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Fig. 1. Our work on pleated surfaces is motivated by discrete differential geometry and inspired by curved-folding art. These images show quad meshes with

planar faces which approximate a surface with smooth curved creases, which are exactly developable, and which actually are conical meshes. As such, they

constitute a structure-preserving discretization of a nice class of curved-folding surfaces, namely ones which enjoy flat-foldability, and constant fold angle.

These properties apply to both the continuous and the discrete case. The two surfaces at left are connected by a ruling-preserving isometry.

In this paper we study pleated structures generated by folding paper along

curved creases. We discuss their properties and the special case of principal

pleated structures. A discrete version of pleated structures is particularly

interesting because of the rich geometric properties of the principal case,

where we are able to establish a series of analogies between the smooth

and discrete situations, as well as several equivalent characterizations of

the principal property. These include being a conical mesh, and being flat-

foldable. This structure-preserving discretization is the basis of computation

and design. We propose a new method for designing pleated structures

and reconstructing reference shapes as pleated structures: we first gain an

overview of possible crease patterns by establishing a connection to pseudo-

geodesics, and then initialize and optimize a quad mesh so as to become a

discrete pleated structure. We conclude by showing applications in design

and reconstruction, including cases with combinatorial singularities. Our

work is relevant to fabrication in so far as the offset properties of principal

pleated structures allow us to construct curved sculptures of finite thickness.
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1 INTRODUCTION

The creation of unexpected geometric shapes from flat sheets of pa-
per is a fascinating topic and has been for centuries. Origami, which
means folding paper along straight edges without cutting, has not
only been a medium of art, but also the object of systematic study
from the mathematical and computational viewpoint [Demaine and
O’Rourke 2007]. In the present paper we extend the origami prin-
ciple and generate geometric shapes by folding along curves. Our
inspiration comes from artwork and from recent studies in struc-
tural properties and materials science, where small-scale folding
patterns imposed on geometric shapes increasingly play a role.
Approximating a given surface by a curved-crease surface is a

largely open and difficult problem. A solution would provide strong
support in the computational design process. The currently available
methods work in the reverse direction: One first creates the unfolded
state and derives the spatial shape from that. The shape problem
of curved-crease surfaces is global and of a different nature than
for straight-edge origami. This is because the developable strips
which make up the surface influence each other and usually deform
simultaneously.
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Fig. 2. Reconstructing the ‘flying carpet’ glass roof in the Louvre’s Cour

Visconti by a pleated structure. To solve this kind of reconstruction problem,

folds are first initialized from a pattern of pseudo-geodesic curves (here:

orthogonal to the blue guiding curve), and are then subjected to global

optimization.

1.1 Contributions

In this work, we consider pleated structures, pls for short, which
exhibit zigzag folds along curves on a small scale, but which on
a larger scale represent smooth geometric shapes. The system of
mountain and valley folds corresponds to a system of curves on the
reference shape. By establishing connections to differential geome-
try, we are able to approach design and reconstruction problems. In
particular, our contributions are the following:

• We study the geometry of pleated structures and their discretiza-
tion as quad meshes with planar faces. Transformations well known
in discrete differential geometry help to explore the design space.
In particular, we emphasize the reflected ruling case which is dis-
cretized as conical meshes. This connection between conical meshes
and special łprincipalž pleated structures is new and puts the lat-
ter into well-established theories of discrete differential geometry.
Such principal pleated structures (ppls for short) possess constant-
distance offsets and also enjoy a continuous isometric unfolding
which preserves the rulings, in both the continuous and the discrete
cases. In the terminology of discrete differential geometry, we have
achieved an integrable discretization.

• We present an optimization algorithm for design and reconstruc-
tion of pleated structures. The main contribution here is the ini-
tialization, which works through special curves (pseudo-geodesics)
on the reference surface, and through the construction of surfaces
where suitable guiding curves have controlled distances. The use of
pseudo-geodesics corresponds to the desire to create pleated struc-
tures where we control the inclination of folds w.r.t. the reference
surface. Thus, for the first time, we are able to approximate general
shapes by curved-folding surfaces.

• We illustrate applications, where properties of curved-creased
structures benefit fabrication. The effectiveness of our algorithms
is demonstrated by means of examples, most of which could not
be achieved with the current state of the art in the digital design
of pleated structures. This applies in particular to flexible principal
pleated structures.

1.2 Previous Work

The most influential early work on the design of curved-crease sur-
faces is by David Huffman [1976]. He collects geometric properties,

in particular the equal-angle condition involving the osculating
plane of crease curves, and then uses his theoretical insights for
the design of origami with both straight and curved creases, see
[Demaine et al. 2011a], [Davis et al. 2013] and [Koschitz 2014].
Differential-geometric properties of curved folds were collected by
[Fuchs and Tabachnikov 1999; Kergosien et al. 1994] from the view-
point of Mathematics and Computer Science, respectively. Recent
contributions to the differential geometry of curved folds include
[Demaine et al. 2015a, 2018]. The latter discuss the important re-
flection ruling case in depth. Without knowing his work would be
relevant for curved-crease surfaces, pseudo-geodesics on special
surfaces were discussed by [Wunderlich 1950a,b,c,d].
Surfaces with curved creases have many connections to ones

where creases are straight, not least because of discretization. Par-
ticularly interesting problems for straight crease surfaces are the
ones relevant also in the curved crease case.
One type of result regards the realizability of specific geometric

shapes, such as the nonexistence of the ‘pleated hypar’ folding
[Demaine et al. 2011b], or the wrappability of any polyhedron by
a strip [Demaine et al. 2000]. The ‘Origamizer’, see [Demaine and
Tachi 2017; Tachi 2010b] is an algorithm for computing a crease
pattern for any given polyhedron.

Relevant to the discretization employed in the present paper are
rigidly foldable quad meshes, where rigid faces are connected with
hinges in the edges. They are not rigid but possess a 1-parameter
continuous flexion. Early work by Kokotsakis [1933] is being contin-
ued by [Tachi 2009, 2013; Tachi and Epps 2011] and others. [Schief
et al. 2008] established a connection between rigid foldability and
integrable systems. More recently, Evans et al. [2015a; 2015b] found
further conditions in terms of angle multipliers for a fold pattern
to be rigidly foldable. Contributions to the more general topic of
mechanisms based on folded surfaces include [Kilian et al. 2017].
Chen et al. [2015] consider an important practical aspect, namely
structures of nonzero thickness.
There have been different computational approaches to curved

crease surfaces. Specific special classes of pleated structures are
those with rotational symmetry [Mitani 2009a], or designs by itera-
tion of reflection, see [Mitani 2012; Mitani and Igarashi 2011] for
the 2D case and [Röschel 2019] for a spatial version. The survey
paper [Demaine et al. 2015b] reviews masterpieces of curved-crease
folding and the corresponding design methods. The parametric de-
sign of origami surfaces with periodic tessellations is the topic of
[Gardiner et al. 2018]. Analysis together with design has been done
by Demaine et al. [2015a; 2018] for ‘lens’ crease patterns, and crease
patterns formed by conics.
Kilian et al. [2008] used developable quad meshes for digital re-

construction of general curved-crease surfaces. As to modeling, Frey
[2004] studied buckled developables by means of triangle meshes.
Generally, methods for modeling developables may include devel-
opables with creases, e.g. [Tang et al. 2016], where developability is
imposed on spline surfaces for geometric design, or [Rabinovich et al.
2018a,b], where developables resp. their deformations are modelled
via discrete nets of orthogonal geodesics resp. appropriate flows
of such nets. Both treat creases in the way of two developables to
either side of the crease and impose a flattenability condition along
it. Solomon et al. [2012] perform modeling with triangle meshes
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constrained by developability. Another mesh-based approach to
modeling of general developables (without focus on curved creases)
is proposed by Stein et al. [2018]. The fast GPU solver for origami
and its generalizations by Ghassaei et al. [2018] also handles discrete
curved creases.
A fundamental question is the geometric interaction between

small-scale crease patterns on the one hand, and global properties
of geometric shapes on the other. This is studied e.g. by [Dudte et al.
2016]. Song et al. [2017] analyzes curved-crease patterns which
simultaneously fit two design surfaces of common rotational sym-
metry.
There have been many contributions about material properties

of creases, including curved creases. [Ben Amar and Pomeau 1997]
investigate the scars left after crumpling, and propose to extend
the class of C2 smooth developables so that all spatial closed curves
can occur as boundary of a developable. [Cerda and Mahadevan
1998] and [Cerda et al. 1999] discuss crescent-like singularities resp.
‘conical dislocations’ in elastic sheets. Barois et al. [2014] considers
nondevelopable thin sheets under high curvature. Repetitive pat-
terns are analyzed by [Wei et al. 2013]. For structural properties
of curved-crease surfaces we point to [Lebée 2015] and [Raducanu
et al. 2016].
As to the shapes assumed by surfaces after a curved crease is

imposed, [Dias et al. 2012], [Dias and Santangelo 2012] model the
shape of an annulus with concentric creases (see also [Mouthuy
et al. 2012]). A more general theory is developed by Dias and Audoly
[2014; 2015], where the shape assumed by curved-crease surfaces
is interpreted as a certain buckling mode. The connection between
buckling and curved creases also works in reverse: Lee et al. [2019]
propose embedded small curved-crease structures to guide the fail-
ure mode in a certain direction. Self-folding materials are analyzed
by [Miyashita et al. 2015].
A very interesting line of research is materials whose proper-

ties are defined by small-scale patterns. [Seffen 2012] discusses in
a systematic manner the properties of structures with local, dis-
crete corrugations. Curved-crease patterns occurring naturally in
crumpled leaves are proposed as basis of carbon fiber reinforced

c

c
e1

e3

e2

e3

e2

ddddddddddddddddd

r+

r−

D−

D+
R

c . . . . . . . . . . . . . . . . crease curve
e1 . . . . . . . . . unit tangent vector
e2 . . . . . principal normal vector
e3 . . . . . . . . . . . . binormal vector
d = τ e1 + κe3 .Darboux vector
r+, r− . . . . . . . . . . . . . . . . . rulings
D+, D− . . . . . . . . . developables
R . . . . . . . rectifying developable

Fig. 3. The moving Frenet-Serret frame e1, e2, e3 of a curve c is used to

locally express developable surfaces which contain c. Left: With κ, τ as

curvature and torsion, the vector τ e1 + κe3 defines the rulings of the recti-

fying developable R (whose normal vector is e2, and whose development

straightens c). Right: If c is a curved fold in a surface D+ ∪D−, R bisects the

developables D+, D−. This symmetry applies to tangent planes; in general,

rulings r+, r− are not symmetric w.r.t. the plane [e1, e3].

composite foldcores by Du et al. [2019]. The elastic response of
curved-crease foldcores is studied by [Gattas and You 2015]. Small-
scale structures not confined to creases but involving also cutting
are in general discussed by [Sussman et al. 2015] and [Callens and
Zadpoor 2018]. We also point to the creation of auxetic materials
by this principle, by Konaković et al. [2016; 2018].

2 GEOMETRY OF CURVED FOLDS

In this paper we study pleated structures, pls for short. This means
surfaces which are smooth except for crease curves, and which are
isometrically developable onto a 2D domain. This developability
is required to hold locally, not globally ś we allow surfaces which
must be cut along curves before they can be unfolded.

2.1 Basic differential geometry of curved folds

We start our discussion with a few well-known facts about a crease
curve c contained in a piecewise smooth surface which can be iso-
metrically mapped to a flat 2D domain, see e.g. [Fuchs and Tabach-
nikov 1999]. The notation we use is defined in Fig 3, cf. [do Carmo
1976]. The crease is contained in a unique developable R which
upon unfolding maps c to a straight line. The surface under consid-
eration is the union of two developables D+,D− to either side of
the crease which lie symmetric to R. The normal vector of R is the
crease curve’s principal normal vector e2, while the normal vectors
of D+,D− are represented by

n+ = cosu e2 + sinu e3, n− = cos(π − u) e2 + sin(π − u) e3,

where 2u = ϕ is the angle of the crease. Assuming an arc length
parametrization c(s ) of the crease, we compute the rulings of D+ as

r+ = n+× d
ds

n+ and analogous forD−. For that we use the equations

of the moving frame, d
ds

e1 = κe2,
d
ds

e2 = −κe1 +τe3, d
ds

e3 = −τe2,
with κ,τ as curvature and torsion. We get

d
ds

n+ = −κ cosu e1 + ( du
ds
+ τ ) (− sinu e2 + cosu e3),

r+ = ( du
ds
+ τ )e1 − κ sinu cosu e2 + κ cos2 u e3. (1)

Replacing u by π − u yields the ruling vector r−. If we let u = 0, we
retrieve the rulings of the rectifying developable R; they are given
by the Darboux vector d = τe1 + κe3.

2.2 Principal pleated structures (continuous case)

Creases with a constant fold angle have a particularly interesting ge-
ometry, which also turns out to be practically very useful. Equation
(1) shows that in this case,

r± = τe1 ∓ 1
2κ sinϕ e2 +

1
2κ (1 + cosϕ) e3,

with ϕ = 2u as opening angle of the crease. The rulings are sym-
metric w.r.t. reflection in [e1, e3]. It is elementary to verify that the
Darboux vector d = τe1 + κe3, when projected onto the tangent
planes of D+,D−, results in the rulings. We therefore have a cone
whose axis is d and which touches D+,D− along the rulings, see
Fig. 4. The symmetric position of rulings also implies that they form
the same angle with the crease, and we have the reflection-ruling
case studied by [Demaine et al. 2018]. These geometric facts will be
the basis of discretization.
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c

d

r+r−

D−

D+

Fig. 4. A ‘principal’ crease. We observe the

constant fold angle of the crease and the

circular cone moving along the crease (in a

non-rigid way). Its axis is the Darboux vector

τ e1 + κe3 of the crease curve, and it touches

developables D+, D− along the rulings.

Connection to discrete differential geometry. If a quad mesh with
planar faces approximates a smooth surface, existence of a tangent
cone in each vertex means that this mesh follows principal cur-
vature lines [Bobenko and Suris 2009; Liu et al. 2006]. Similarly,
if a piecewise smooth surface composed of developable strips ap-
proximates a smooth surface, and there is a tangent cone in each
vertex, then the strips follow principal curvature lines [Pottmann
et al. 2008]. This is exactly the situation described above and by
Fig. 4 except for the fact that our pleated structures approximate
smooth surfaces only in a zigzag manner and we cannot infer any
connection to principal curvature lines. Neither can we use the cone
axes as surface normals.
We nevertheless define a principal pleated structure, or ppls for

short, as a pleated structure where the fold angle is constant along
each crease. All properties of semidiscrete conical surfaces shown
e.g. by [Pottmann et al. 2008] apply, such as existence of offsets at
constant distance.

Remark on Darboux transforms. There are even more relations
to differential geometry. For any pls, the normal vectors of its de-
velopable pieces form a Gauss image consisting of curves. A look
at the Gauss image curves n+,n− to both sides of a crease reveals
firstly that the binormal e3 of the crease is the spherical midpoint

of n+,n−. The equation d
ds

e3 = −τe2 shows that its derivative is
parallel to n+ − n−. The curves n+,n− thus form a spherical Dar-
boux transform pair. The known complexity of Darboux transforms
mirrors the known difficulties in creating pleated structures.

Continuous unfolding. Principal pleated
structures have a remarkable property, dis-
cussed by [Demaine et al. 2018] in the smooth
case and by [Tachi 2009] in a discrete version: There is a continuous
isometric unfolding in which the rulings of the developable strips
are preserved. This is not the case for general pls. Fig. 5 shows an
example. The corresponding unfolded state with rulings is shown
in the inset figure. One can observe the reflection-ruling property.
We return to this topic when discussing discrete pleated structures.

Relation to pseudo-geodesics. It is interesting that the so-called
pseudo-geodesic curves on surfaces occur multiple times in the con-
text of curved-folding structures. They are defined by the property
that their osculating planes have constant angle with the reference
surface (equivalently such a constant angle requirement may be
imposed on the binormal vector or on the rectifying developable).
The cases of 90◦ and 0◦ angle correspond to geodesics and asymp-
totic curves, respectively [do Carmo 1976]. We will later use pseudo-

Fig. 5. Continuous flexion of a principal pleated structure. This example,

whose crease curves in the unfolded state are ellipses, is analogous to the

ones of [Mundilova 2019]. It demonstrates the general tendency of pls to

become rolled up as the crease angle decreases.

geodesics in our layout of crease curves, but there is a more direct
connection: The constant angle condition in a ppls expresses the
fact that a crease D+ ∩D− is a pseudo-geodesic of both D+ and D−.
W. Wunderlich determined all ppls composed of cylinders and

cones, by studying curves occurring as pseudo-geodesics on cylin-
ders and cones, and even on two such surfaces simultaneously
[Wunderlich 1950a,b,c,d]. In an unfolded state, rulings have the
property that they either are all parallel (cylinder case) or pass
through a point (cone case). Together with the reflection-ruling
property this implies that in the unfolded state, crease curves must
be conic sections, see [Demaine et al. 2018].

2.3 Discrete pleated structures

For computing with pleated structures, we need a discretization. For-
tunately, there is a natural discretization which exactly reproduces
key properties of smooth pls.

We use quad meshes with planar faces (in the same way as [Kilian
et al. 2008]), where one family of edge polylines represents the crease
curves, and the transverse edges represent rulings. A sequence
of consecutive rulings forms a zigzag polyline. Developability is
expressed by the requirement that in each vertex, the sum of incident
angles equals 360 degrees, i.e.,

ω1 + ω2 + ω3 + ω4 = 2π . (2)

It follows directly that the discrete pleated structures form a class
of discrete surfaces largely invariant under mesh parallelism, resp.
Combescure transforms [Bobenko and Suris 2009]. Assume two
combinatorially equivalent quad meshes (V ,E, F ) and (V̄ , Ē, F̄ ) such

Fig. 6. Pseudo-geodesics. At left, we show a surface covered by almost equidis-

tant pseudo-geodesics, whose computation is discussed in ğ3.2. At right, we

show the rectifying developable of each. It has constant angle with the ref-

erence surface (by the pseudo-geodesic property) and unfolds to a straight

strip (by the rectifying property). One can imagine this arrangement of

strips as a shading system.
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Fig. 7. Mesh parallelity for design of pleated structures. At left, we show two parallel discrete pleated structures, one of them with helical symmetry, the other

one with spiral symmetry. This is an example where creases have constant slope w.r.t. a reference surface ś a property not destroyed by mesh parallelism. At

right, we show a sequence of pleated structures which undergoes subdivision based on mesh parallelism.

that corresponding edges vivj and v̄i v̄j are parallel. Parallelity
means that vi − vj = λi, j (v̄i − v̄j ). If in addition, λi, j > 0, then the
faces in F̄ will automatically be proper planar quads, and the vertices
of V̄ will enjoy the developability condition (2). An appropriate limit
shows an analogous statement for smooth pleated structures.

Design of discrete pleated structures. Mesh parallelism has several
direct applications relevant to geometric design of pls: We describe
some procedures for their modification and construction. In each
case we can invoke parallelism to see that the angle sum in vertices
is 2π throughout.

• Pleated structures from Cauchy ini-
tial values. For any given discrete plswe
may change two transverse mesh poly-
lines arbitrarily as long as they remain
parallel to their respective originals (cf. blue and red polylines in
the inset figure). This modification uniquely propagates to a quad
mesh parallel to the first one. It will be discrete pls if all factors λi, j
remain positive, see Fig. 7.

• Local refinement.We can replace a
single fold by three consecutive folds in
a completely local way using parallelism.
Locally around one vertex we modify a zigzag polyline by intro-
ducing a new zigzag (red in the inset) which we then propagate
along a transverse polyline by parallel projection. An analogous
construction for smooth pls is shown by Tachi [2013]. Examples of
parallel pleated structures are shown by Fig. 7.

2.4 Discrete principal pleated structures

Recall that a smooth pls is principal, if the fold angle along each
crease is constant. Equivalent characterizations are existence of
a right circular cone tangent to the developables to either side of
the crease (Fig. 4), or the reflection-ruling property. A structurally
consistent discretization of this property is the requirement that
in each vertex there is a cone tangent to all four incident faces. In
terms of the angles in a vertex, this is expressed as

ω1 + ω3 = ω2 + ω4 (3)

[Liu et al. 2006]. If the developability condition (2) is assumed, this
is further equivalent to

ω1 + ω3 = π , ω2 + ω4 = π . (4)

That condition is well known in origami and expressesflat-foldability
of each vertex, i.e., besides the unfolding (all dihedral angles are
zero) there is another flat configuration where some dihedral angles
are 180◦ [Huffman 1976]. According to Kokotsakis [1933], any such
pls has a continuous unfolding, during which the faces remain rigid
and the edges act as hinges; see also [Tachi 2009].
Discrete ppls are conical meshes, which are known to approxi-

mate the principal curvature lines of surfaces, provided the mesh
polylines approximate the surface in a reasonable way. This is not
the case for ppls, since one half of the mesh polylines is zigzagging.
We therefore cannot infer that mesh polylines approximate principal
curvature lines. Nevertheless, we can draw on the full range of nice
properties of conical meshes which are well established.
It is remarkable how well the geometric properties of a smooth

ppls are preserved by the discrete ppls. We discuss several properties
in the following paragraphs.

Construction of general developable conical vertices. Consider a
vertex v with four incident faces f −0 , f

+

0 , f
−
1 , f

+

1 and mountain and
valley folds as shown by Fig. 8. Here + and − refer to the two sides of
a crease. The faces are contained in planes T−0 ,T

+

0 ,T
−
1 ,T

+

0 , and the
angles in these faces are denoted by ω1, . . . ,ω4 as shown by Fig. 8.
By the conical property, all four planes are tangent to a certain cone
associated with v . There are rotations about the axis of this cone
which map T−0 → T−1 and T+0 → T+1 . If these rotations are equal,
then it follows immediately that the vertex is developable, see Fig. 8.
If they are different, i.e., if the 1-ring neighbourhood of the vertex
v1 is not constructed as in Fig. 8, then ω1 + ω3 , π , and the vertex
is not developable.

ω1

ω1ω3f −1

f +1

f −0

f +0

v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1

v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2 v0v0v0v0v0v0v0v0v0v0v0v0v0v0v0v0v0
ω3

ω2

f −1 f −0

v2

v1
v0

Fig. 8. Geometry of a developable conical vertexv1 which is part of a crease

v0v1v2 . . . (top view and side view). Faces f −0 , f
+

0 lie in two tangent planes

of the cone associated with the vertexv1, and rotation of these planes about

the cone’s axis yields planes carrying faces f −1 , f
+

1 . Observe that the angle

ω1 occurs twice in the top view figure, proving ω1 + ω3 = π .
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Fig. 9. Discrete principal pleated structures are conical meshes and have

offsets at constant distance. Right: A wooden construction of constant thick-

ness based on a ppls. Observe the clean intersection of elements in the

nodes which does not occur if the guiding mesh fails to be conical.

Constant fold angles along polylines. The previous paragraph
shows that the angle between faces f −0 , f

+

0 equals the angle be-

tween f −1 , f
+

1 . By repeating the argument for successive vertices
v2,v3, . . . along a crease, we conclude that the signed fold angle is
constant along a crease.

The same argument shows that the dihedral angle between faces
f −0 , f

−
1 is equal in magnitude to the dihedral angle between faces

f +0 , f
+

1 , but has opposite sign. This fact is known in origami.

Rectifying developable. The cone axes of successive vertices vi ,
vi+1 are co-planar (this is true for any conical mesh, cf. [Liu et al.
2006]), and these axes constitute a discrete developable surface
R. From the symmetry properties shown by Fig. 8 it follows that
unfolding the auxiliary developable R (not the pls itself) maps the
crease v0v1v2 . . . to a straight line. This makes R a discrete version
of the rectifying developable shown by Fig. 3. The same symmetries
imply that faces f −i , f

+

i lie symmetric w.r.t. R, which is yet another
analogy to the smooth case.

Offsets. Conical meshes are characterized as those meshes which
have offsets at constant face-face distance. This leads to a nice
characterization: discrete ppls are characterized as those pls which
admit offsets at constant face-face distance. Fig. 9 shows how to
exploit this property in practice.

The relation between a ppls and its offset is a special case of mesh
parallelity. The principal property is defined via angles and thus is
not destroyed by mesh parallelism.

Like any conical mesh, a ppls and its offsets have the same cone
axes. Corresponding polylines are connected by discrete devel-
opables (the ones along the crease curves are the rectifying de-
velopables mentioned earlier).

2.5 Flexion of principal-pleated structures

So far, the discrete principal-pleated structures have proved a good
discretization of the smooth case. There is one more important
property which proves this, namely 1-DOF flexibility.

Existence of a continuous and unique (up to rigid motions) unfold-
ing is known from previous results, e.g. [Kokotsakis 1933]. During
the unfolding of a vertex star as shown by Fig. 10, angles between
edges remain unchanged and conditions (2), (4) remain in force.
Thus a ppls remains principal during the unfolding.

It is known how any fold angle evolves during a continuous
folding, cf. [Tachi 2010a]. In the notation of Fig. 8, with ϕ1,ϕ2 be-
ing the fold angles along edges f −0 ∩ f +0 resp. f −0 ∩ f −1 ,we have

Fig. 10. Continuous unfolding of a single vertex in a principal-pleated struc-

ture. The vertex remains conical and developable throughout the process; the

cone tangentially inscribed in the vertex star is not deforming isometrically:

it opens up and becomes flat.

tanϕ2/2
tanϕ1/2

=
sin(ω2−ω1 )/2
sin(ω2+ω1 )/2

, which is constant over time. By iteration,

the analogous ratio involving any two fold angles in the ppls is
constant. Thus, for a continuous unfolding over time t , a fold angle

ϕ (t ) changes according to tan 1
2ϕ (t ) = λ(t ) · tan 1

2ϕ (t0), where t0
is some fixed reference time instant. The factor λ(t ) applies to all
edges simultaneously. We emphasize this because it shows that the
flexing motion of ppls has exactly 1 degree of freedom.

2.6 The relation of pleats to pseudo-geodesics

Our major goal is the reconstruction of surfaces by means of pleated
structures, in particular ones where the folds have uniform width.
This can only be done by numerical optimization, which requires a
suitable initialization.
Consider first a pleated structure with a small distance between

creases which lie below and above a reference surface in an alternat-
ing way. The creases follow smooth guiding curves on the surface.
An upright folding such as in Fig. 11, left, has crease curves whose
rectifying developable is orthogonal to the reference surface, while
the osculating planes are parallel to it. This property characterizes
asymptotic curves. We conclude that upright folds follow asymptotic
curves, which exist only on negatively curved surfaces. There is
no design freedom except to choose between the two families of
asymptotic curves, and their spacing.
The limit, as the width of folds approaches zero, has been com-

puted explicitly by [Dias et al. 2012] for the case of the pleated
annulus, see e.g. [Demaine et al. 2011b]. Limits of creases are in-
deed asymptotic curves, and Gaussian curvature K and torsion τ of

creases in the limit are related by τ =
√
−K (this is a known property

of asymptotic curves).
In order to obtain more design freedom, and to be able to treat

positively curved surfaces, we need another idea. We think of in-
clined folds as in Fig. 11, right. In this case the rectifying developable

ci

ci+1ci−1
θ = 0 θ = π/6

Fig. 11. Schematic illustration of a zigzag pleated structure following a

reference surface. Creases follow curves ci on the reference surface. The

rectifying developables of creases are indicated by arrows. They act as angle

bisectors at creases, and their angle θ with the surface normals is used to

guide the relative position of pleats and reference surface.

ACM Trans. Graph., Vol. 38, No. 6, Article . Publication date: November 2019.



Curve-pleated Structures • 7

Fig. 12. If the inclination angle of a fold w.r.t.

the reference surface does not change along

the fold, then this fold must follow a pseudo-

geodesic curve. Therefore pseudo-geodesics

can be used to initialize the optimization pro-

cedure we use to compute pleated structures.

In this image the creases computed via op-

timization are shown in blue. Optimization

has been initialized by the red curves which

are created by moving pseudo-geodesics out

of the surface. In the notation of Fig. 11, all

folds have inclination angle θ = π /3.

of crease curves has a constant angle with the reference surface,
making the creases pseudo-geodesics (see ğ 2.2).
We do not formalize this limit process, since we are using it

only as an idea for initialization. An example, computed with the
algorithm presented in ğ 3, is shown by Fig. 12. In the extreme case
of folds being actually tangent to the reference surface, the creases
follow geodesics. This happens e.g. for Jun Mitani’s folded sphere
designs [Mitani 2009b].
The constant inclination requirement is arbitrary, even if we

think it is sensible. It allows us to reduce the layout of pleats to the
computationally manageable task of patterns of pseudo-geodesics.
Dropping this requirement, we have greater design freedom. It is
however not easy to exploit this freedom, since we no longer have
such a nice class of guiding curves for the pleats. An arbitrary
arrangement of guiding curves will not work, as demonstrated by
Fig 25.

3 ALGORITHMS FOR DESIGN AND RECONSTRUCTION

Having established a connection between pleated structures and
pseudo-geodesics, we propose the following three-step procedure
for their reconstruction and design. The first step is to create a
pattern of pseudogeodesic guiding curves on a surface. For recon-
struction, this is a given reference surface (ğ 3.1). For designwe create
the surface simultaneously with the curve pattern (see ğ 3.2).

The second step is to initialize optimization bymoving the guiding
curves away from the reference surface as shown in Fig. 11 to obtain
initial guesses for creases. We lay out a quad mesh along these
creases. See ğ 3.3 for details.
Thirdly, we optimize this mesh for planarity of quads, developa-

bility, and also for the principal property if applicable ś see ğ 3.4.

3.1 Tracing pseudo-geodesics on surfaces

For creating patterns of guiding curves, tracing a pseudo-geodesic
curve on a reference meshM = (V ,E, F ) is a basic task. This is an
initial value problem analogous to the shooting of geodesic curves
from an initial point in an initial direction. Fig. 13 explains how we
do it. The curve is represented as a polyline with vertices pi . The
pseudo-geodesic property says its osculating planes (spanned by
consecutive vertices pi , pi+1, pi+2) enclose the angle θ withM . We
also know if we are inclined to the left or the right, as we progress
along the polyline. We start with an edge pi , pi+1 where pi lies

f

f ′

pi
pi+1

pi+2ne

ni+1

Fig. 13. Tracing pseudo-geodesics. We require that the plane spanned by

vertices pi , pi+1, pi+2 is inclined by the angle θ w.r.t. the reference surface

(where the normal vector ne of the reference surface is an average of face

normals computed in pi+1). Center and Right: Some test cases with θ = π /3.

In the sphere, all pseudo-geodesics are closed.

in a face f and pi+1 is contained in the edge f ∩ f ′. Face normal
vectors nf ,nf ′ yield a surface normal vector ne = nf + nf ′ in
pi+1. We now compute a normal vector ni+1 of the osculating plane
pipi+1pi+2 by requiring ∢(ne ,ni+1) = θ . We select the right one of
two solutions via the sign of det(ne , pi+1 − pi ,ni+1). Now pi+2 is
uniquely determined as intersection of the osculating plane with the
boundary of face f ′. From here the procedure continues recursively.
The design of a pattern is illustrated by Figure 2: We cross the

surface with a suitable curve (e.g., a geodesic), and from regularly
spaced points on c shoot pseudo-geodesics orthogonal to c . Similar
to the case of geodesics [Pottmann et al. 2010], we cannot expect
anything like exactly equidistant pseudo-geodesics.

3.2 Generating surfaces by evolution of pseudo-geodesics

The goal here is to generate a sequence of nearly equidistant pseudo-
geodesics on a surface, which emerges during this process. We de-
scribe how to construct a polygon {vn+1,i }i ∈Z from its predecessor
{vn,i }i ∈Z. By applying this procedure iteratively, we generate a
discrete surface from any initial polygon {v0,i }i ∈Z.
We endow the vertex vn,i with a discrete Frenet frame ekn,i ,

k = 1, 2, 3, see Fig. 14. We choose the binormal vector e3n,i orthogo-

nal to the osculating plane spanned by three consecutive vertices
vn,i−1 vn,i vn,i+1 and letting the unit tangent vector e1n,i equal the

normalized vector vn,i+1 − vn,i−1.
To compute e3n,i in a stable way, we perform optimization. We

minimize
∑

i ⟨vn,i+1−vn,i , e3n,i ⟩
2
+⟨vn,i−1−vn,i , e3n,i ⟩

2
+ (∥e3n,i ∥

2−
1)2, together with a small dose of the regularizer

∑

i ∥e3n,i+1 +

e2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ie2n,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,i

e3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,ie3n,i

vn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,ivn,i

vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1vn,i+1

vn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,ivn+1,i

vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1vn+1,i+1

dn,i = cosθ e2n,i + sinθ e
3
n,i

vn+1,i = vn,i + sdn,i

Fig. 14. Evolution of pseudo-geodesics. If a polyline {vn,i }i∈Z evolves by

the formulae shown above, it is a discrete pseudo-geodesic in the surface

generated by the evolution process. Here e1n,i , e
2
n,i , e

3
n,i is the discrete

Frenet frame associated with the vertex vn,i , and s is a distance.
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θ = 0 θ , 0

Fig. 15. Two examples of pleated structures generated from pseudo-geodesics evolving with constant speed. The left hand example has θ = 0 and corresponds

to evolution along principal normals e2j,i . This generates a surface with an equidistant family of asymptotic curves and, in turn, a pleated structure with

upright folds. The example at right has inclined folds.

e3n,i−1 − 2e
3
n,i ∥

2. We solve this small optimization problem in the

same way as our main optimization discussed in ğ 3.4.
This evolution equation which computes the next row of ver-

tices vn+1,i is shown by Fig. 14. Consider now the discrete surface
with vertices vn,i and the canonical quad mesh combinatorics. By
construction, the row and column mesh polylines discretize curves
intersecting orthogonally, such that osculating planes of the first
family has angle θ with the surface. The polylines {vn,i }i ∈Z there-
fore represent a family of pseudo-geodesics.

Fig. 15 shows some examples. The angle θ may depend on n, and
the distance s can even depend on both i and n Ð see Figs. 16, 27.

3.3 Initializing a discrete surface with creases

Having created a pattern vl,i of discrete pseudo-geodesics accord-
ing to ğ 3.2, we connect these vertices to form a quad mesh M0 =

(V0,E, F ) in the obvious way. We then generate a zigzag offset sur-
face as shown by Fig. 11, by moving each pseudo-geodesic off the
surface in an alternating way. The distance of crease curves from
the reference surface influences the positioning of rulings ś a small
distance implies that rulings are almost tangential to the creases
and singularities might develop.
Figure 11 reveals that uniform spacing of creases does not cor-

respond to uniform spacing of pseudo-geodesics on the reference
surface. It would not be difficult to account for this in our initial-
ization, but actually this is not necessary. Subsequent optimization
works just as well if we move uniformly spaced pseudo-geodesics
in direction of the binormal vectors e3n,i to initialize creases.

Fig. 16. Variations of

pseudo-geodesic patterns.

This optimized pleated

structure has been

initialized from pseudo-

geodesics whose inclina-

tion angle θ is varying

from one curve to the

next.

The presentation so far only deals with a very simple arrangement
of folds, namely a sequential one. We show more complicated exam-
ples with combinatorial singularities below. In surfaces generated
by evolution, we used the simplest of all possible combinatorics and
did not experiment with elementary modifications like cropping.
We end up with a quadrilateral mesh M1 = (V1,E, F ) whose

vertices are already positioned above and below a reference surface,
with crease curves following pseudo-geodesics. The faces of the
mesh are far from being planar, which is a property to be established
via optimization. So is developability.

As variables for optimization we use vertices vi , v̄i of the mesh
and its unfolding, as well as normal vectors nf of faces f ∈ F .

3.4 Optimization

The variables introduced in ğ3.3 obey a number of constraints.
Firstly, for each face we penalize deviation from planarity: Letting

Eplan =
∑

f ∈F

∑

vivj ⊂f
⟨vi − vj ,nf ⟩2 +

∑

f ∈F

(

∥nf ∥2 − 1
)2
,

smallness of Eplan means that each normal vector has length 1, and
any edge vivj of a face f is orthogonal to nf .
Secondly, developability of a meshM is expressed by existence

of another mesh M (the unfolding of M) which is contained in a
plane, and which is both combinatorially equivalent and isometric
toM . Every vertex vi has a corresponding vertex v̄i in the unfolding,
where v̄i ∈ R2. The mesh and its unfolding are isometric, if the
energy Eisom vanishes, where

Eisom =
∑

edges and diagonals
vi vj of faces

(

∥vi − vj ∥2 − ∥v̄i − v̄j ∥2
)2
.

Creases in the mesh are represented by polylines. We require that
in the course of optimization, vertices move mostly along those
polylines. To ensure that, we compute for each vertex vi the closest
point projection onto its polyline, and we also determine the princi-
pal normal vector n∗i there (as an average of the principal normal

vectors e2n,i we computed before). The energy

Eclose =
∑

vi ∈V
⟨vi − v∗i ,n

∗
i ⟩

2

penalizes movement of vertices across creases, but does not penalize
movement of vertices along the crease, or a change in the distance

ACM Trans. Graph., Vol. 38, No. 6, Article . Publication date: November 2019.
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M0

M1

M0

M1

Optimization stage 1
M2Optimization stage 2

M2

Fig. 17. Computation pipeline. A discrete pleated structure M2 and its unfolding M2 are computed by a combined optimization procedure. Propagation of

pseudo-geodesic curves produces a reference mesh M0. Moving vertices off the reference surface yields a mesh M2 exhibiting the correct creases already.

Optimization stage 1 computes a quasi-unfolding M1 of M1. Optimization Stage 2 achieves planarity of faces and exact developability by optimizing the

pleated structure M and its development M simultaneously. The color coding shows the angular defect in vertices.

of the crease curves from the reference surface. The projection and
normal vectors are recomputed after each round of iteration.
Finally, fairness is quantified by means of

Efair =
∑

successive
vertices vi−1vi vi+1

∥vi+1 + vi−1 − 2vi ∥2,

where the summation is over all triples of successive vertices vi−1,
vi , vi+1 of creases. We found that this fairness energy also prevents
foldovers. Note that none of these energies accounts for the resolu-
tion of the discretization ś for optimization the relative magnitude
of energies is relevant.
The optimization itself happens in two stages, see Fig. 17 for an

overview. Initialization (ğ 3.3) provides a mesh M1 which already
representes a creased surface. It has vertices vi . Before optimizing it
further, in a first stage of optimization we provide an initial guess at

the unfolding, resp. developmentM1 ofM1. For that, we start with

a simple meshM0, with vertices v̄i , which is part of a square grid
and combinatorially equivalent toM0. Its edgelength is the average
edgelength of M1. We now minimize Eisom with variables v̄i to

createM1. The meshM1 is, under the circumstances, as isometric
as possible toM1.

In the second stage of optimization, we achieve planarity of faces
and developability by optimizing for Eplan → 0, Eisom → 0. To be

Fig. 18. Patterns with singu-

larities. Among all pseudo-

geodesics, those with θ =

0 (asymptotic curves) offer

the least design freedom,

but also the possibility of

patterns with singularities

in the umbilics of the refer-

ence surface. The index of

the asymptotic cross field is

a multiple of 1
2 , enabling an

alternating mountain/valley

folding.

precise, we use the objective function

E = λ1Eplan + λ2Eclose + λ3Eisom + λ4Efair, (5)

with weights chosen such that Eisom, Eplan dominate. The choice of
weights for the examples in this paper is shown in Fig. 21.

The principal property.

nf +
i

nf +
i+1

nf −
i

nf −
i+1

If the pleated struc-
ture subject to optimization is to be principal,
we have to ensure that the fold angle along a
crease is constant. We consider all tuples ( f +i ,

f −i , f +i+1, f
−
i+1) of faces such that f

+

i ∩ f
−
i is part

of a discrete crease, and f +i+1 ∩ f −i+1 is the next edge on that crease,
cf. Fig. 8. By summation over all these tuples we construct

Eprincipal =
∑

(f +i ,f
−
i ,f

+

i+1,f
−
i+1 )

(

⟨nf +i ,nf −i ⟩ − ⟨nf +i+1 ,nf −i+1 ⟩
)2
,

and we add λ5Eprincipal to the target functional (5) whenever neces-
sary. Examples are shown by Figures 1, 9, 26, and 27.

4 RESULTS AND DISCUSSION

The methods developed in this paper allow us to create surfaces
which admit a nice pattern of curved folds, by free evolution of
pseudo-geodesics, and derive pleated structures from them, see
Figures 1, 9, 12, 15, 16, 19, 24, 27, 26. The characteristic angle of the
pseudo-geodesics can be chosen between 0◦ (asymptotic lines case)
and 90◦ (geodesic case).

Principal ppls and mechanisms. In particular, we point to the
special case of principal pleated structures, which enjoy continuous
ruling-preserving unfolding, a flat-folded state, and constant fold
angle along creases. It is this case where the analogy between the
smooth and discrete cases is most gratifying. Examples are shown
by Figures 1, 9, 26, and 27. Fig. 26 highlights the interesting fact
that ppls are mechanisms. If the number of edges and faces allows
this, they can be built with rigid faces connected by hinges. The fact
that our method has many degrees of freedom means that we have
contributed to the design of mechanisms.
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Fig. 19. Design example. From left: input curve; the process of initialization via evolution of pseudo-geodesics and optimization; the result of optimization;

the development. The color-coded images show the planarity defect (top row) and angle defect (bottom row) before and after optimization. The unfolding

demonstrates the fact that pleated structures need not be unfoldable in a 1-1 manner.

(a) (b) (c)

Fig. 20. Surface reconstruction examples. Diverse patterns can be created by shooting pseudo-geodesics orthogonal to a guiding curve (subfigures a,c) or

simply by shooting pseudogeodesics from a chosen vertex point (subfigure b). This pattern of guiding curves then serves as the basis of a pleated structure

approximating a given surface. The pls in (b) and (c) use as reference surface the top part of the roof of the proposed Lilium tower by Zaha Hadid.

Fig. |V | |F | λ1 λ2 λ4 λ5 wplanar (max/av) wangle (max/av) # it T

1a 684 600 10 0 1 100 6.8·10−5 1.2·10−5 1.7·10−2 3.2·10−3 20 1.8
1c 1938 1818 10 0 1 100 5.9·10−5 7.4·10−6 1.4·10−2 2.5·10−3 20 6.3
1d 2904 2651 10 0 1 100 4.2·10−5 8.3·10−6 1.5·10−2 3.2·10−3 20 12
2 3600 3479 10 .5 .1 0 7.0·10−3 2.6·10−3 5.1·10−2 1.0·10−2 10 5.4
9 760 720 10 0 1 100 1.2·10−5 2.6·10−6 2.4·10−3 3.6·10−4 20 2.2
12 3600 3540 10 1 1 0 2.9·10−3 1.2·10−4 7.0·10−3 2.2·10−3 10 8.7
16 1700 1600 10 1 1 0 5.4·10−4 9.5·10−5 1.4·10−2 2.5·10−3 10 2.7
18 12740 12332 10 1 1 0 3.4·10−3 1.5·10−3 1.2·10−1 3.6·10−2 10 51
19 6800 6400 10 1 1 0 1.7·10−3 4.0·10−4 4.3·10−2 6.7·10−3 10 10
20a 2400 2340 10 1 1 0 3.4·10−3 1.0·10−3 2.8·10−1 5.9·10−3 10 3.8
20b 4800 4720 1 1 0.5 0 1.4·10−2 4.0·10−3 1.4·10−2 5.1·10−3 10 10.1
20c 2940 2832 10 1 1 0 4.3·10−3 2.7·10−4 9.9·10−2 4.9·10−2 10 4.8
22 3027 2880 20 1 1 0 3.2·10−3 3.0·10−4 7.2·10−2 8.1·10−3 20 8.5
24a 3200 3000 10 1 0.1 0 1.8·10−4 7.3·10−6 8.1·10−2 1.2·10−2 10 5.3
24b 1440 1680 10 1 1 0 1.1·10−4 2.6·10−5 1.4·10−2 2.5·10−3 10 2.8
26 320 600 10 .1 1 100 6.6·10−5 1.6·10−5 2.1·10−3 4.3·10−4 10 0.3
27 2200 1990 10 .1 1 100 2.5·10−5 3.6·10−6 7.2·10−4 7.8·10−6 20 8.7

Fig. 21. Statistics. For the examples of this paper, we show the number

of vertices and faces of the meshes involved, from which we deduce that

our optimization involves 5 |V | + 3 |F | variables. We also show the weights

λ1, . . . , λ5 which determine the individual contributions to the target func-

tional (5) (λ3 = 100 always). The quality ofmeshes ismeasured by a planarity

measure wplanar, which is the distance of diagonals in a quad divided by

average length of those diagonals. The quality of developability is measured

by the angle defect wangle, which gives the discrepancy betwee the angle

sum in a vertex and 360 degrees. We also show the number of iterations

and the time needed (in seconds).

Reconstruction and Editing. As to approximation of reference sur-
faces, this is possible whenever we manage to lay out a pattern of
pseudo-geodesics on them, see Figures 2 and 20. This is not so easy
in presence of many smaller features, but the examples of Figures 2
and 20(b,c) show well the capabilities of the method.

If we do not care about controlling the inclination angle of folds,
we have a lot more design freedom. Figure 23 shows what happens if
we gently edit a reference shape and guiding curves lose the pseuo-
geodesic property: A pleated structure derived from them will have
variable inclination but is fine otherwise. Optimization does fail,
however, if the initialization does not take the folds’ osculating
planes into account, as demonstrated by Fig 25.

As to patterns with combinatorial singularities, recall that curved
creases are guided by pseudo-geodesic curves, and complex crease
patterns require analogous patterns of pseudo-geodesics. Finding
those is not an easy task, which we can deduce from the known case
of geodesics. Only in the case of upright folds (guided by asymptotic
curves), the loss of design freedom offers a tractable approach: The
uniqueness of asymptotic curves automatically leads to patterns
with combinatorial singularities around umbilical points of the ref-
erence surface. The asymptotic curves have singularities of the same
index as the principal curvature lines, namely integer multiples of
1
2 . Thus they cleanly separate into two families. Pleated structures
based on this construction are seen in Figures 18 and 22.
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Fig. 22. By following the asymptotic curves on

a negatively curved surface, we create a pleated

structure with upright folding and combinato-

rial singularities. We show both a rendering and

a photo of a paper model.

Relevance for fabrication. Fig. 9 illustrates the fact that principl pls
have offsets at constant face-face distance, which is highly relevant
for constructions made from materials with nonzero thickness, like
wood. Fig. 6 shows a structure made from curved elements whose
unfolded state is straight, and which lie at constant angle to a refer-
ence surface. This application is interesting in the light of related
research on curved elements from straight panels, cf. [Schling et al.
2018].

Implementation Details. The target functional (5) is optimized by
a Levenberg-Marquardt method. The implementation has been done
in C++ using the data structures of OpenMesh, cf. [Botsch et al. 2002]
and the Taucs library for sparse linear solvers [Toledo 2003].

Detailed statistics are provided by the table in Fig. 21. These com-
putation times refer to an Intel Xeon E5-2687W 3.0GHz processor
without parallel processing or other acceleration techniques.

Limitations. The most important limitation of our method is that
if we want to control the inclination angle of folds against the
reference surface, it relies on patterns of pseudo-geodesic curves,
and such patterns tend to fall into disarray when the reference
surface has too many features. This is already the case for patterns
of geodesics, whose distance is governed by the Jacobi equation
[Pottmann et al. 2010]. Finding patterns of pseudo-geodesics is
therefore a problem of its own. On more complicated surfaces we
confined ourselves to upright foldings which follow asymptotic
curves and are therefore available only in case of negative curvature.
Another limitation is that we did not take the physics of folding
paper into account ś we only verified our computations a posteriori
by building models.

Future research. There are several obvious avenues of future re-
search. One possibility is to improve control resp. initialization in
cases where the folds do not have nearly constant width. Another
direction is the connection to discrete differential geometry: Dis-
crete pleated structures are a non-smooth approximation of smooth
surfaces, which is a rather unexplored area. We would even go so far
as to call for new theories of discrete differential geometry which
are entirely based on non-smooth approximations. Even existing
origami constructions (e.g. Miura-Ori) could turn out to be special
cases of a more general theory.
In this paper, the flexibility of pleats was exploited to solve a

general approximation problem. We did not deal with the much
more difficult problem of representing general shapes as curved-
folding surfaces with as few folds as possible.

Further, there are surely more connections to flat-foldable struc-
tures to be discovered, given e.g. the recent breakthrough in the

classification of flexible quad meshes by [Izmestiev 2017]. Gener-
ally flexing geometry is a topic with high potential for interesting
applications. It would be extremely interesting to realize flexible
curve-pleated structures in architecture or building construction.

Conclusion. We have presented an analysis of curved folds, in
particular curved folds of constant fold angle (this is the principal
case), andwe proposed discretizations exhibiting sufficient analogies
to the smooth case to make their use for computation a reasonable
choice. The discrete principal case has very interesting geometry.
Establishing a relation between crease patterns on one hand, and
patterns of pseudo-geodesic curves on the other hand, we show a
method to create pleated structures of controlled fold width and
inclination angle either by evolution, or following given design
surfaces. Our method is, within limits, also capable of handling
combinatorial singularities. Several properties, namely continuous
foldability, and existence of offsets, are relevant for fabrication and
applications, and we contribute to the design of flexible structures.
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