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Abstract

Motivated by applications in architecture and design, we present a novel method for increasing
the developability of a B-spline surface. We use the property that the Gauss image of a devel-
opable surface is 1-dimensional and can be locally well approximated by circles. This is cast into
an algorithm for thinning the Gauss image by increasing the planarity of the Gauss images of
appropriate neighborhoods. A variation of the main method allows us to tackle the problem of
paneling a freeform architectural surface with developable panels, in particular enforcing rotational
cylindrical, rotational conical and planar panels, which are the main preferred types of developable
panels in architecture due to the reduced cost of manufacturing.
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1. Introduction

Developable surfaces can be locally mapped to a planar domain without distortion. Since they
can be constructed from an initial planar state without stretching or tearing, only by bending, they
represent the shapes obtainable with thin materials like sheet metal or paper which do not stretch.
These surfaces are of great interest to many applications. Areas like architecture, manufacturing
and design take advantage of the cost-reduced manufacturing process that developables have.

Developable surfaces have been well studied in classical differential geometry. Developable,
twice differentiable surfaces are single curved, meaning one of the principal curvatures is zero.
Thus, the Gauss curvature vanishes at every point. They are composed of special ruled surfaces
with a constant tangent plane at all points of a ruling. As the surface normal vectors along a ruling
agree, the Gauss image of a developable surface is 1-dimensional, i.e. a curve.

We base the main method in our paper on this property of the Gauss image. However, our
focus is not on exact developability, but rather on nearly developable surfaces which we characterize
by nearly curve-like Gauss images. The motivation for our research is the fact that most materials
allow for a little bit of stretching and therefore developability needs not be satisfied to a high
degree in a variety of applications. In particular, we are interested in applications in architecture
where various kinds of tolerances can be exploited to reduce the production cost of freeform skins.
Our work fits into a larger research program on novel digital tools which consider key aspects
of function and fabrication, including material behavior, already in the early design and digital
modeling phase.

Previous work. There is a vast amount of literature on developable surfaces, on their theory,
their computational design using various types of representations and on their appearance in nu-
merous applications. We limit this discussion to three main areas which are most closely related
to our work: (i) developable Bezier and B-spline surfaces, (ii) discrete representations and nearly
developable surfaces and (iii) their importance in paneling architectural surfaces.
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Developable Bezier and B-spline surfaces. Lang and Röschel [1] expressed developability of ratio-
nal, in particular polynomial Bézier surfaces in a system of cubic equations. In general, this system
cannot be solved in a simple way, but in various special cases, explicit solutions have been derived
([2, 3, 4, 5]). One can avoid these nonlinear constraints by using the projectively dual representa-
tion, where a developable is represented as the envelope of its tangent planes. For details, we refer
to [6, Section 6.2], but note that the dual representation is not sufficiently intuitive to be suitable
for interactive design. Moreover, it is difficult to control singularities. A combination of the primal
and the dual representation has been successfully employed for interactive design of developable
NURBS surfaces by Tang et al. [7].
Discrete representations and nearly developable surfaces. There are numerous papers which model
developable surfaces with triangle meshes; we just refer to a few of them [8, 9, 10, 11]. Jung et
al. [12] improve on Decaudin at al.’s [13] method that locally approximates neighborhoods around
each mesh triangle with a cone. Liu et al. [14] treat developable surfaces as a limit case of meshes
from planar quads. Solomon et al. [15] use a mesh approach to flexibly model the shapes achievable
by bending and folding a given planar domain without stretching or tearing. An elegant discrete
model of developable surfaces is provided by special quad meshes which discretize orthogonal nets
of geodesics [16, 17].

Nearly developable surfaces appear in connection with specific applications, e.g. modeling ship
hulls [18] and clothing [19] or segmenting meshes in geometry processing [20, 21]. Narain et al. [22]
go beyond developability and present a technique for simulating plastic deformation in sheets of
thin materials, such as crumpled paper, dented metal, and wrinkled cloth. Closely related to our
work is a paper by Wang et al.[23] on increasing developability of a trimmed NURBS surface, but
our approach and applications differ significantly.

Another very recent work with a strong connection to our research is the developable surface
flow by Stein et al. [24]. This flow is a gradient flow on the energy
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principal curvature. It constructs piecewise developable rather than globally developable surfaces
as minimizers. The discrete model is based on triangulations whose vertex stars dominantly lie
in pairs of planes. One could say that the surface is locally approximated by a pair of planes,
their intersection representing the ruling direction. In a similar spirit, our local approximations
are of higher order, as discussed below. Note that Stein et al. generate piecewise developable
surfaces, where the arising pattern of developable patches is a result of the geometric flow and
depends on the initial triangulation. We can increase developability of a single smooth surface
without the introduction of tangent discontinuities. We can also allow for piecewise developable
surfaces through an appropriate selection of knots and their multiplicities in the underlying B-
spline surface, but our arrangements of developable patches are more restricted (and at the same
time more controlled) than the ones by Stein et al.
Paneling architectural surfaces. Architectural surfaces need to be decomposed into panels, which is
a key process and largely responsible for a cost effective solution. For an overview of the problems
in this field we refer to [25]. In particular, we point to the paneling solution of Eigensatz et
al. [26]. It exploits various tolerances at seams and a cost model for the production of panels of
different geometric types to suggest solutions within an optimization framework. The user provides
the design surface and a suggested network of panel boundary curves, while the algorithm slightly
adapts the design surface and network and optimally fills it with panels (patches). Our work can be
considered as an extension in the sense that the panel boundaries are also subject to optimization
with the overall goal of increasing developability of the individual panels. For developable and
nearly developable surfaces in architecture, we further point to [27, 28, 29, 30].

Contributions. The main contributions of this paper are as follows:

◦ We present a novel optimization method for increasing the developability of an arbitrary
surface. It is based on local approximations of the surface by developable surfaces with
planar and thus circular Gauss images. While we could also use other representations within
our framework, we prefer B-splines in order to have simple access to smoothness of patches.
Moreover, we naturally obtain a patchwork of regular quad combinatorics, which is a preferred
arrangement in many architectural projects.

◦ We provide a justification of our approach in two ways: We discuss local approximations
of developable surfaces, especially with those being characterized by a planar Gauss image.
Moreover, we study the implications of a nearly curve-like Gauss image on the underlying
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surface, thus supporting our claim of achieving near developability through Gauss image
thinning.

◦ We introduce a variation of the main method presented in the paper to tackle the problem
of paneling a freeform surface with (rotational) cylindrical, (rotational) conical and planar
panels, which are the main preferred types of developable panels in architecture due to the
reduced cost of manufacturing.

◦ We provide results that illustrate the power of the proposed approach and outline potential
directions for future research.

Overview of the paper. This paper is organized as follows. In Section 2, we outline some
important fundamentals for our work and, in section 3 present the main optimization algorithm
step by step. Section 4 focuses on a variation of the main optimization algorithm which is designed
for paneling a freeform surface with panels that are special cases of developable surfaces. We
present the differences with the main algorithm and introduce any necessary new tools. In section
5, we provide results on various data sets, including ones from real architectural projects. Moreover,
we discuss advantages and shortcomings of our approach and outline future work.

2. Fundamentals

2.1. Local approximations of developable surfaces
We are interested in smooth or piecewise smooth developable surfaces S. They are composed

of C2 surface patches which fall into one of the following four categories: planes, general cylinders,
general cones and tangent surfaces of space curves. Their Gauss images C, i.e. sets of unit normals
viewed as points on the unit sphere S2, are composed of curves. The junction points of C where
more than two curve segments meet, correspond to planar patches on S. In the following, we
discuss only the three non-trivial basic types: These are ruled surfaces with a constant tangent
plane along each ruling. In other words, they are envelopes of a one-parameter family of planes.

We are interested in second order local approximations of these basic types. The following
result is well-known (see, e.g. [6, Theorem 6.1.4]) and closely related to the simple fact that the
Gauss image of a developable surface is a spherical curve, which has an osculating circle at each
of its regular points.

Lemma 2.1. Along each ruling r, a non-planar developable ruled surface S has second order
contact with a rotational cone Γ (osculating cone). The vertex of this cone is the singular point
of r (regression point). Γ is a rotational cylinder for a cylindrical ruling r (regression point at
infinity) and it degenerates to a plane if r is an inflection ruling.

Let us add a bit more detail for the generic case where S is the tangent surface of a space
curve, S : x(u, v) = c(u) + vċ(u). This so-called regression curve c(u) is a singular curve on S.
The osculating plane at c(u), spanned by ċ, c̈, is the constant tangent plane of S along a ruling
(isoparameter line u = const). If u is an arc length parameter, then the Frenet frame at c(u) is
given by the tangent vector e1 = ċ, principal normal e2 = c̈/κ (with curvature κ = ‖c̈‖), and the
binormal vector e3 = e1 × e2. The Frenet equations can then be written in the form ėi = d× ei.
Here d = τe1 + κe3 is the so-called Darboux vector, where τ denotes the torsion. The Darboux
vector is the direction vector of the osculating cone Γ. This means that the angle φ between
cone axis and ruling satisfies cotφ = τ/κ =: k, a value which is called conical curvature of the
developable surface at the ruling.

The Gauss image of a rotational cone Γ is a circle C on S2 which becomes a great circle if
Γ is a cylinder and degenerates to a point for a plane Γ. So all 2nd order local approximations
addressed above have a planar Gauss image curve C. However, a planar Gauss image C of a
surface Γ does not yet imply that Γ is a cone, while Γ must be a cylinder if C is a great circle
and a plane if C is just a point. So let us discuss the case of a small circle C as Gauss image of a
surface. These surfaces are well studied in classical differential geometry and known as surfaces of
constant slope. They are the tangent surfaces of curves c of constant slope. Their tangents form
a constant angle with a certain direction in space, which is obviously the rotational axis of the
circle C. For a detailed study of these surfaces, we refer to [6, Section 6.3]. The increased degrees
of freedom compared to the osculating cone allow us to increase the local approximation of an
arbitrary developable surface by one with a planar Gauss image:
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Theorem 2.2. At each regular point p of a developable ruled surface S, there is a developable
surface Γ with a planar Gauss image, which has second order contact with S along the entire
ruling through p and interpolates a curve a ⊂ S through p.

Proof. We omit the cases where S is a plane or a cylinder, since these surfaces already have a
planar Gauss image curve. So we are left with cones and tangent surfaces S. We pick the osculating
cone Γp of S along the ruling rp through p and intersect S with the plane A through p which is
orthogonal to the axis of Γp. This yields the curve a. Note that the plane A intersects the cone Γp

in a circle, which is the osculating circle of a at p. The construction of the developable surface Γ
proceeds as follows: Through each tangent of a we compute the two planes which form the same
angle with the axis of Γp as Γp does. Among these two planes, we select the one which is closer
to the corresponding tangent plane of S. Then, the envelope of this family of planes is the desired
developable surface Γ with a planar Gauss image described in the theorem. By construction, Γ
and S share the osculating cone Γp and thus have second order contact along the ruling through p.
We could choose another curve a ⊂ S which lies transversal to the rulings of S, but leave it with
this special choice as it simplifies the further analysis.

•

p

S

a

rp

Γp

c

•
Γ

0

.06max

Figure 1: Local approximations of a developable surface S, which is the tangent surface of a space curve c. Left:
The osculating cone Γp at a point p ∈ S approximates S to 2nd order along the entire ruling rp. Right: A developable
surface Γ as in Theorem 2.2 approximates S even better, as is seen from the color coding of Γ and Γp according to
their orthogonal distance to S.

For that, we use a local (x, y, z) coordinate system with A : z = 0 and describe the curve a by
its support function h(u). This means that we view a as envelope of its tangent lines

L(u) : x cosu+ y sinu+ h(u) = 0,

which form the angle u with the y-axis and possess the signed distance h(u) from the origin (if the
positive side of L is determined by the normal vector (cosu, sinu)). The derivative with respect
to u is the curve normal, L̇(u) : −x sinu+ y cosu+ ḣ(u) = 0. Intersecting the two lines L, L̇, we
obtain a parameterization of the curve a as

a(u) : x = −h cosu+ ḣ sinu, y = −h sinu− ḣ cosu.

Differentiating again yields the curvature centers (evolute) of a(u) as a∗(u) = L̇ ∩ L̈,

a∗(u) : x = ḣ sinu+ ḧ cosu, y = −ḣ cosu+ ḧ sinu.

Thus, the signed curvature radius of a(u) is ρ(u) = h(u) + ḧ(u).
Let p be the point a(0) = (−h(0),−ḣ(0), 0). To shorten notation, we use the notation h(0) =: h0

and likewise for the derivatives. Then the z-parallel line through the curvature center a∗(0) =
(ḧ0,−ḣ0, 0) is the axis of the osculating cone Γp. With k as conical curvature of Γp and of S at
u = 0, the vertex of Γp has z-coordinate z = (h0+ḧ0)/k = ρ0/k. Planes P (u) through the tangents
of a and with the same inclination against the z-axis as Γp have the equations

P (u) : x cosu+ y sinu− kz + h(u) = 0. (1)

Their envelope is the desired approximation Γ of S at p with a planar Gauss image and through
a. Differentiating with respect to u yields planes Ṗ , P̈ whose equations agree with those of L̇, L̈
and are therefore z-parallel planes through these lines. Recall that rulings of Γ are obtained as
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intersections P ∩ Ṗ and the regression curve is found as P ∩ Ṗ ∩ P̈ . As discussed in more detail
in [6, Section 6.3], the regression curve of Γ lies in the z-parallel cylinder through a∗ and the
intersections of Γ with planes z = const are translated offsets of a. The intersection curve a1 of
Γ with the plane z = 1 is a translated version of the offset of a at distance k and therefore has a
support function h(u)− k. The ruling vectors r1 = a1 − a of Γ are r1(u) = (k cosu, k sinu, 1).

The intersection curve ā of S with z = 1 has a support function h̄(u) = h(u)− k + f(u). Due
to the 2nd order contact at u = 0, we have f(0) = ḟ(0) = f̈(0) = 0. Then, the tangent planes of
S are

T (u) : x cosu+ y sinu+ (f(u)− k)z + h(u) = 0, (2)

and the ruling vectors of S are r = ā− a,

r(u) = ((k − f) cosu+ ḟ sinu, (k − f) sinu− ḟ cosu, 1).

Now we have parameterizations of S as s(u, v) = a(u) + vr(u) and of Γ as g(u, v) = a(u) + vr1(u),
which concludes the proof.

However, we want to go beyond that and estimate the distance between S and its approximation
Γ, and compare it to the distance between S and the osculating cone Γp.

We over-estimate the distances by measuring them in planes z = const = v and there between
points with parallel tangents. This means that we measure distances between points of the two
surfaces which have the same parameter values (u, v). This distance δ(u, v) between S and Γ is
given by

δ(u, v) = |v|‖r1(u)− r(u)‖ = |v|
√
f(u)2 + ḟ(u)2. (3)

We can also look at distances δ̄ between the parallel tangents directly, which are in view of equations
(1) and (2),

δ̄(u, v) = |vf(u)|.

For u = 0 we get the ruling rp through p and of course δ, δ̄ = 0.
Let us compare this with the approximation of S by the osculating cone Γp. The cone is given

by (1) where h is replaced by the support function hc of the osculating circle co of a at p = a(0),

hc(u) = ρ0 + ḣ0 sinu− ḧ0 cosu.

The parameterization of the osculating circle is

co(u) = (ḧ0 − ρ0 cosu,−ḣ0 − ρ0 sinu, 0).

Thus, a parameterization of Γp is given by co(u) + vr1(u), and the two errors δp, δ̄p between S and
Γp become

δp(u, v) = ‖co(u)− a(u) + v(r1(u)− r(u))‖, δ̄p(u, v) = |vf(u) + h(u)− hc(u)|.

To get better insight into the behavior of the errors, we insert Taylor expansions at u = 0,

f(u) = a3u
3 + . . . , h(u) = h0 + ḣ0u+

ḧ0
2
u2 +

...
h 0

3
u3 + . . . .

The error vector between a and c0 now reads

co(u)− a(u) = (− ρ̇0
3
u3 + . . . ,

ρ̇0
2
u2 +

ḧ0
6
u3 + . . . , 0).

Note that the quadratic term in the error vector is in tangential direction at p, and thus confirms
the 2nd order contact between co(u) and a(u) at p. For the errors, we find the following expansions,

δ(u, v) = |3a3u2v + . . . |, δ̄(u, v) = |a3u3v + . . . |,

and
δp(u, v) = | ρ̇0

2
u2 + 3a3u

2v + . . . |, δ̄p(u, v) = | ρ̇0
6
u3 + a3u

3v + . . . |.

As expected, the approximation of S by the osculating cone Γp is not as good as with Γ, since the
deviation in the base plane z = 0 (v = 0) adds to the error everywhere. The appearance of the
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derivative ρ̇0 of the curvature radius ρ(u) at u = 0 in the lowest order term is no surprise, as for
ρ̇0 = 0 the osculating circle co has 3rd order contact with a and S at p.

There is one exception which we did not cover here, namely if the ruling rp through p is an
inflection ruling. In that case, Γp degenerates to the tangent plane, and one cannot parameterize
directly via the tangent directional angle u. Instead, one can use another parameter t, and work
with a parameterization in support coordinates (u(t), h(t)), as in [6, pp. 362-363].

Knowing that surfaces with a planar Gauss image approximate developable surfaces at each
point so well, we can increase developability by enforcing local approximations of this type through
an optimization algorithm (see section 3).

2.2. Surfaces with a thin Gauss image
Our method will try to make the Gauss image of a B-spline surface thinner. After that, it will

lie in a region Rε on the sphere which has at most geodesic distance ε to a curve C ⊂ S2. Let
us briefly discuss the implications on a surface S which has a Gauss image in such an ε-strip Rε.
For that, we pick a part of the surface without an umbilic; there the principal curvature lines form
a quadrilateral curve network without singularities. For simplicity, let us just consider a patch
P ⊂ S in this region which is bounded by four principal curvature lines and does not contain
parabolic points. Moreover, we select a square-like patch P, meaning that the average length of
the two pairs of opposite boundary curves is the same. The Gauss image σ(P) of that principal
patch P is a principal patch on S; corresponding curves on P and σ(P) have parallel tangents at
corresponding points, as they are principal directions and thus eigendirections of the derivative of
the Gauss map. As we exclude parabolic points in P, the Gauss map is regular everywhere and
thus locally injective.

The Gauss image σ(P) of P is squeezed into the thin region Rε. Being contained in Rε, at least
one family F1 of principal curvature lines on P must be mapped to very short curves in Rε. If this is
not true for the other family F2 of principal curvature lines; the Gauss image curves of that family
must be nearly parallel to the central curve C of Rε. Thus, the Gauss images of curves in F1 will be
nearly orthogonal to C (see Figures 11, 12). Their length can be bounded depending on the width
variation of σ(P). The shortening of curves in F1 through the Gauss map to a length ≈ ε implies
that the curves themselves will be close to straight lines. A surface with one family of straight
principal curvature lines is exactly developable; our surface is only an approximation of that. A
more thorough investigation of the geometric implications of a thin Gauss is left for future research.

(a) (b)S

σ(S)

S′

σ(S′)f1

f2

C1

C2

C3

Figure 2: (a) Example of a developable shape S with curved folds f1, f2, and its Gauss image σ(S) = C1∪C2∪C3.
(b) Rounding the fold curves of S, leads to shape S′ with Gauss image σ(S′) which is not thin.

Due to our focus on architectural geometry, we can exclude surfaces with wrinkles or folds
appearing for example in cloth. These wrinkles are close to curves formed by parabolic points
and have one very high principal curvature. They are not of interest in the present paper, and
are not characterized by thin Gauss images. Some insight into the geometry of these folds can
be obtained as follows: Consider a planar sheet of material, mark a fold curve on it and bend it
into a 3D shape S, leading to a developable surface with a curved crease (for the local geometry
of such curved folds, see e.g. ([6, Section 6.5]). The two developable surfaces on either side of the
fold curve f have curves C1, C2 as Gauss images. Now let us add a thin smooth blend to round
off the fold curve f . The Gauss image of that blend surface will connect the two curves C1, C2 to
a region which needs not be thin at all. With a sufficiently small blending radius the shape S can
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be arbitrarily close to an exact developable surface and thus be nearly developable, but the Gauss
image will not be thin (see Figure 2).

Therefore, our approach of thinning the Gauss image implies the construction of nearly de-
velopable surfaces, but the converse is not true. A nearly developable surface needs not have a
thin Gauss image, due to the phenomenon of wrinkles. For materials which allow only very little
stretching, these wrinkles appear to be smoothed versions of developable surfaces with curved folds,
as indicated above. There is interesting research on this phenomenon, combining geometry and
physics; see e.g. [31]. However, we are not aware of any differential geometric characterization of
nearly developable surfaces which does not use the planar unfolding.

2.3. Developable bicubic surfaces
We will use bicubic B-spline surfaces and thus it is appropriate to justify this choice. When

it comes to modeling nearly developable surfaces, our choice is natural due to the approxima-
tion power of splines. The condition of one family of nearly straight principal curvature lines is
sufficiently soft to be modeled nicely with these splines.

However, especially in our architectural application, we will model panel arrangements also by
bicubic B-spline surfaces, with knots of multiplicity three, which are just C0 patchworks of bicubic
polynomial patches. We want these polynomial patches to be close to developable surfaces, in
particular to right circular cones or cylinders. Thus, we briefly discuss developable bicubic surfaces.

Bicubic patches on tangent surfaces. The tangent surface of a polynomial cubic c(u) can be
parameterized as

x(u, v) = c(u) + vċ(u),

and it is therefore a bicubic surface. In this form, the rulings are v-isoparameter curves and an
axis aligned rectangle in the parameter domain represents a patch on the surface bounded by two
rulings. There are other bicubic patches on that surface, which are obtained as images of arbitrary
parallelograms in the (u, v)-plane. Equivalently, one can obtain them as images of the unit square
[0, 1]2 in a (ū, v̄) parameter plane via an affine parameter change,

u = a0 + a1ū+ a2v̄, v = b0 + b1ū+ b2v̄.

Furthermore, special bilinear re-parameterizations where the first equation remains and the second
one reads

v = b0 + b1ū+ b2v̄ + b3ūv̄,

also yield bicubic patches on that tangent surface.
Even the tangent surface of a polynomial quartic c(u) has a bicubic parameterization. We write

c = a4u
4 + a3u

3 + . . .+ a0 in monomial form and parameterize its tangent surface as

x(u, v) = c(u) + (−u/4 + v)ċ(u),

which is a bicubic representation. A complete classification of all bicubic tangent surfaces is an
open problem. For our purposes it suffices to see that tangent surfaces of quartic curves are in-
cluded in this class of surfaces, which leaves sufficient flexibility for modeling.

Bicubic patches on cones and cylinders. A cone with vertex v can be written as x(u, v) =
v + f(u, v)c(u). To get a bicubic parameterization, we can use a cubic curve c(u) and a cubic
polynomial f(u, v) = g(v) or a quadratic curve (parabola) c(u) and a function f(u, v) of bi-degree
(1, 3). In the former case, the cone is in general a cubic surface, while in the latter case one
parameterizes quadratic cones.

A cylinder x(u, v) = a(u) + f(u, v)r, with a ruling direction r, has a bicubic representation
when a(u) is at most cubic and f any bicubic function.

Developable bicubic patches with a planar Gauss image. This class of surfaces includes
all bicubic cylinders. Among the cones, only rotational cones are possible. We can generate them
from the special cone x2 + y2 = z2, and then apply uniform scaling in z-direction and a rigid
body motion. The special cone is parameterized by a Pythagorean triple of bicubic functions
x(u, v), y(u, v), z(u, v) of the form

x(u, v) = 2abw, y(u, v) = (a2 − b2)w, z(u, v) = (a2 + b2)w,
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where a(u, v), b(u, v), w(u, v) are bilinear functions. Bicubic tangent surfaces with a planar Gauss
image have a regression curve c(u) of constant slope. It follows from our considerations above that
the tangent surface of a polynomial curve c(u) of constant slope and degree ≤ 4 is such a surface.
These curves c(u) are exactly the spatial Pythagorean hodograph curves of degree ≤ 4. For their
generation and degrees of freedom, we point to the monograph by R. Farouki [32, Chapter 21].

We have already mentioned rotational cones and note that rotational cylinders do not possess
an exact bicubic parameterization. This is due to the fact that a rotational cylinder cannot carry
a polynomial curve transversal to the rulings as it would project onto a circle. While a circle does
not have an exact polynomial parameterization, it is possible to achieve good approximations with
cubics (see [33] and the references therein). This is sufficient for our purposes.

Developable B-spline surfaces. If two algebraic developable surface patches meet with C1

continuity at a common curve (different from a ruling), their set of tangent planes agrees there.
Due to the algebraic nature, agreement of the set of tangent planes along a curve segment is
sufficient for the agreement of the set of tangent planes everywhere and for agreement of the two
algebraic surfaces. Therefore, any developable B-spline surface with C1 continuity represents a
single polynomial developable surface, unless the patches are joined along rulings. This latter case
is used in [7]. The former case is useful to represent appropriate trimmed patches on polynomial
developable surfaces, but not for increasing the flexibility in modeling the surfaces themselves.

A regular bicubic surface S parameterized by parameters u, v is developable when the Gaussian
curvature vanishes at every point (u, v) ∈ D of the surface. Based on this definition of developable
surfaces, we can compute the algebraic complexity of the developability property for S. Since the
Gaussian curvature is the ratio of the determinants of the second and first fundamental forms, it
is sufficient for the following equation to hold

det(II) = 0⇔ [Suu,Su,Sv][Svv,Su,Sv]− [Suv,Su,Sv]2 = 0, ∀(u, v) ∈ D

where [a,b, c] denotes the triple product of vectors a, b, c ∈ R3. Expanding and grouping with re-
spect to monomials in parameters u, v we get a polynomial f ∈ R[x00, y00, z00, . . . , x33, y33, z33][u, v],
where (xij , yij , zij) ∈ R3, are the coordinates of control point Pi,j of surface S. Following this
grouping, we count that polynomial f has 191 coefficients gk ∈ R[x00, y00, z00, . . . , x33, y33, z33],
where k = 1, . . . , 191.

The requirement that polynomial f vanishes for all values (u, v) ∈ D is satisfied if f is identically
the zero polynomial, or equivalently all coefficient polynomials gk vanish. This means that, if we
need to guarantee these conditions precisely by evaluating f at different points on the surface, we
would require a minimum of 191 points in a general position, namely points that would generate
linearly independent combinations of gk . In practice, since degu(f) = degv(f) = 13 we would
define a 14× 14 regular grid over D to acquire 196 evaluation points.

Alternatively, we can examine the algebraic variety V (I) of the ideal I = 〈g1, . . . , g191〉 generated
by the coefficient polynomials gk. Again, these are 191 homogeneous polynomials in 48 variables
with deg(gk) = 6. Computing a reduced Gröbner basis in an attempt to work with a minimal
number of generators hm ∈ R[x00, y00, z00, . . . , x33, y33, z33], with m ≤ 191, for the ideal I is
computationally expensive, and is expected to produce generators that have increasingly higher
degrees [34].

These observations only demonstrate that if we wish to increase interactivity in the design pro-
cess with developable surfaces, we need to avoid the computational complexity of exact satisfiability
and instead sufficiently approximate the developability property in an efficient way.

3. Increasing developability

Motivated by Theorem 2.2, we can try to increase the developability of a surface S by ensuring
that the Gauss images of well chosen regions on S are nearly planar. Using this basic idea, we
now discuss the details of an optimization algorithm which iteratively deforms a bicubic B-spline
surface towards a nearly developable one.

3.1. Optimization setup
Surface. Let us consider a bicubic B-spline surface S : R2 → R3,

S(u, v) =

n∑
i=0

m∑
j=0

Bi,3(u)Bj,3(v)Pi,j , (4)
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where u, v ∈ [0, 1] and Bi,3(u), Bj,3(v) are cubic B-spline basis functions defined on uniform knot
sequences in both directions. {Pi,j} ∈ R3 are the control points of the surface S, where 0 ≤ i ≤ n,
0 ≤ i ≤ m and n,m ≥ 3. For more information on B-spline surfaces and NURBS surfaces in
general, we direct the reader to [35, Section 4.4].

Surface S serves as the central object of study in this work. A generic surface of the above
form is non-developable and we aim to increase its developability by modifying the coordinates of
its control points in a "minimal" way that will be defined in the following sections.

We point out that surface S could be defined as any NURBS surface as long as the weights
of the control points and the knot vectors are fixed and are not considered variables in the opti-
mization process. This simplifies and accelerates the optimization procedure while not sacrificing
the quality of our results in the sense that B-spline surfaces are adequate approximations of more
general NURBS surfaces. For readability, we define S as an elementary B-spline surface while
keeping in mind that the following applies to more general surfaces.

Sampling the surface. We begin by sampling S, the surface that is to be optimized, at a set of
evaluation points {pk} ⊂ R3, which we will call sample points.

The approach we took for the sampling was to uniformly sample the parameter space, moti-
vated by the fact that convoluted areas on the surface S, i.e. areas where the control points are
concentrated and finer features emerge, would be represented by more evaluation points inherently.
We set the number of sample points Lu, Lv along the u, v directions respectively and get a gridded
pattern of points (u, v) ∈ [0, 1

Lu+1 , . . . , 1]× [0, 1
Lv+1 , . . . , 1] on the parameter space, which in turn

results in the set of required sample points {pk} on the surface S.
The evaluation of points pk is given by formula 4, which is linear in the coordinates of the

control points with constant coefficients. In practice, these coefficients are precomputed per point
and stored. Whenever the control points are updated by the optimization process or user input,
we re-evaluate the position of the sample points using the stored coefficients.

Grouping into patches. Next, we consider overlapping neighborhoods on the surface, that we
will call patches, and that are represented as sets of sample points Uj . We construct the patches
in such a way that neighboring patches will have non-empty intersections, i.e. there exists at least
one sample point that belongs to both patches. The importance of this property will become clear
in a later section.

Figure 3: Surface S is sampled at various eval-
uation points pk. The sample points are then
grouped to overlapping groups. An example of such
a grouping are groups Uj1 and Uj2 .

S

Uj1 Uj2

pkpk

By uniformly sampling the parameter space we also simplify the process of grouping the sample
points. The patches on the surface, as already mentioned, are represented by sets of sample points.
By using the grid of points on the parameter space we can determine the patches just by setting
the number of sample points in each of the u, v directions that a patch will contain and the number
of sample points that will belong in the overlap region for each of the u, v directions. Figure 3
focuses on two such patches as an example of a simple grouping.

Normal computation. We associate each sample point pk with the unit normal nk of the surface
at that point. The unit normals define the Gauss map σ of the surface. We compute the unit
normal nk of the surface point pk as

nk := σ(pk) =
Su × Sv

‖Su × Sv‖
,
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where Su, Sv are the partial derivatives of S with respect to u and v. Note that Su and Sv,

Su(u, v) =

n∑
i=0

m∑
j=0

B
(1)
i,3 (u)Bj,3(v)Pi,j , Sv(u, v) =

n∑
i=0

m∑
j=0

Bi,3(u)B
(1)
j,3 (v)Pi,j ,

are linear combinations of the control points with coefficients which we precompute and store to
accelerate future computations [35, Section 1.5].

Gauss map of a patch. For every patch Uj , we denote by Nj the Gauss image of Uj , i.e. the
set of unit normals nk corresponding to the sample points pk ∈ Uj ,

Nj = σ(Uj) = σ({pk}) = {nk}.

We associate each patch Uj with a plane Hj ⊂ R3 with equation vj ·x + dj = 0. Here, vj is a unit
normal vector of Hj and dj is the distance of Hj from the origin. Hj serves as the target plane
for Nj . By optimization, we will enforce all normal vectors in Nj to lie on Hj and thus aim at a
planar Gauss image of patch Uj .

3.2. Initialization
The variables of the optimization are the coordinates of the control points Pi,j and the cutting

planes Hj that define the Gauss image circles per patch Uj . In this section, we describe the ini-
tialization step of the optimization process.

Control points. We assume that we always have an initial state for the surface that is either user
defined or is provided by other means. We initialize the control point coordinates with the values
from this initial configuration. Those in turn will be used to initialize Hj for every patch.

Cutting planes. We want to optimize for planarity of the Gauss image Nj of each patch Uj and
thus associate with each patch Uj a target plane Hj for Nj . Initializing the target plane Hj for
each patch with the best fitting plane to points nk ∈ S2 works in the case that Uj is a developable
patch. However, this method does not produce the desired results if the patch is non-developable,
as seen in Figure 4. To overcome this, we use the following approach.

Bj

NjNj

S2
Hj

Figure 4: Consider the Gauss image Nj of a
group Uj . Plane Bj is the best fitting plane
to Nj , in the sense that it minimizes the sum
of squared distances of points Nj to the plane,
and is considered an undesired initialization.
Using Bj as a target plane for the points in
Nj will degenerate the Gauss image to a sin-
gle point, meaning patch Uj will be flat. Alter-
natively, plane Hj is the resulting plane from
optimization problem 1 and captures the over-
all main principal direction of patch Uj . Plane
Hj is a better initial target plane, since it will
not necessarily lead to a 0-dimensional Gauss
image.

Consider the main principal direction qk ∈ R3 of surface S at point pk, i.e. the principal
direction corresponding to the principal curvature with the maximum absolute value, that is
max{|κ1(pk)|, |κ2(pk)|} where κi : S → R, i = 1, 2, are the principal curvatures of a point on
S. The principal curvatures and principal directions of a surface at a point on the surface are the
eigenvalues and corresponding eigenvectors of the shape operator −dvN = −I−1II, where I, II are
the first and second fundamental forms of the surface. We denote by Qj the set of main principal
directions qk corresponding to the points pk ∈ Uj .
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We initialize Hj as the plane passing through the barycenter of Nj with unit normal in the
direction of the vector which is "as orthogonal as possible" to the setQj of main principal directions.
Intuitively, we wish the initial cutting plane to intersect the sphere at a circle whose tangent at
every point c ∈ S2 ∩Hj is "as parallel as possible" to the main principal directions of the sample
points corresponding to the unit normals around c.

In this way, the cutting plane serves as a generalized main principal plane, or a plane con-
taining the main principal directions of every sample point in the patch. For a patch that is
non-developable, we wish to initialize this main principal plane by using the main principal di-
rections of the sample points weighted by a measure of confidence. A low weight indicates the
difficulty in distinguishing between the two principal curvatures. Specifically, we introduce weight
wk ∈ [0, 1] corresponding to each sample point pk as

wk = 1− min{|κi(pk)|}
max{|κi(pk)|}

, i = 1, 2 (5)

Now, for each patch Uj we need to solve the following optimization problem.

Optimization problem 1 Plane initialization

minimize
∑

qk∈Qj

wk(vj · qk)2

subject to v2
j = 1

Optimization problem 1 is a special case of minimizing a quadratic form under a quadratic
regularization constraint. Bringing the objective function into the form v>j Qvj , the minimizer v∗j
is the normalized eigenvector corresponding to the smallest eigenvalue of Q. Then, plane Hj is
given by v∗j · x + dj = 0, with

dj = −v∗j ·
1

|Nj |
∑

nk∈Nj

nk,

where |Nj | is the cardinality of Nj .

3.3. Problem formulation

Hj

dj

S2 Nj

vj

Figure 5: The Gauss image Nj of a single
non-developable patch Uj is a 2-dimensional
subset of S2. The cutting plane Hj serves as
the target plane for the normals nk ∈ Nj .

Developability energy. We are now ready to formulate the desired property of each patch to
have a planar Gauss image by introducing an appropriate energy term Ed. This energy term
measures per patch the total sum of distances of the normals nk ∈ S2 to the target patch plane,
that is the quantity ∑

j

∑
nk∈Nj

(nk · vj + dj)
2, (6)
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where j is the indexing of the patches and vj , dj are unit normal and distance from the origin of
target plane Hj for patch Uj . To avoid trivial solutions, we introduce the following unit length
constraint on the plane normals vj in the form of an additional energy term,∑

j

(v2
j − 1)2.

Additionally, the surface normals nk are computed as

n
(m)
k =

S
(m)
u × S

(m)
v

‖S(m−1)
u × S

(m−1)
v ‖

,

where a(m) denotes the value of variable a at iteration step m in our iterative optimization process.
We use the constant norm ‖S(m−1)

u × S
(m−1)
v ‖ from the previous iteration when normalizing the

current vector S
(m)
u ×S

(m)
v for the computation of the surface normal nk. This is standard practice

to ensure that the objective function is polynomial.
All the above lead to an energy term of the form

Ed =
∑
j

∑
nk∈Nj

(nk · vj + dj)
2 + λ1

∑
j

(v2
j − 1)2, (7)

where λ1 is an appropriate weight for the unit length constraint.
The importance of having patches that are overlapping, or equivalently neighboring patches

containing common sample points, becomes evident at this point. Each patch is optimized to have
a Gauss image which is a subset of a spherical curve. This can have a competitive effect between
patches that are adjacent due to diverging target planes, and cause slow convergence. By having
the patches share sample points, we introduce a diffusion factor to the optimization that ensures
smoothness of the resulting Gauss image curve.

Soft constraints. We also introduce a set of additional energy terms to the main problem that
constrain the output surface and aim to avoid degeneracies, produce more aesthetically pleasing
results and give control to the user over the proximity of the resulting surface to a reference surface.

The energy term Ec denotes a measure of the closeness of the resulting surface S to a reference
surface Sref, which can be either an arbitrary surface or the initial configuration of the design
surface. The implementation we follow for the closeness energy term is based on the tangential
distance minimization (TDM) [36, 37]. The energy term is defined as the sum of squared distances
of sample points to the tangent planes at their closest points on the reference surface. We use the
already sampled points pk ∈ S and a set of sample points X from the reference surface Sref. If the
reference surface is the initial surface then X = {pk}; otherwise, X is an independent sampling.
Then Ec is defined as

Ec =
∑
k

[(pk − xk) ·N(xk)]2, (8)

where xk is the closest point to pk from the set of points X in the Euclidean metric, and N(xk)
is the unit normal of Sref at point xk. At each iteration the closest point is updated. We utilize
FLANN for the closest point query and refer to [38] for the computational complexity.

A final fairness energy term Ef = wf1Ef1 + wf2Ef2 is introduced to the objective function that
avoids degeneracies in the resulting surface and is widely used in mesh optimization problems for
the smoothing effect it provides. Specifically, we denote by Ef1 the sum of squared norms of the
first order differences of the control points in both grid directions, and by Ef2 the second order
equivalent, namely

Ef1 =
∑
i,j

(
‖Pi+1,j −Pi,j‖2 + ‖Pi,j+1 −Pi,j‖2

)
,

Ef2 =
∑
i,j

(
‖Pi+1,j − 2Pi,j + Pi−1,j‖2 + ‖Pi,j+1 − 2Pi,j + Pi,j−1‖2

)
.

We assign wf1 = 0, wf2 = 1 in all the following applications unless stated otherwise.
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Total energy. All energy terms Ed, Ec, Ef are assigned weights wd, wc, wf and collected in the
total energy for developability optimization,

E = wdEd + wcEc + wfEf. (9)

For details on the choice of weights, we refer to Section 5.

Increasing developability. Now our problem is reduced to the minimization of E.

Optimization problem 2 Increasing developability

minimize E = wdEd + wcEc + wfEf

The variables of E are the control points {Pi,j} of S and the patch planes Hj , defined by vj

and dj . The optimization problem 2 is an unconstrained nonlinear least-squares problem. Any
algorithm for nonlinear least-squares problem can be applied in our case. We follow the standard
Gauss-Newton method in our implementation and experiments [39, Section 10.3].

4. Panelization

Motivated by applications in architecture, we consider the problem of approximating a given
arbitrary surface by a C0 continuous surface which consists of developable patches. As we optimize
for developability with help of a planar Gauss image, the resulting surface patches include as
important special cases rotational cylinders and rotational cones. We will particularly focus on the
constraints which ensure that we obtain these special types of panels. Especially when working with
glass, these rotational panels are preferred because there are special machines for their production.
Figure 6 shows a recent example of an architectural freeform facade which has been constructed
with mainly cylindrical glass panels to reduce manufacturing cost.

Figure 6: Side detail of Nur Alem, the main
pavilion of the Astana EXPO 2017 Exhibition in
Astana, Kazakhstan. Mostly cylindrical panels were
used to rationalize the curved transparent freeform
façade (different from the sphere).

In this section, we will go through the differences between the central method that was pre-
sented in the previous sections and the variation for this new problem while introducing any new
concepts that will be of use.

Surface. The main object of study in this section will be a surface S consisting of a grid of
subsurfaces S(r), with C0 continuity at the inner boundaries. Specifically, S is a composite surface

S = ∪
r
S(r),

where r indexes the set of subsurfaces. Each S(r) is a bicubic Bézier surface of the form

S(r)(u, v) =

3∑
i=0

3∑
j=0

Bi,3(u)Bj,3(v)P
(r)
i,j (10)

and will be referred to as a panel in the following. This configuration represents the paneling of
a freeform surface. The C0 continuity of neighboring panels is achieved by having common con-
trol points at the corresponding edges and models the connectivity and continuity found between
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distinct panels of a panelized surface. This allows for panelizations that are not in a grid configura-
tion and can easily generalize to more complex surfaces of arbitrary topology just by appropriately
"gluing" panels at their edges.

Sampling and grouping. We sample surface S at a collection of sample points {pk} and group
them to groups Ur, each corresponding to a single panel. The same follows for the corresponding
surface normals Nr and the associated panel planes Hr.

We can therefore define the developability energy term per panel as

E
(r)
d =

∑
nk∈Nr

(nk · vr + dr)2 + λ1(v2
r − 1)2, (11)

where λ1 is an appropriate weight, and the developability energy term of surface S as

Ed =
∑
r

E
(r)
d . (12)

This modified grouping of the sample points {pk} allows for the individual optimization of each
panel, which will be studied in more detail in a following section.

Rotational panels. By introducing the additional constraint that the panel should be a rotational
surface, we are optimizing for the panels to be either rotational cones or rotational cylinders.
Rotational surfaces have the property that the surface normal lines are coplanar with the axis of
rotation. Let L1, L2 be two lines in R3 with Plücker coordinates (a, ā), (b, b̄) ∈ R6 respectively.
The two lines are coplanar if their Plücker coordinates satisfy the condition

a · b̄ + ā · b = 0. (13)

Recall that the Plücker coordinates (a, ā) ∈ R6 of a line L ⊂ R3 are given by the direction vector
a ∈ R3 and the moment vector ā = p × a ∈ R3, where p ∈ R3 is a point on L. Obviously, these
coordinates are not independent, but satisfy the Plücker condition a · ā = 0. For more information
on line geometry and relevant applications, we refer to the literature [6, Section 2.1].

Consider now the Plücker coordinates (nk, n̄k) ∈ R6 of the normal lines at the sample points
of a panel Ur and of the unknown axis of rotation (ar, ār) ∈ R6. The desired property that the
panel is a rotational surface can be expressed as ar · n̄k + nk · ār = 0 ∀nk ∈ Nr. Thus, the problem
of optimizing for rotational surface panels can be formulated as minimizing the energy∑

r

∑
nk∈Nr

(ar · n̄k + nk · ār)2, (14)

under the constraint that (ar, ār) describe a line, i.e., satisfy the Plücker condition ar · ār = 0, and
the unit length constraint a2

r = 1 on the axis direction ar.
At this point, we focus on the fact that for a rotational panel S(r) with planar Gauss image,

the normal vr of the plane Hr containing the Gauss image and the direction of the rotation axis
ar coincide. Using this fact, we denote the Plücker coordinates of the rotation axis by (vr, v̄r).

By making this adaptation, we have covered the unit length constraint on the rotation axis
direction by the corresponding constraint on the target plane normal in (11). The Plücker condition
is added as an additional energy term with an appropriate weight λ2. Considering all the above,
the resulting rotationality energy term Er is of the form

Er =
∑
r

∑
nk∈Nr

(vr · n̄k + nk · v̄r)2 + λ2
∑
r

(vr · v̄r)2. (15)

While the Plücker coordinates of the normal lines are initialized in the optimization problem
with their current values in the configuration of surface S, the axis of rotation (vr, v̄r) of every
panel Ur remains unknown at this point or, assuming the panels are in generic configuration, does
not exist at all. An appropriate initialization for the Plücker coordinates of the axis of rotation
of each panel is given by methods used in kinematic surface reconstruction applications, where
the problem of fitting a velocity field to a set of surface normals is studied [40, 41]. It follows the
same thought process as the main idea behind the energy term (14). In fact, it is exactly the same
energy that we aim to minimize but applied to each of the panels separately while considering
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Ur

pk

nk

Hr Hr ∩ S2

Figure 7: We focus on a single panel S(r) of a panelized surface S. We are optimizing for the endpoints of normals
nk corresponding to the sample points pk ∈ Ur of panel S(r) to lie on the same plane Hr.

the affine normal lines fixed. The resulting axis is the best fitting one in the least-squares sense.
Formulating the above as an optimization problem leads us to the minimization of∑

nk∈Nr

(vr · n̄k + v̄r · nk)2. (16)

We already have an appropriate initialization for the target plane normal vr, described in opti-
mization problem 1. Thus, the objective function (16) is a quadratic function of the moment vector
v̄r. The latter is orthogonal to vr and therefore can be expressed as

v̄r = µ1b1 + µ2b2,

where b1,b2 ∈ R3 form a basis of the plane perpendicular to vr. Substitution into (16) yields a
quadratic function in µ1, µ2 and the optimal values of µ1, µ2 are the solutions of a linear system.

Surface paneling. Thus, the surface paneling problem is the following variation of the optimiza-
tion problem 2, and is solved with the same approach.

Optimization problem 3 Surface paneling

minimize E = wdEd + wrEr + wcEc + wfEf

Individual panel treatment. Until now we have shown how to optimize the paneling of surface
S in a global fashion. Since we defined the energy term E

(r)
d per panel, this approach can be

customized to consider each panel separately, achieving in the process increased control over the
resulting panelization. We use the following obvious fact:

Lemma 4.1. Let panel S(r) be a rotational surface and Hr be a plane such that the Gauss image
of the panel is entirely contained in plane Hr. Then the panel type is determined by the distance
dr of plane Hr from the origin O. Specifically,

1. If dr = 1 then S(r) is planar.
2. If dr = 0 then S(r) is a cylinder of revolution.
3. If dr ∈ (0, 1) then S(r) is a cone of revolution whose rulings form the angle arcsin dr with the

rotation axis.

This offers a good way to aim at cylindrical panels or conical panels with prescribed opening
angle by prescribing the according values of dr in the energy term E

(r)
d in (11).

It is often the case in industrial applications that individual adjustments need to be made to the
panelization for reasons that include aesthetics and the overall cost of the project. The advantages
of the individual treatment of the panels become apparent in such cases, and the aforementioned
main pavilion of the Astana EXPO 2017, shown in Figure 6, serves as an example. In that
project, apart from the cylindrical panels which were the main ingredient of the panelization,
double curved panels were also utilized in areas that the use of cylindrical panels would negatively
affect the aesthetics of the result. Thus, by integrating a singular panel management strategy to
the optimization we have the ability of dealing with isolated problematic areas without sacrificing
the quality of the overall panelization.
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5. Experiments, results and discussion

Example 5.1. In this example, we consider a mesh M which originated from scanning a thin
deformed leather patch. The deformation was introduced to the material in the form of local
stretches along its surface which result in areas of nonzero Gaussian curvature.

(a)

M

(b)

S

(c)

Figure 8: (a) The configuration of the deformed leather patch. (b) Mesh acquired from scanning the leather
material. (c) The material’s geometry is represented as a B-spline surface.

To apply our algorithm for increasing developability, we first fit the data with a bicubic B-spline
surface S of the form (4) with 7 × 13 control points. This is done using the TDM optimization
framework for surface fitting described in section 3.3. We refer to the initial configuration of
surface S, given by the fitting optimization, as S0. Following the procedure described in section
3.1, we sample the resulting surface S uniformly along the parameter space at 30× 60 evaluation
points pi,j , i ∈ [1, 30], j ∈ [1, 60]. We then group pi,j in patches Ul,m, each one containing
5 × 5 points with an overlap in both directions of 2 points between neighboring patches, i.e.
Ul,m = {pi,j | i ∈ [3l − 2, 3l + 2], j ∈ [3m− 2, 3m+ 2]}. This completes the initialization of the
optimization algorithm of problem 2.

σ(S0) σ(S5) σ(S15) σ(S60)

S0 S5 S15 S60
−4 · 10−7 4 · 10−7

Figure 9: The Gauss map (top) and the Gaussian curvature (bottom) of surface S for different numbers of
iterations, namely at 0, 5, 15 and 60 (St denotes the optimized surface at t iterations). The length of the surface
has been scaled to be approximately 1.

We introduce to the optimization process a closeness energy term of the form (8) with relatively
small weight to ensure proximity of S to its original position S0. As described before, this is
implemented using the TDM framework. We consider the original surface S0 as the reference
surface and use the already sampled points pi,j of surface S as the evaluation points of the TDM
algorithm. In our experiments, we observed that using this competing low-weight term in our main
optimization procedure constrains the solution space by avoiding trivial solutions and producing
results that are more desirable from the designer’s point of view.

Figure 10 reveals the inner workings of the developability algorithm, which clearly produces
a "thinner" Gauss image for the resulting surface and also illustrates a comparison between the
original surface S0 and the resulting surface S. Figure 9 shows the Gauss map and the Gaussian
curvature of the surface for several intermediate iterations of the optimization. The detailed statis-
tics for this example are given in Table 1.
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(a)

σ(S0) σ(S)

(b)

S0S

(c)

Figure 10: (a) The Gauss image of the initial configuration of B-spline surface S0 representing the leather material.
(b) The Gauss image of the optimized surface S. (c) The optimized B-spline surface S in solid color compared to
the transparent initial surface S0.

We already discussed in section 2.2 that the straightening of one family of principal curvature
lines of S compared to the principal curvature lines of the initial surface S0 is an alternative in-
dication of the increase in developability. Figure 11 demonstrates the straightening effect in this
example. Also illustrated is that the preimage of a small collection of points in one of the "thinner"
parts of the Gauss image corresponds to one of the approximate rulings of the surface.

S0

(a)

S L

(b)

σ(S)

σ(L)

(c)

Figure 11: Visualization of the principal curvature lines. (a) The principal curvature lines of the initial surface S0.
(b) The principal curvature lines of the optimized surface S. Highlighted in red and extended slightly for clarity,
one such principal curvature line L, which also approximately corresponds to the preimage of a small collection of
points around the "thin" part of σ(S) . (c) The Gauss image σ(S) of the optimized surface S. The Gauss image of
L is highlighted in red.

S
S2

P

σ(P)

Figure 12: We consider a nearly developable patch of a surface S and the two families of principal curvature lines
of S (blue and orange lines) over that patch. These families define a principal net denoted with P. The Gauss image
σ(P) of the net is displayed on the right.
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number of... weights final energies number of time [sec]
ctrl.pts patches variables wd wc wf Ed Ec Ef iterations Ttotal Tsolver Titer

91 200 1073 100 0.01 0.1 2.54 1.8 0.74 60 121.76 0.13 2.03

Table 1: We present the detailed information for the optimization of the leather surface S. The number of control
points of S and the number of overlapping patches that cover the surface generate the number of variables (3 per
control point and 4 per patch-associated plane). The surface was evaluated at 1800 points and each patch contained
25 points. The weights were chosen to favor the developability property. The initial and intermediate total energies
of the problem were E0 = 9328.17, E5 = 2103.75, E15 = 356.702 while the order of the final total energy E60 = 5.08
was achieved at iteration 26, where E26 = 5.38. Also provided, the total time, time used by the Newton solver, and
the time per iteration (in seconds), measured on an IntelR© CoreTM i7-6700HQ processor.

Example 5.2. In this example, we will focus on optimizing two relatively simple non-developable
surfaces for planarity of their respective Gauss images. We start with two bicubic Bézier surfaces Sa

0

and Sb
0, where Sa

0 is of mainly negative Gaussian curvature and Sb
0 of positive Gaussian curvature.

Sa
0 Sa Sb

0 Sb

(a) (b)

Figure 13: The initial surfaces Sa
0 , S

b
0 and the optimized surfaces Sa, Sb are shown from an appropriate angle

to better showcase the emergence of rulings in the direction of least absolute principal curvature on each of the
surfaces.

We follow optimization problem 3, defined over a single panel, and utilize only the closeness
and developability terms. Given that the surfaces have approximately planar Gauss images after
the optimization, we also execute the following procedure at a point set U on the surface to
extrapolate the approximate rulings that are derived from their planar Gauss images, defined by
the target plane H. We do this to present a visual comparison between these induced rulings and
the computed rulings on the optimized surface.

Procedure Induced rulings
for all p ∈ U do

n← σ(p)
q← closest point of n to target circle H ∩ S2

rtq ← vector tangent to target circle at q
roq ← vector tangent to S2 at q and orthogonal to rtq . induced ruling direction
translate vectors rtq, roq to p

end for

The vector roq approximates the direction of the line generator of the surface at point q. More-
over, for non-inflection rulings and non-planar regions on the optimized surfaces, vectors rtq, roq
correspond to the principal directions of the surface at point q.

Figure 13 shows the surfaces before and after the optimization, while Figure 14 shows the re-
sulting vectors from the Induced rulings procedure.

Fig. number of... weights final energies number of time [sec]
No. ctrl.pts panels variables eval.pts wd wc Ed Ec iterations Ttotal Tsolver Titer
13a 16 1 52 169 100 1 0.65 81.28 10 1.9 0.1 0.19
13b 16 1 52 169 100 1 1.45 99.21 10 2.05 0.02 0.2

Table 2: The statistics for the Gauss image planarity optimization of panel surfaces Sa
0 and Sb

0. The weights were
chosen to favor the developability property. Also provided, the total time, time used by the Newton solver, and the
time per iteration (in seconds), measured on an IntelR© CoreTM i7-6700HQ processor.
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Sa
Sb

H
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Figure 14: A top-down perspective of the optimized surfaces Sa, Sb is shown with the rulings superimposed on the
surfaces (darker blue lines) as well as the resulting vectors from the predefined Induced rulings procedure. We draw
attention to the comparison between the orthogonal vectors ro (orange) and the direction of the rulings (vanishing
principal curvature direction). Furthermore, vectors rt correspond to the directions of nonzero principal direction.

Example 5.3. We provide here an introductory example of paneling a simple double curved
surface with a variable number of rotational cylindrical panels.

We consider a surface Sref which is a subset of the positive-Gaussian-curvature part of a torus.
The active surface S of the optimization consists of a N × 1 grid of bicubic panels. The initial
configuration of S is given by fitting surface S to Sref.

We optimize for the panels of S to be rotational cylinders in the following manner. First of all,
we use Lemma 4.1 and assign to each panel an energy term of the form (11) with dr = 0 since we
are interested in only cylindrical panels. We then solve optimization problem 3 with equal weights
assigned to Ed and Er, and relatively smaller weights assigned to Ec and Ef.

Figure 15 shows the resulting panelization for different values of N . We wish to direct the
reader’s focus to the curved boundary lines that follow the reference design; a characteristic not
present and inherently not possible without trimming in previous approaches that utilized strips
linear in one direction.

Sref

(a) (b) (c) (d) (f)

Figure 15: Paneling part of a torus with a different number of cylindrical panels. Both the cutting planes Ur per
panel S(r) and the inner boundary curves follow the direction of the smaller radius circles that define the torus.

Fig. number of... weights final energies number of time [sec]
No. ctrl.pts panels variables wd wr wc wf E†d+r Ec Ef iterations Ttotal Tsolver Titer
15b 40 3 132 102 1 1 0.1 0.043 9.97 5.05 5 1.12 0.02 0.22
15c 64 5 212 102 1 1 0.1 0.004 2.09 5.01 5 2.05 0.03 0.4
15d 124 10 412 103 10 1 0.1 0.003 0.26 7.11 5 2.99 0.05 0.6
15e 364 30 1212 103 10 1 0.1 0.0002 0.05 18.68 5 8.11 0.17 1.62
†Ed+r = Ed + Er

Table 3: The statistics for the paneling of the torus subsurface Sref for different numbers of panels. Each panel
was sampled uniformly at 4× 4 points for the developability term and at 10× 10 points for the closeness term. The
weights were chosen to favor the developability property. Also provided, the total time, time used by the Newton
solver, and the time per iteration (in seconds), measured on an IntelR© CoreTM i7-6700HQ processor.

Example 5.4. We extend the previous example of optimizing a simple row of panels to be of
cylindrical type to the task of optimizing a grid of panels to be of any developable type we have
previously addressed for panels.
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Motivated by the possible architectural applications of the algorithm presented in this paper,
we use as a reference surfac an architectural surface recently realized as the roof of the Department
of Islamic Art at Musée du Louvre in Paris, France, shown in Figure 16. The underlying surface is
a highly non-developable surface with a strong variation in the sign of Gaussian curvature. In this
example, we set forth to compute an alternative realization of the same surface by using rotational
conical and rotational cylindrical panels.

Figure 16: Detail from the Cour Visconti roof of the Department of Islamic Art at Musée du Louvre in Paris,
France.

The user input in this case is the freeform reference surface Sref, the desired number of panels in
each direction of the grid that will constitute the panelization of the surface and the preferred type
of panels, which includes surfaces of constant slope or the more specialized and more widely-used
rotational surfaces of constant slope, i.e. rotational conical and rotational cylindrical. The user
by adjusting the weights of the different energy terms involved in the corresponding optimization
problem 3, has influence over the various desirable aspects of the resulting panelization. In this
particular example, we wish to use any of the types introduced before, namely rotational conical,
rotational cylindrical and planar panels.

We present in Figure 17 the resulting panelization of the reference surface for different panel
grid resolutions. We set weight wc, corresponding to the closeness of S to Sref, relatively high to
reinforce the resulting surface to not deviate significantly from the reference surface and closely
follow the chosen design. The smoothness of the boundary curves is controlled by the fairness
energy term weight wf, which is assigned a small value to ensure more visually pleasing results.

(a)
Sref

(a)

(b)
S

(b)

(c)
S

(c)

Figure 17: (a) The freeform reference surface to be panelized. (b) A coarse panelization consisting of 70 panels.
(c) A denser panelization consisting of 300 panels. Runtime for both the coarse and the finer paneling was several
minutes.

The coarse panelization of Figure 17b serves as a nice example of the dynamic panel layout
adaptation which aims to approximate the given reference surface while satisfying the developa-
bility, rotationality and closeness constraints. On the contrary, by increasing the number of the
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panels utilized, we achieve the dense panelization of Figure 17c. As expected the increased num-
ber of panels produces an improved result, compared to the coarse equivalent. It not only better
approximates the reference surface but also satisfies to a higher degree the additional secondary
constraints, yielding a panelization of the reference surface that allows for a more structured ar-
rangement of the panels.

Nevertheless, both results are welcome since each one of them serves as a valid panelization
with specialized developables of the same architectural surface. Each one of the two panelizations
of this example shown in Figures 17b, 17c manages to be architecturally aesthetically pleasing in
its own style, while being realizable only by rotational cylindrical and rotational conical panels;
highlighting the freedom of design expression that this method provides.

Short discussion. Appropriate choice of weights leads to high-precision satisfaction of the hard
nonlinear constraints. The fairness and closeness terms act as regularizers to the optimization
problem, which is formulated through simple polynomial energies. The combination of the soft
constraints and fixed points, avoids degenerate results. The complexity of the approach is derived
by the degree of the surface to be optimized, the reference surface (number of points of mesh
representation) and number of evaluation points. In most applications, our experiments show that
the computation time is limited to several seconds to get satisfactory results.

The presented local shaping approach achieves to minimize the predefined energies at every
step, and guides iteratively the surface to an expected result. Any unwanted results were limited
to surfaces that could not satisfy adequately both the closeness term and the developability term,
meaning the result had to deviate considerably from the reference to satisfy the developability
constraint.
Limitations. Among the limitations of our research, we first point to the lack of a material-
dependent measure for the deviation from developability. The thickness of the Gauss image alone
is not sufficient for judging whether a panel, fabricated from hardly stretchable material, can
be easily bent into the computed shape. Moreover, our current implementation for paneling is
limited to a grid type arrangement of panels and could benefit from additional improvements to
the optimizer.
Conclusion. We have introduced a methodology for increasing the developability of surfaces
through an optimization algorithm which aims at a thin Gauss image. Our implementation uses
B-spline surfaces, but an analogous approach could be formulated for other surface representations
as well. Moreover, we have presented a novel paneling algorithm which—in contract to prior work
[26]—optimizes both for the panels and the curve network of panel boundaries, under the constraint
that panels are developable with a planar Gauss image and/or rotational.
Future work. A promising and important direction for future work is to incorporate a specific
material behavior. For example, it would be nice to come up with an efficient algorithm that
automatically enforces the design of only those surfaces which can easily be produced from a
given material. In particular, materials which bend much more easily than they stretch are of
high interest. This leads into the geometrically largely unexplored area of nearly developable
surfaces. The paneling algorithm would greatly benefit from an extension to more general panel
arrangements, maybe incorporating user interaction supported by automatic suggestions of the
system.
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