, The Karlsruhe induction theorem proving system, in:
Jörg H. Siekmann (Ed.), 8th International Conference on Automated Deduction, in: Lecture Notes in Computer Science,
vol. 230, Springer, 1986, pp. 672–674.

[6] Matthias Baaz, Stefan Hetzl, Daniel Weller, On the complexity of proof deskolemization, J. Symb. Log. 77 (2) (2012)
669–686.

[7] Matthias Baaz, Alexander Leitsch, On Skolemization and proof complexity, Fundam. Inform. 20 (4) (1994) 353–379.
[8] Robert S. Boyer, J. Strother Moore, A Computational Logic, ACM Monograph Series, Academic Press, New York, 1979.

Edited by Thomas A. Standish.
[9] James Brotherston, Cyclic proofs for first-order logic with inductive definitions, in: Bernhard Beckert (Ed.), Automated

Reasoning with Analytic Tableaux and Related Methods, in: Lecture Notes in Computer Science, vol. 3702, Springer,
2005, pp. 78–92.

[10] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, Alan Smaill Rippling, A heuristic for guiding inductive
proofs, Artif. Intell. 62 (2) (1993) 185–253.

[11] Stefano Berardi, Makoto Tatsuta, Classical system of Martin-Löf’s inductive definitions is not equivalent to cyclic proof
system, in: Javier Esparza, Andrzej S. Murawski (Eds.), Foundations of Software Science and Computation Structures,
in: Lecture Notes in Computer Science, vol. 10203, Springer, 2017, pp. 301–317.

[12] Stefano Berardi, Makoto Tatsuta, Classical system of Martin-Löf’s inductive definitions is not equivalent to cyclic proofs,
Log. Methods Comput. Sci. 15 (3) (August 2019).

[13] Alan Bundy, Frank van Harmelen, Jane Hesketh, Alan Smaill, Andrew Stevens, A rational reconstruction and exten-
sion of recursion analysis, in: N.S. Sridharan (Ed.), Proceedings of the 11th International Joint Conference on Artificial
Intelligence, Detroit, MI, USA, August 1989, Morgan Kaufmann, 1989, pp. 359–365.

[14] Andrés Cordón-Franco, Alejandro Fernández-Margarit, Francisco Félix Lara Martín, A note on parameter free Π1-induction
and restricted exponentiation, Math. Log. Q. 57 (5) (2011) 444–455.

[15] Koen Claessen, Moa Johansson, Dan Rosén, Nicholas Smallbone, Automating inductive proofs using theory exploration,
in: Maria Paola Bonacina (Ed.), Automated Deduction - CADE-24, in: Lecture Notes in Computer Science, vol. 7898,
Springer, 2013, pp. 392–406.

[16] Koen Claessen, Moa Johansson, Dan Rosén, Nicholas Smallbone, TIP: Tons of inductive problems, in: Manfred Kerber,
Jacques Carette, Cezary Kaliszyk, Florian Rabe, Volker Sorge (Eds.), Intelligent Computer Mathematics, in: Lecture Notes
in Computer Science, vol. 9150, Springer, 2015, pp. 333–337.

[17] Hubert Comon, Inductionless induction, in: Alan Robinson, Andrei Voronkov (Eds.), Handbook of Automated Reasoning,
vol. 1, North-Holland, Amsterdam, 2001, pp. 913–962, chapter 14.

[18] Simon Cruanes, Extending Superposition with Integer Arithmetic, Structural Induction, and Beyond, PhD thesis École
Polytechnique, Palaiseau, France, September 2015.

[19] Simon Cruanes, Superposition with structural induction, in: Clare Dixon, Marcelo Finger (Eds.), Frontiers of Combining
Systems, in: Lecture Notes in Computer Science, vol. 10483, Springer, 2017, pp. 172–188.

[20] Gilles Dowek, Skolemization in simple type theory: the logical, the theoretical points of view, in: Christoph Benzmüller,
Chad Brown, Jörg Siekmann, Richard Statman (Eds.), Reasoning in Simple Type Theory, in: Studies in Logic, Mathe-
matical Logic and Foundations, 2008. College Publications.

[21] Sebastian Eberhard, Stefan Hetzl, Inductive theorem proving based on tree grammars, Ann. Pure Appl. Log. 166 (6)
(2015) 665–700.

[22] Mnacho Echenim, Nicolas Peltier, Combining induction and saturation-based theorem proving, J. Autom. Reason. 64 (2)
(2020) 253–294.

[23] Márton Hajdú, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, Andrei Voronkov, Induction with generalization in
superposition reasoning, in: Christoph Benzmüller, Bruce R. Miller (Eds.), Intelligent Computer Mathematics, in: Lecture
Notes in Computer Science, vol. 12236, Springer, 2020, pp. 123–137.

[24] Stefan Hetzl, Jannik Vierling, Clause set cycles and induction, Log. Methods Comput. Sci. 16 (4) (November 2020) 11.
[25] Stefan Hetzl, Tin Lok Wong, Some observations on the logical foundations of inductive theorem proving, Log. Methods

Comput. Sci. 13 (4) (April 2018).

http://refhub.elsevier.com/S0168-0072(22)00082-3/bibB87AC00BAB49BA483A58A75EC6C2F9CEs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibB87AC00BAB49BA483A58A75EC6C2F9CEs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib6BFC7AB2613B2716FA7E0AE6FBE8EAEDs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib6BFC7AB2613B2716FA7E0AE6FBE8EAEDs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibCAFE1B8788D5E9D8F198C6CDA6E073C9s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibCAFE1B8788D5E9D8F198C6CDA6E073C9s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib029825AAD6064D4CC817A25482A0F1E7s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib029825AAD6064D4CC817A25482A0F1E7s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib029825AAD6064D4CC817A25482A0F1E7s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib5E953B21DD0900DB86D2CBC43DD9135Es1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib5E953B21DD0900DB86D2CBC43DD9135Es1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib5E953B21DD0900DB86D2CBC43DD9135Es1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib2530E7AA8ED838429C52EE3A05C173C3s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib2530E7AA8ED838429C52EE3A05C173C3s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibF16ED6BD46CEDD27A7EE0D3A0BD20CBBs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibD6CE289709A153303056D1836470FB9As1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibD6CE289709A153303056D1836470FB9As1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib9D3A6C256E6B873FF7BEBA1505A144DFs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib9D3A6C256E6B873FF7BEBA1505A144DFs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib9D3A6C256E6B873FF7BEBA1505A144DFs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib23E701811E4655F6BC82BFB1B7D734D4s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib23E701811E4655F6BC82BFB1B7D734D4s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib805019780BD47A6DBA0561292B7AF8C4s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib805019780BD47A6DBA0561292B7AF8C4s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib805019780BD47A6DBA0561292B7AF8C4s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib1A54855AC15F4DA99A90C374A0564D9Bs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib1A54855AC15F4DA99A90C374A0564D9Bs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib21CB14E11D039051B6A57FB63985FA76s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib21CB14E11D039051B6A57FB63985FA76s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib21CB14E11D039051B6A57FB63985FA76s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibF6C00F6D067D3D258192BE04AF12C9C2s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibF6C00F6D067D3D258192BE04AF12C9C2s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib176F1F6CAC15E119A3FF6272F7BE9086s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib176F1F6CAC15E119A3FF6272F7BE9086s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib176F1F6CAC15E119A3FF6272F7BE9086s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibC7FFA90AF83CDD9A21C7F76F742B2CBAs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibC7FFA90AF83CDD9A21C7F76F742B2CBAs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibC7FFA90AF83CDD9A21C7F76F742B2CBAs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib968A2F3AF78D4E52F6D3375544FB0DEAs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib968A2F3AF78D4E52F6D3375544FB0DEAs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib6A9B3AC763D1DCD9515FCE056F82FA87s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib6A9B3AC763D1DCD9515FCE056F82FA87s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib8AD058B01C586E91C98CEB6FDEEB032Es1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib8AD058B01C586E91C98CEB6FDEEB032Es1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib2C7EC7D5E5411F95ACC01452C9FABBD5s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib2C7EC7D5E5411F95ACC01452C9FABBD5s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib2C7EC7D5E5411F95ACC01452C9FABBD5s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib0EDF1DDFE5CF9D3D206A48272EE1C9A0s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib0EDF1DDFE5CF9D3D206A48272EE1C9A0s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibE4DB721B44514F2671424C6F1F787690s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibE4DB721B44514F2671424C6F1F787690s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib9D4C3BA41F6FEC04F677DF344E6494DCs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib9D4C3BA41F6FEC04F677DF344E6494DCs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib9D4C3BA41F6FEC04F677DF344E6494DCs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib19DBC05B12E104CDFE0F29558FE6E8F4s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib4A4B5EE64E4804D16AD5C76FABAD4653s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib4A4B5EE64E4804D16AD5C76FABAD4653s1

S. Hetzl, J. Vierling / Annals of Pure and Applied Logic 174 (2023) 103167 37
[26] Moa Johansson, Lucas Dixon, Alan Bundy, IsaCoSy: synthesis of inductive theorems, in: Workshop on Automated Math-
ematical Theory Exploration (Automatheo), 2009.

[27] Emil Jeřábek, Induction rules in bounded arithmetic, Arch. Math. Log. 59 (3) (2020) 461–501.
[28] Moa Johansson, Dan Rosén, Nicholas Smallbone, Koen Claessen Hipster, Integrating theory exploration in a proof assis-

tant, in: Stephen M. Watt, James H. Davenport, Alan P. Sexton, Petr Sojka, Josef Urban (Eds.), Intelligent Computer
Mathematics, in: Lecture Notes in Computer Science, vol. 8543, Springer, 2014, pp. 108–122.

[29] Abdelkader Kersani, Preuves par induction dans le calcul de superposition, PhD thesis, Université de Grenoble, October
2014.

[30] Ján Komara, Efficient elimination of Skolem functions in LKh, Arch. Math. Log. (Nov. 2021).
[31] Abdelkader Kersani, Nicolas Peltier, Combining superposition and induction: a practical realization, in: Pascal Fontaine,

Christophe Ringeissen, Renate A. Schmidt (Eds.), Frontiers of Combining Systems, in: Lecture Notes in Computer Science,
vol. 8152, Springer, 2013, pp. 7–22.

[32] R. Kaye, J. Paris, C. Dimitracopoulos, On parameter free induction schemas, J. Symb. Log. 53 (4) (1988) 1082–1097.
[33] Miller Dale, A compact representation of proofs, Stud. Log. 46 (4) (1987) 347–370.
[34] Uday S. Reddy, Term rewriting induction, in: Mark E. Stickel (Ed.), 10th International Conference on Automated Deduc-

tion, in: Lecture Notes in Computer Science, vol. 449, Springer, 1990, pp. 162–177.
[35] Andrew Reynolds, Viktor Kuncak, Induction for SMT solvers, in: Deepak D’Souza, Akash Lal, Kim Guldstrand Larsen

(Eds.), Verification, Model Checking, and Abstract Interpretation, in: Lecture Notes in Computer Science, vol. 8931,
Springer, 2015, pp. 80–98.

[36] Giles Reger, Andrei Voronkov, Induction in saturation-based proof search, in: Pascal Fontaine (Ed.), Automated Deduction
- CADE 27, in: Lecture Notes in Computer Science, vol. 11716, Springer, 2019, pp. 477–494.

[37] Ulf R. Schmerl, Diophantine equations in fragments of arithmetic, Ann. Pure Appl. Log. 38 (2) (1988) 135–170.
[38] Johannes Schoisswohl, Automated induction by reflection, Master’s thesis, Technische Universität Wien, 2020.
[39] John C. Shepherdson, A non-standard model for a free variable fragment of number theory, Bull. Acad. Pol. Sci. XII (2)

(1964) 79–86.
[40] Joseph R. Shoenfield, Open sentences and the induction axiom, J. Symb. Log. 23 (1) (1958) 7–12.
[41] Andrew Stevens, A rational reconstruction of Boyer and Moore’s technique for constructing induction formulas, in: Yves

Kodratoff (Ed.), 8th European Conference on Artificial Intelligence, ECAI’88, Pitmann Publishing, 1988, pp. 565–570.
[42] Anne Sjerp Troelstra, Helmut Schwichtenberg, Basic Proof Theory, second edition, Cambridge Tracts in Theoretical

Computer Science, vol. 43, Cambridge University Press, 2000.
[43] Jannik Vierling, Cyclic superposition and induction, Master’s thesis, Technische Universität Wien, 2018.
[44] Irene Lobo Valbuena, Moa Johansson, Conditional lemma discovery and recursion induction in Hipster, Electron. Commun.

EASST 72 (2015).
[45] Andrei Voronkov, AVATAR: the architecture for first-order theorem provers, in: Armin Biere, Roderick Bloem (Eds.),

Computer Aided Verification, in: Lecture Notes in Computer Science, vol. 8559, Springer, 2014, pp. 696–710.
[46] Daniel Wand, Superposition: Types and Induction, PhD thesis, Saarland University, Saarbrücken, Germany, 2017.

http://refhub.elsevier.com/S0168-0072(22)00082-3/bibED4027E6F10FA6240BACDFD909EC4DCEs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibED4027E6F10FA6240BACDFD909EC4DCEs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib565EA33C9E6FE5291204311BD1AB138Es1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib880FB161B2BEB1A7CC095A5C3519133Ds1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib880FB161B2BEB1A7CC095A5C3519133Ds1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib880FB161B2BEB1A7CC095A5C3519133Ds1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib4309E869DC5D504242E9B9E9D9022136s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib4309E869DC5D504242E9B9E9D9022136s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib3CFF57325E7C0A980B6E3E6AA0828DEFs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib01E26A990F136B0D54D8B744D0B0FDC6s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib01E26A990F136B0D54D8B744D0B0FDC6s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib01E26A990F136B0D54D8B744D0B0FDC6s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib571D9E2A4D56DF5E9DA7A6E0D4CF146As1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib9A2E4A857303910CC17479040FE9BED1s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibA581C5219B47AD5F3F242E6999E9C3A1s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibA581C5219B47AD5F3F242E6999E9C3A1s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib653957A331BA0D83162769830B2CE798s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib653957A331BA0D83162769830B2CE798s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib653957A331BA0D83162769830B2CE798s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibE082AE46B156DCE57B3764F6ACE95F2Ds1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibE082AE46B156DCE57B3764F6ACE95F2Ds1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibC131350921A9DB1B94BFBDD177FCD723s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib52F334677DE45D6DA2EB1853D056305Fs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib8A475050B6FDB8EA43C171636B399A8Fs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib8A475050B6FDB8EA43C171636B399A8Fs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib244A72250F0505C09B16A5F7A50710DFs1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibA7FBEB45E452BF8DD1462EB042E7B181s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibA7FBEB45E452BF8DD1462EB042E7B181s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib59B885F564240C9D35F050902EB2B901s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bib59B885F564240C9D35F050902EB2B901s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibA47B9AC650F4C47BED0D648975DA1173s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibE0DD4F9A9B97E4654F95BFA375D3EA18s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibE0DD4F9A9B97E4654F95BFA375D3EA18s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibE271D8B860F4DE30CE12F78AAD3CC888s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibE271D8B860F4DE30CE12F78AAD3CC888s1
http://refhub.elsevier.com/S0168-0072(22)00082-3/bibEF584DD3C466776BD78144A97FDBFFECs1

	Induction and Skolemization in saturation theorem proving
	1 Introduction
	2 Preliminary definitions
	2.1 Formulas, theories, and clauses
	2.2 Skolemization
	2.3 Induction and arithmetic

	3 Saturation-based systems and induction
	3.1 Saturation-based proof systems
	3.2 Induction rules

	4 Unrestricted induction and Skolemization
	4.1 Representation as logical theory
	4.2 Conservativity

	5 Restricted induction and Skolemization
	5.1 Representation as logical theory
	5.2 Induction parameters and Skolem symbols

	6 Unprovability
	6.1 Open induction
	6.2 Literal induction: a case study

	7 Conclusion, future work, and remarks
	Declaration of competing interest
	References

