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1. Among the numerous articles of Vojtech Jarńık on Analysis and Number Theory
there is a small set of papers written in the decade from 1939 to 1949 belonging
to Geometric Number Theory, consisting of the papers (65,72,74,76,77,78)1. In the
following the main results from these papers will be described and discussed, but
before doing so some personal remarks seem appropriate.

One of my first papers deals with the product of non-homogeneous linear forms.
Being a self-confident young man then, I submitted it to Acta Arithmetica. After
some months I was shocked to get a big envelope from the editor and thought that
the paper was refused. Hours later I dared to open it and was very pleased to see that
it contained a friendly report of the referee along with a list of his suggestions for
changes. They were readily inserted into the manuscript. Most probably the referee
was Professor Jarńık. He pointed out many minor errors and masterly corrected
my German. Several years later I wrote a paper on successive minima. Before
submitting it I consulted very carefully the Zentralblatt für Mathematik and the
Mathematical Reviews and found to my considerable disappointment that one main
result had been published by Jarńık (76) some 20 years earlier and so it never was
published. (Incidently, a more general version of my second result in this paper was
published later on by Barnes.) Then in November 1967 I had the privilege to meet
Professor Jarńık. In a lecture at the Institute of Mathematics of the University of
Vienna, entitled “Über einige Ergebnisse der Gitterpunktlehre”, he gave an outline
of results of Bretislav Novák on the number of integer lattice points in ellipsoids. I
still remember his clear and concise way of delivering the lecture, his precise use of
German with a slight Czech accent and his dry humor.

2. The Geometry of Numbers is a branch of Mathematics situated so to speak
between Geometry and Number Theory. In order to give the reader a first idea
of it some basic definitions and results will be formulated. This will also serve
as an introduction to the work of Jarńık in the Geometry of Numbers. For more
information see [?, ?, ?].

A lattice L in n-dimensional Euclidean space IRn is the set of all integer linear
combinations of n linearly independent vectors. The volume of the parallelepiped
generated by these vectors is the determinant d(L) of L. A convex body in IRn is
a compact convex subset of IRn with non-empty interior. Now the fundamental
theorem of Minkowski can be formulated as follows: Let K be a convex body in IRn

which is symmetric with respect to the origin o and let L be a lattice. If the volume
of K satisfies the inequality V (K) ≥ 2nd(L), then K contains at least one pair of
points ±l of L different from o.

1Parentheses refer to Jarńık’s articles, brackets to our list of references.
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If K is a convex body, symmetric in o, and L a lattice, define the first successive
or homogeneous minimum λ1 = λ1(K, L) of K with respect to L by

λ1 = inf{λ > 0 : λK ∩ L contains a point 6= o},

or, equivalently,

λ1 = sup{λ > 0 : {λ
2
K + l : l ∈ L} is a packing},

where λK + l = {λx+ l : x ∈ K} and a packing in IRn is a family of non-overlapping
convex bodies. The fundamental theorem is equivalent to the inequality

(i) λn
1V (K) ≤ 2nd(L).

The convex bodies K for which equality in (i) is attained are polytopes of a very
special type, so-called parallelohedra or space-filling polytopes. These are polytopes
P such that for a suitable lattice the system of translates of P by the lattice vectors
covers IRn without overlappings. Parallelohedra have been investigated intensively
since the times of Fedorov, Minkowski and Voronoi around the turn of the 19th
century up to the present.

Because of its many applications and its intrinsic interest, the fundamental the-
orem has been generalized and refined in many different ways. One such refinement
with important recent applications in Diophantine Approximation is based on the
concept of successive minima. Let K be a convex body, symmetric in o, and L a
lattice. For i = 1, 2, . . . , n, the i-th successive minimum λi = λi(K, L) of K with
respect to L is defined by

(ii) λi = inf{λ > 0 : dim((λK) ∩ L) ≥ i},

where dim stands for dimension of the linear hull. Clearly 0 < λ1 ≤ λ2 ≤ . . . ≤
λn < +∞. Thus Minkowski’s theorem on successive minima, also called second
fundamental theorem,

(iii) λ1λ2 . . . λnV (K) ≤ 2nd(L),

refines the fundamental theorem (i). Later proofs of this result are due to Davenport,
Weyl, Estermann, Bambah, Woods and Zassenhaus and to Danicic, to mention some
of them.

3. While working on a problem in Diophantine Approximation, Jarńık saw that he
could obtain an easy proof using a result of Mahler [?] on successive minima. His
proof (see (65)) also produced as a by-product a so-called transference theorem in
the Geometry of Numbers. The first acquaintance with successive minima seems to
have aroused a great deal of interest in Jarńık since all of his further contributions
to the Geometry of Numbers are related to successive minima. Apart from the
transference theorem in (65) and an application of the second fundamental theorem
to the product of linear forms in (72), Jarńık’s results on successive minima are of
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three different types: (a) Refinements of Minkowski’s theorem on successive minima
depending on the shape of the convex body K are given in (76). These refinements
are analogous to refinements of the fundamental theorem (i) due to van der Corput
and Davenport [?]. (b) In (78) Jarńık determines the convex bodies K for which
equality is attained in the second fundamental theorem. His proof is based on a
careful analysis of Estermann’s proof [?] of the second fundamental theorem and
essentially simplifies earlier considerations of Minkowski (10,p.235 – 236). (c) The
remaining papers (72,74,77) deal with extensions of the definitions (ii) of successive
minima to more general sets and with corresponding extensions of the second fun-
damental theorem. (Concerning (77) I have to rely on [?] and on reviews because
of my lacking knowledge of Jarńık’s language.)

4. Let K be a convex body, symmetric with respect to o, and let L be a lattice in
IRn. The inhomogeneous minimum µ = µ(K,L) of K with respect to L is defined
by

µ = inf{λ > 0 : {λC + l : l ∈ L} covers IRn}.
In (65) and (72) Jarńık proved a so-called transference theorem which he formulated
as the following inequality relating the successive minima and the inhomogeneous
minimum of K with respect to L:

1
2
λ1 ≤ µ ≤ 1

2
(λ1 + . . . + λn).

This result then is used in a proof of a result on Diophantine Approximation; see
(65). For a survey on transference theorems the reader is referred to [?],Ch.41.

5. The convex bodies K which are symmetric in o and for which equality holds in (i)
are special convex polytopes. Thus (i) may be improved for non-polytopal convex
bodies K. Quantative versions of this are due to van der Corput and Davenport
[?], Fejes Tóth [?] and Groemer [?]. Since the convex bodies K for which equality
holds in (iii) are also polytopes (see Sect.6 below), it seems plausible that similar
refinements can be achieved for the theorem on successive minima too.

For n = 2 Jarńık (76) gave a refinement of (iii) for convex bodies K with V (K) =
4, the boundary of which has continuous curvature bounded below by some constant.
The refinement in case λ1 < λ2 is even better. As a tool for his proof Jarńık uses
the case n = 2 of the following result: Let K be a convex body and L a lattice in IRn

such that K is symmetric in o. Then there exists a polytope P which is symmetric
with respect to o, contains K, has the same successive minima with respect to L as
K and has only a ‘small’number of facets.

6. The main result of Jarńık’s paper (78) reads as follows: If K is a convex body,
symmetric in o, and L a lattice such that equality holds in (iii) then K is a direct
sum of lower-dimensional parallelohedra. Conversely, if a convex body K is the
direct sum of lower-dimensional parallelohedra, then there is a lattice L such that
there is equality in (iii).

For more results on parallelohedra the reader is referred to [?, ?] and to Venkov
[?] and McMullen [?].
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7. The remaining papers (72,74,77) of Jarńık and of Jarńık and Knichal, respectively,
in the Geometry of Numbers deal mainly with different definitions of successive
minima for more general sets than convex bodies and with estimates for products
of these minima.

Let M be a measurable set in IRn of finite positive measure V (M). Its difference
set D(M) is defined by

D(M) = {x− y, x, y ∈ M}.
If M is a convex body, symmetric in o, then D(M) = 2M . Jarńık considers the
following concepts of successive minima of M with respect to a lattice L:

λi = inf{λ > 0 : dim((λM) ∩ L) ≥ i},

γi = inf{λ > 0 : dim((
⋃

0<µ≤λ

λD(M)) ∩ L) ≥ i},

κi = inf{λ > 0 : dim((λD(M)) ∩ L) ≥ i},

νi = inf{λ > 0 : dim((µD(M)) ∩ L) ≥ i} for all µ ≥ λ},

πi = inf{λ > 0 : dim((
⋂

µ≥λ

µD(M)) ∩ L) ≥ i}.

Clearly
γi ≤ κi ≤ νi ≤ πi,

but there is no inequality relating the λi’s to the quantities γ1, κi, νi, πi, unless ad-
ditional assumptions on M are made. In analogy to (iii) Jarńık (72) proved that

(iv) κ1 . . . κnV (M) ≤ 2n−1d(L).

The constant 2n−1 can be replaced by 2n−(3/2) as later on shown by Jarńık and
Knichal (74). Rogers [?] proved that it can be replaced by 2(n−1)/2. It is not
known whether this is the best possible constant. A different refinement of (iv) with
2n−1 replaced by 2(n−1)/2 was proved independently by Rogers [?] and Chabauty
[?]. Further inequalities for λi, γi, κi, µi, πi were derived by Jarńık (77) and Jarńık
and Knichal (74). For these the reader is referred to the original papers and to
[?],Ch.11,18.

8. Jarńık’s results in the Geometry of Numbers are mainly concerned with the
important concept of successive minima. His work exhibits a clear feeling for missing
parts of the theory; he studied them and in several cases succeeded in supplementing
them. On the other hand he explored systematically the unknown territory.

9. Readers who are interested in more modern developments dealing with successive
minima are referred to the surveys of Kannan [?], Gritzmann and Wills [?] and
Gruber [?] and to the articles of Henk [?] and Banaszczyk [?, ?] and the references
cited there.

10. For their help in the preparation of this note I am obliged to Professors Groemer
and Schnitzer.
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