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1 Introduction

Squared distances to curves and surfaces frequently appear in problems of
geometric computing. Examples include curve and surface approximation in
CAD and Geometric Modeling, registration in Computer Vision and posi-
tioning problems in Robotics. Despite the importance of the squared dis-
tance function, little effort has so far been made in better understanding,
approximating and representing this function for efficient computing.

In the present paper, we will start an investigation of this subject. To get a
better understanding of the nature of the problem, we first deal with planar
curves. There, we can give a simple kinematic generation of the 3D graph
surface of the squared distance function d2. This is important for visualization
of the behaviour of d2 and it greatly helps us to find simple derivations for
local quadratic approximants to d2. The latter are of particular importance for
optimization algorithms involving d2 and therefore also studied for surfaces
and space curves.

At hand of two examples we outline how to use the results of the present
paper in certain types of geometric optimization algorithms which involve
quadratic approximants to the squared distance function of a surface. The
two applications we look at are registration in Computer Vision and surface
approximation. An important advantage of the new approach to approxima-
tion with parametric surfaces, such as B-spline surfaces, is that we avoid the
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parameterization problem. The registration problem we look at is the opti-
mal matching of a point cloud to a surface. The essential difference in our
approach to standard techniques, such as ICP [1], is that we do not have to
compute pairs of corresponding points.

2 Graph Surface of the Squared Distance Function

to a Planar Curve

In Euclidean 3-space R
3, we consider a planar C2 curve c(t) with param-

eterization (c1(t), c2(t), 0). The tangent and normal line at a curve point
c(t) are denoted by t and n respectively. To each point (x, y, 0) we com-
pute the shortest distance d(x, y) of that point to the curve c. For visual-
ization of the squared distance function d2 we investigate the graph surface
Γ : (x, y, d2(x, y)) of the function d2. By neglecting global effects of the
distance function we will at first construct a surface Φ, part of which is the
desired graph surface Γ . In a second step we will perform the appropriate
trimming which reduces Φ to Γ .
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Fig. 1. When the normal plane of the planar curve c rolls on the evolute cylinder Λ

of c, the parabola p generates the moulding surface Φ

The Frenet frame at a curve point c(t) consists of the unit tangent vector
e1 = ċ/‖ċ‖ and the normal vector e2(t). The two vectors form a right-handed
Cartesian system in the plane. With e3 = e1 × e2 = (0, 0, 1) this system is
extended to a Cartesian system Σ in R

3. Coordinates with respect to Σ are
denoted by (x1, x2, x3). The system Σ depends on t and shall have the curve
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point c(t) as origin. At least locally, the shortest distance of a point (0, u, 0)
on the x2-axis (curve normal) is its x2-coordinate u. For each t, locally the
graph points (0, u, u2) of the form a parabola p in the normal plane of c(t).
This parabola can be considered fixed in Σ. Varying t, the positions of the
parabola in the original system generate a surface Φ. A parameterization of
Φ is

x(t, u) = c(t) + ue2(t) + u2e3(t). (1)

It is well-known and an immediate consequence of the Frenet equations
that the instantaneous motion of the system Σ is a rotation about the axis of
the osculating circle of c. These curvature axes form a cylinder surface Λ with
the evolute of c as orthogonal cross section and rulings parallel to (0, 0, 1).
Hence, the motion of Σ with respect to the fixed system can be considered
as a rolling motion of the normal plane of c on the evolute cylinder Λ of c.
In usual terminology, the surface Φ is a moulding surface (cf. Fig. 1). Note
that the contour lines of Φ at height u2 are translates of the offsets of c at
distance u.

The surface Φ contains a singular curve (curve of regression) l(t), which is
contained in the evolute cylinder Λ. This is in accordance to the well-known
result that singularities of the offsets of a curve occur at points of its evolute.
The rolling motion also shows that the development of the cylinder Λ maps
the curve l to a parabola which is congruent to the profile parabola p.

Fig. 2. A moulding surface Φ with self-intersections in an axonometric view (left)
and viewed from below, where the visible points correspond to the graph Γ of the
squared distance function to a sine curve (right)

The generated surface Φ is in general not the graph of a function in
the horizontal xy-plane. It may happen, that a vertical line through (x, y, 0)
intersects Φ in several points. Among those points, the one with the smallest
z-coordinate lies on the desired graph surface Γ , whereas the others do not.
Thus Φ can be trimmed so as to form exactly the graph Γ of the squared
distance function to c. The trimming can be performed with a visibility test.
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We view Φ in direction (0, 0, 1), i.e., from below. Then, exactly the visible
points are those closest to the xy-plane π and therefore the points of Γ (cf.
Fig. 2). Trimming has to be performed at self-intersections of Φ. Projecting
these curves orthogonally into π we obtain the cut locus of c. It is formed of
those points in π, for which the shortest distance occurs at more than one
normal. The limit points of this set are usually added to the cut locus: these
points are curvature centers to points of c with locally extremal curvature.
We should mention that for a closed boundary curve c of a planar domain
D, the part of the cut locus which lies in D is also called the medial axis of
D. It is also well-known that the trimming procedure cuts apart the singular
curve l. Just special points of it, namely those which belong to the end points
of branches of the cut locus, remain. We summarize the basically well-known
results as follows.

Proposition 1. The graph surface Γ of the squared distance function to
a planar curve c is contained in a moulding surface Φ. The surface Φ is
generated by a parabola p with parameter 1 whose plane rolls on the evolute
cylinder Λ of c, such that p’s vertex moves along c and p’s axis remains
orthogonal to the plane π of c. Exactly those parts of Φ lie on the graph
surface Γ which are visible for an orthogonal projection onto π when viewing
Φ from below (i.e., from that side of π which does not contain points of Φ).

Remark 1. In an analogous way we may construct the graph surface of any
other function f(d) of the distance d. There, the profile curve has in Σ the
parameterization (0, u, f(u)). One has to be careful with signs, however. This
is easily understood at hand of the simplest example, namely the distance
function d itself. With a signed distance function whose sign is given by the
orientation of the curve normal e2, the profile is simply the line (0, u, u) and
the generated moulding surface is a developable surface of constant slope (see
[13]). For a nonnegative distance, the profile is (0, u, |u|) and the moulding
surface is generated from the developable surface described above by reflect-
ing the part below π at π.

In case that f is nonnegative and monotonically increasing, we perform
the trimming operation as in the case of f(d) = d2, i.e. with a visibility
algorithm viewing the graph orthogonal to π from below. For a monotonically
decreasing function, we have to view from above.

An interesting example of this type is the inverse distance function f(d) =
1/|d|, which is sometimes built around obstacles in robot motion planning.
There, with a nonnegative distance, the profile curve of the moulding surface
Φ is formed by two hyperbola segments. An image of the trimmed graph
to an ellipse c is shown in Fig. 3. Note that for a c which bounds a convex
domain D, there is no trimming required outside D. Regardless of f , trimming
happens at the points of π which lie on the cut locus, and thus global results
on cut locus, medial axis and singularities of offsets can be used to identify
regions where no trimming is required (see [13]).
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Fig. 3. Graph of the inverse distance function to an ellipse

3 Quadratic Approximations to d
2

The previous section visualized a problem of the squared distance function,
namely its non-smoothness at points of the cut locus. When we now study
local quadratic (Taylor) approximants, we do not consider the global effects,
and give formulae for local approximants which work on the local distance
function. This means that in determining d for neighboring points of p we are
only locally varying the footpoint of the normal to the curve c. In other words,
at points of the medial axis we work with just one sheet of the surface Φ.

Consider a point p in π whose coordinates in the Frenet frame at the
normal footpoint c(t0) are (0, d). The curvature center k(t0) at c(t0) has
coordinates (0, %). Here, % is the inverse curvature 1/κ and thus has the same
sign as the curvature, which depends on the orientation of the curve. Since
all level sets of d2 (offsets) to points on the curve normal share k as curvature
center, we see that the squared distance function to the given curve and to
its osculating circle at the normal footpoint agree up to second order.

A visualization is as follows (see Fig. 4): rotating the profile parabola
p(t0) around the curvature axis (vertical line through k) results in a surface
of revolution Ψ which has second order contact with Φ at all points of p(t0).
This is a well-known curvature property of moulding surfaces. In the Frenet
frame, the function d2 to the osculating circle is

f(x1, x2) =

(

√

x2
1 + (x2 − %)2 − |%|

)2

. (2)

The graph of this function is the surface of revolution Ψ . The second order
Taylor approximant Fd of f at (0, d) is found to be
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Fig. 4. Surface of revolution Ψ which has second order contact with the moulding
surface Φ at all points of p(t0)

Fd(x1, x2) =
d

d − %
x2

1 + x2
2. (3)

Let us discuss the various cases.

– For d = 0 we get the Taylor approximant F0 = x2
2 at the normal footpoint.

This shows the following interesting result: At a point p of a curve c the
second order approximant of the squared distance function to c and to the
curve tangent at p are identical. Visually, this is not unexpected since
curvature depends on the scale. Zooming closer to the curve it appears less
and less curved. The graph surface Γ0 of F0 is a parabolic cylinder with
rulings parallel to the curve tangent (see Fig. 5).

– For d → ∞, the Taylor approximant tends to F∞ = x2
1 + x2

2. This is the
squared distance function to the footpoint c(t0). The graph Γ∞ of F∞ is
a paraboloid of revolution.

– For general d, it may be advantageous to view F as combination of F0 and
F∞,

Fd(x1, x2) =
d

d − %

(

x2
1 + x2

2

)

−
%

d − %
x2

2 =
d

d − %
F∞ −

%

d − %
F0. (4)

This form is particularly useful for computing the second order approxi-
mant in the original x, y-system. Clearly, Fd is not defined at the curvature
center d = %, where we have a singularity. Otherwise, we see that the type
of the graph surface Γd depends on s = sign[d/(d − %)]. A value s > 0
yields an elliptic paraboloid (see Fig. 6), s = 0 the parabolic cylinder Γ0

(see Fig. 5), and s < 0 a hyperbolic paraboloid (see Fig. 7). The latter
case belongs exactly to points between the curve point and the curvature
center, i.e., 0 < d < % or 0 > d > %. Here, the quadratic approximant also
assumes negative values. In all other cases this does not happen.
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Fig. 5. The graph surface Γ0 of F0 is a parabolic cylinder with rulings parallel to
the curve tangent

Note also that all quadratic approximants Fd agree along the curve normal
and are symmetric with respect to it. The graph paraboloids Γd touch the
cylinder Γ0 along the profile parabola p(t0).

– For an inflection point we have κ = 0 and thus Fd = x2
2. This reflects the

trivial fact that the squared distance function to the tangent is a second
order approximant along the whole curve normal.

Fig. 6. The graph surface Γd of Fd is an elliptic paraboloid for s > 0
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Fig. 7. The graph surface Γd of Fd is a hyperbolic paraboloid for s < 0

For the applications we have in mind, it can be important to employ non-
negative quadratic approximants to d2. Thus, we briefly address a convenient
way to deal with those approximants.

Negative function values of the quadratic approximant Fd arise for a dis-
tance d with 0 < d < % or 0 > d > %. Without loss of generality, we may
assume an appropriate local orientation of the curve c such that % > 0. Thus,
only the case 0 < d < % needs to be discussed. We fix such a distance and call
it D. Our goal is to replace the local quadratic approximant FD by a nonneg-
ative quadratic approximant F +

D
with the following property: For all points

x whose distance d to c is less than the given value D, the local quadratic
approximant F+

D
also returns a value < D2.

Let us look at the level sets of FD, whose graph is a hyperbolic parabloid.
Those points x in the plane whose squared distance to c is less than D2 lie
between the two offset curves cD and c−D at oriented distances D and −D.
The level set of FD is a hyperbola hD. Its axes agree with those of the Frenet
frame at c(t0) and it has second order contact with the offset cD at the point
(0, D), where we are looking for the local quadratic approximant (see Fig. 8).
The region of points x with FD(x) < D2 is bounded by this hyperbola. Of
course, there are points with FD(x) < D2 and d2(x) > D2.

To arrive at a practically useful result, we make a further simplification.
We replace the curve by its osculating circle l at c(t0). Points whose distance
to l is smaller than D lie in an annulus A bounded by two concentric circles
lD, l−D with midpoint (0, %) and radii %−D and % + D (Fig. 9). To warrant
the symmetry and the precision of the approximant along the curve normal,
we have to take as F+

D
an Fd to a point (0, d) with d < 0. The region with
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Fig. 8. Level set of FD at height D2 is the hyperbola hD
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Fig. 9. Level set of F
−D at height D2 is an ellipse

Fd(x) < D2 is then an ellipse coaxial with the Frenet frame axes e1, e2,
and with points (0, D) and (0,−D) as two vertices. The solution F +

D
of our

problem must give rise to the largest ellipse which still lies inside the annulus
A. It is easy to prove that it has to have second order contact (in fact,
fourth order contact) with the larger bounding circle of A at point (0,−D).
Therefore, it is the level set of the quadratic approximant F−D. Thus, our
solution is

F+

D
= F−D. (5)
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Hence, at points with an indefinite quadratic approximant we just use the
nonnegative quadratic approximant at the point which is obtained by reflec-
tion at c(t0). In other words, we may use the formula

F+

d
(x1, x2) =

d

d + %
x2

1 + x2
2, (6)

where we do not have to care about signs and always take d > 0 and % > 0.
This would yield ‘wrong’ results for distances d > % > 0. However, a point x

beyond the curvature center k(t) at c(t) always has another normal footpoint
which is closer to it than c(t) and thus this case does not occur when we are
looking at globally shortest distances.

4 Squared Distance Function to a Surface

and its Second Order Approximants

What we said about d2 to a planar curve can in principle be extended to the
squared distance function to a surface in R

3. However, the visualization with
help of a graph in R

4 becomes harder. Again we have a local behaviour of
the distance function d2, which we will investigate up to second order, and
a global behaviour. The global effects cause non-smoothness at points of the
cut locus, which in general consists of surfaces.

Consider an oriented surface s(u, v) with a unit normal vector field
n(u, v) = e3(u, v). At each surface point s(u, v), we have a local right-handed
Cartesian system whose first two vectors e1, e2 determine the principal cur-
vature directions. The surface normal and the principal tangents are denoted
by n, t1 and t2, respectively. The latter are not uniquely determined at an
umbilical point. There, we can take any two orthogonal tangent vectors e1, e2.
We will refer to the thereby defined frame as principal frame Σ(u, v). Let κi

be the (signed) principal curvature to the principal curvature direction ei,
i = 1, 2, and let %i = 1/κi. Then, the two principal curvature centers at the
considered surface point s(u, v) are expressed in Σ as ki = (0, 0, %i). The
quadratic approximant Fd to d2 at (0, 0, d) is the following.

Proposition 2. The second order Taylor approximant of the squared dis-
tance function to a surface at a point p is expressed in the principal frame at
the normal footpoint via

Fd(x1, x2, x3) =
d

d − %1

x2
1 +

d

d − %2

x2
2 + x2

3. (7)

Proof. We just give a sketch of the proof. We first have to show that it is
sufficient to approximate the surface at the footpoint s(u, v) up to second
order. This can be done with well-known results on the curvature behaviour
of offset surfaces. Hence, we may replace the surface locally by an osculating
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torus T , which is obtained by rotating the first principal curvature circle c1

(center k1, radius |%1|, in the plane x2 = 0) around the axis of the other
principal curvature circle c2, which is defined analogous to c1 (see Fig. 10).
Clearly, by exchanging the roles of c1 and c2, we obtain two such tori. Any
one is fine for our purposes. The level sets of the squared distance function to
T are coaxial and concentric tori. Particularly, in the symmetry planes x1 = 0
and x2 = 0, we have the function d2 to the principal curvature circles c2 and
c1, respectively. Hence, almost all first and second order partial derivatives
of the squared distance function with respect to xi can be taken from the
planar case. The only one, for which this is not true, is ∂2f/∂x1∂x2. However,
the second order quadratic approximant must be symmetric with respect to
the planes x1 = 0 and x2 = 0. Hence, this mixed partial derivative vanishes.
Together with (3) this proves (7). ut

PSfrag replacements
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Fig. 10. Principal frame and principle circles at an elliptic surface point s(u, v)

The discussion of the arising cases is as in Sect. 2. At first, let us point
to the case d = 0.

Proposition 3. At a point p of a surface s the second order approximant
of the squared distance functions to s and to the surface’s tangent plane at p

are identical.

For a further discussion, we distinguish between the types of surface
points.

– In the case of an elliptic point, %1%2 > 0, we assume a surface normal
orientation and an indexing of the principal curvature directions that yield
%1 ≥ %2 > 0. Points of the normal, which lie on the other side of the tangent
plane than the principal curvature centers, i.e., d < 0, cause positive factors
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d/(d−%i), and hence a positive definite quadratic form Fd. This case always
arises at points outside a closed convex surface s. For points between the
principal curvature center k1 and the surface point, i.e., 0 < d < %1, we
get an indefinite Fd, and for d > %1, we again have a positive definite
second order approximant. Clearly, we exclude evaluation at the principal
curvature centers, where we have a singularity.

– For a hyperbolic point s, we assume w.l.o.g. %1 < 0 and %2 > 0. Here,
points between the principal curvature centers belong to %1 < d < %2

(excluding d = 0) and result in an indefinite Fd, whereas for points outside
the principal curvature segment k1k2 the approximants Fd are positive
definite. There, the level sets Fd = c to any constant c > 0 are homothetic
ellipsoids, centered at the surface point s, with the axes of the principal
frame as axes. In the indefinite cases, the level sets are hyperboloids (of
one or two sheets).

– At a parabolic point we may assume κ1 = 0 and κ2 > 0. Now, the second
order approximant to d2 reads

Fd(x1, x2, x3) =
d

d − %2

x2
2 + x2

3. (8)

This shows that we never get a positive definite Fd. The level sets of Fd are,
in general, cylinder surfaces with rulings parallel to the x1-axis (principal
curvature direction with vanishing curvature).

– A flat point is characterized by κ1 = κ2 = 0 and thus yields the obvious
result Fd = x2

3. Hence, the squared distance function to the tangent plane
agrees along the whole surface normal up to second order with the squared
distance function to the surface s.

Analogously to the case of planar curves we derive nonnegative quadratic
approximants with

F+

d
(x1, x2, x3) =

d

d + %1

x2
1 +

d

d + %2

x2
2 + x2

3, (9)

where d, %1, %2 are taken as positive values. Again, points beyond the prin-
cipal curvature centers are ruled out, but they do not arise anyway when
considering global distances.

5 Squared Distance Function to a Space Curve

The study of the squared distance function to a C2 space curve c(t) is also
interesting in connection with surfaces, namely in regions where the closest
points on the surface are on a boundary curve or at a curved edge, i.e., a
surface curve with tangent plane discontinuities. Again, we are focussing on
the second order approximants, and this we do from a local point of view.
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Given a point p in R
3, the shortest distance to the curve c occurs along a

normal n of the curve or at a boundary point of it. The latter case is trivial
and thus we exclude it. At the normal footpoint c(t0), with tangent line t,
we form a Cartesian system with e1 as tangent vector and e3 in direction of
the vector p− c(t0). This canonical frame can be viewed as limit case of the
principal frame for surfaces, when interpreting the curve as pipe surface with
vanishing radius. By this limit process, we can also show the following result.
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Fig. 11. A space curve c(t) with the osculating circle c at c(t0)

Proposition 4. The second order Taylor approximant of the squared dis-
tance function to a space curve c at a point p is expressed in the canonical
frame Σ at the normal footpoint via

Fd(x1, x2, x3) =
d

d − %1

x2
1 + x2

2 + x2
3. (10)

Here, (0, 0, %1) are the coordinates (in Σ) of the intersection point of the
curvature axis of c at the footpoint c(t0) with the perpendicular line pc(t0)
from p to c.

Proof. It is sufficient to consider the squared distance function to the oscu-
lating circle c of the curve at c(t0). For any torus with spine circle c, the
principal curvature lines are the family of parallel circles and the family of
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meridian circles. By Meusnier’s theorem, the principal curvature centers to
the parallel circles lie on the rotational axis of the torus. This is the axis of
the spine circle c. If we now shrink the radius of the meridian circles to 0, we
get in the limit principal curvature centers k1 = (0, 0, %1) on the axis. Here,

%1 = %/ cos α, (11)

with % as curvature radius of c at c(t0) and α as angle between the normal
(x3-axis) and the osculating plane at c(t0) (see Fig. 11). With %2 = 0, the
result follows from (7). ut

The discussion of the different cases of Fd is a limit case of the situation
for surfaces and thus we omit it here.

6 Application to Geometric Optimization Problems

Optimization problems in geometric computing are frequently nonlinear and
involve the squared distance function to a curve or surface. It is therefore
natural to apply the results discussed above to the development of geomet-
ric optimization algorithms which are based on local quadratic approximants
of the function to be minimized, such as quasi-Newton and SQP-type algo-
rithms [3]. We will now outline this idea at hand of two important examples:
registration and surface approximation.

6.1 Registration of a Point Cloud to a CAD Model

Suppose that we are given a large number of 3D data points that have been
obtained by some 3D measurement device (laser scan, light sectioning, . . .)
from the surface of a technical object. Furthermore, let us assume that we also
have got the CAD model of this workpiece. This CAD model shall describe
the ‘ideal’ shape of the object and will be available in a coordinate system
that is different to that of the 3D data point set. For the goal of shape
inspection it is of interest to find the optimal Euclidean motion (translation
and rotation) that aligns, or registers, the point cloud to the CAD model.
This makes it possible to check the given workpiece for manufacturing errors
and to classify the deviations.

A wellknown standard algorithm to solve such a registration problem is
the iterative closest point (ICP) algorithm which has been introduced by
Chen and Medioni [5] and Besl and McKay [1].

In the first step of each iteration, for each point of the data point cloud
the closest point in the model shape is computed. As result of this first step
one obtains a point sequence Y = (y1,y2, . . .) of closest model shape points
to the data point sequence X = (x1,x2, . . .). Each point xi corresponds to
the point yi with the same index.
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In the second step of each iteration the rigid motion M is computed such
that the moved data points M(xi) are closest to their corresponding points
yi, where the objective function to be minimized is

∑

i

‖yi − M(xi)‖
2. (12)

This least squares problem can be solved explicitly, cf. [1]. The translational
part of M brings the center of mass of X to the center of mass of Y . The
rotational part of M can be obtained as the unit eigenvector that corresponds
to the maximum eigenvalue of a symmetric 4× 4 matrix. The solution eigen-
vector is nothing but the unit quaternion description of the rotational part
of M .

After this second step the positions of the data points are updated via
Xnew = M(Xold). Now step 1 and step 2 are repeated, always using the
updated data points, until the change in the mean-square error falls below
a preset threshold. The ICP algorithm always converges monotonically to a
local minimum, since the value of the objective function is decreasing both
in steps 1 and 2. An excellent summary with new results on the acceleration
of the ICP algorithm has been given by Rusinkiewicz and Levoy [14], who
also suggest that iterative corresponding point is a better expansion for the
abbreviation ICP than the original iterative closest point.

Actually, we want to apply that motion to the data point cloud which
brings it into a position where the sum f of squared distances to the CAD-
model is minimal. Minimizing f under the constraint that the applied trans-
formation is a rigid body motion can be done with a constrained optimization
algorithm. We do not directly apply a standard implementation, but find a ge-
ometrically motivated algorithm. It works with local quadratic approximants
of f , and a linearization of the motion.

ICP is also based on local quadratic approximants of f , but a major
disadvantage of ICP is the following: data points xi are moved towards the
normal footpoints yi. In other words, the squared distance to yi is used as
a quadratic approximant of the function d2 at xi. As we know from the
study of d2, this approximation is only good in the ‘far field’, i.e., for large
distances d. However, in the practical application one has to start with an
initial position of the point cloud which is sufficiently close to the CAD model
in order to run into the right local minimum. Thus, typically the involved
distances are small. As a simple solution, we therefore may use the squared
distance function to the tangent plane at the normal footpoint yi.

Our proposed algorithm works as follows: the first step is similar to that of
the ICP algorithm. For each data point xi ∈ X determine the nearest point yi

of the model surface and determine the tangent plane there. Let ni denote a
unit normal vector of this tangent plane in yi. Because yi is the nearest point
to xi on the surface, xi lies on the surface normal in yi, i.e., xi = yi + dini

with di denoting the oriented distance of xi to yi. Now we locally replace the
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function d2 of the CAD model at xi by the squared distance to the tangent
plane at yi. Summing up these quadratic approximants results in a quadratic
approximant of the function F .

The linearization of the motion is equivalent to using instantaneous kine-
matics, an idea that already appeared in a similar form in [4]. We estimate
the displacements of points via their velocity vectors. The velocity vector
field of a rigid body motion is known to have the form

v(x) = c̄ + c × x. (13)

The distance of the point xi + v(xi) to the tangent plane at yi with unit
normal vector ni is given by di + ni · v(xi), where di again denotes the
oriented distance of xi to yi. The objective function to be minimized is

∑

i

(di + ni · (c̄ + c × xi))
2
, (14)

which is quadratic in the unknowns (c, c̄). The unique solution can be given
explicitly by solving a system of linear equations.

Note that the transformation which maps xi to xi+v(xi) is an affine map
and not a rigid Euclidean motion. Nevertheless, the vector field determined
by (c, c̄) uniquely determines a uniform helical motion M . Axis G and pitch
p of M are easily computed (see e.g. [13]). The motion we apply to xi is
the superposition of a rotation about this axis G through an angle of α =
arctan(‖c‖) and a translation parallel to G by the distance of p · α.

Similar to the ICP algorithm we update the data points via Xnew =
M(Xold) and repeat the procedure until the change in mean-square error
∑

d2
i

falls below a preset threshold.

Remark 2. We iteratively minimize a quadratic approximant of f under a lin-
earized motion. The resulting transformation would not satisfy the rigidity
constraint on the moved point cloud. Thus, we project back to the constraint
manifold by applying a helical motion indicated by the velocity field. There-
fore, our method is a feasible point method . An SQP-algorithm [3] would
work with quadratic approximants on the Lagrangian function, a linearization
of the motion, but it would then directly apply the linearized transformation;
it is not a feasible point method. We expect that SQP-algorithms will help in
the solution of other geometric optimization algorithms where the projection
onto the constraint manifold is not so simple as for the registration problem.

Figure 12 shows an example for the registration of a point cloud to a
surface. In order to better visualize the spatial position of the point data, a
transparent surface is associated with the data point set. This transparent
surface does not enter the computation in any way, it is only displayed for
reasons of visualization. The pictures show the data point set in its initial
position, after the first iteration step, and in its final position after 7 itera-
tions. In this example the error tolerance reached in the final position will be
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Fig. 12. Matching of a point cloud to the corresponding CAD model: (left) initial
position of data points and CAD model, (center) position of data points after first
iteration step, (right) final position after seven iterations

obtained with the standard implementation of the ICP algorithm only after
45 iterations. This is because in the ICP algorithm the data points move
towards their nearest position on the surface in each iteration step. A dis-
placement of the data point set in tangential direction to the model surface
therefore needs many iterations.

It is straightforward to extend the objective function (14) to a weighted
scheme. There are 3D measurement devices that supply for each data point
a tolerance for the occurring measurement errors. These can be included in
the objective function to downweight outliers.

In the description above, we have approximated the squared distance
function d2 to the given model surface by the squared distance function to
the tangent plane at the footpoint yi of xi. The latter function is exactly the
second order Taylor approximant of d2 at yi. In a further improvement we
may directly use the second order Taylor approximant of d2 at xi (if necessary,
the discussed nonnegative approximant), or another quadratic approximant
which is sufficiently accurate at the given position xi at an appropriate level
of detail. Thus, the results of the investigation on the geometry of the squared
distance function can be directly applied to this registration problem and also
to other types of registration and positioning problems.

6.2 Application to Surface Approximation

Approximating a given surface (in any representation) or an unstructured
cloud of points by a NURBS surface is a widely investigated problem. The
main approach uses a least square formulation with a regularization term that
expresses the fairness of the final result (see e.g. [6]). Here, the parameteri-
zation problem is a fundamental one which largely effects the result (see e.g.
[10] and the references therein). Therefore, parameter correction procedures
have been suggested [7].



18 Helmut Pottmann and Michael Hofer

A different approach to the approximation of curves and surfaces are ac-
tive contour models, which are mainly used in Computer Vision and Image
Processing. The origin of this technique is the seminal paper by Kass et al. [8],
where a variational formulation of parametric curves, coined snakes, is pre-
sented for detecting contours in images. There are various other applications
and a variety of extensions of the snake model (see e.g. [2]).

Instead of a parametric representation of a curve, one may use an implicit
form as zero set (level set) of a bivariate function. The formulation of active
contour models via level sets goes back to Osher and Sethian [12]. The level
set method [15] has been successfully applied to the solution of a variety of
problems, e.g. for segmentation and analysis of medical images [11]. There
are also extensions to surfaces. An application to the surface fitting problem
has been given by Zhao et al. [16].

In the registration problems outlined above, the moving object (point
cloud) undergoes a rigid body motion. The motion is linearized in each itera-
tion step and guided by the ‘flow’ imposed by the squared distance function.
Basically the same idea applies for surface approximation. Given a very rough
initial approximant, the surface is ‘deformed’ by moving its control points.
Since the major parametric surfaces used in CAD systeems are B-splines sur-
faces, which depend linearly on the control points, we may use the same ideas
as above.

To explain the principle, we choose an example: The surface Φ in Fig. 13
shall be approximated by a B-spline surface patch. The initial position of
the B-spline control points was chosen by linear interpolation of Φ’s vertex
points (Fig. 13). In each iteration step the contol points are recomputed, such
that a sufficiently dense sample of points on the B-spline surface is moved
towards the target surface Φ. The ’flow’ of the sampled points is again guided
by the squared distance function. In order to avoid clustering of the control
points and self-intersections of the surface (folding), smoothing terms must
be incorporated into the function to be minimized. A similar shrink wrapping
algorithm for polygonal surfaces was described by Kobbelt et. al [9]. In our
example the resulting B-spline patch after the first and fifth iteration step is
given in Fig. 14, left and right, respectively. Note that the boundary curves
of the B-spline patch were not intended to approximate the boundary curves
of Φ in the present example, only the vertices of the surface patch were fixed.

An important advantage of this active contour approach to surface ap-
proximation is the avoidance of the parameterization problem. Another ad-
vantage is the applicability to subdivision surface fitting : points at refined
levels depend linearly on points of coarse levels in the subdivision procedure.
This will be explored in future research.
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Fig. 13. Approximation of a surface patch by a B-spline surface: Initial position
of B-spline surface

Fig. 14. Approximation of a surface patch by a B-spline surface; (left) position of
B-spline surface after first iteration step; (right) final position after five iterations

7 Conclusion and Future Research

We have presented a geometric study of the squared distance function to a
curve or surface. In particular, the focus has been on local quadratic approx-
imants. At hand of registration and surface approximation, we have shown
how to use the results in certain geometric optimization algorithms.

There is a large amount of work left for future research. We have to
study d2 to surfaces, which are just given by a dense sample of points. More-
over, computationally efficient ways of working with a piecewise quadratic
approximation of d2 need to be addressed. Furthermore, we will investigate
algorithms for the solution of other geometric optimization problems. There,
we believe it is important not to use an optimization algorithm as a black
box, but adapt an optimization concept (Newton, quasi-Newton, SQP,...) in
a geometric way to the special problem.
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B-Spline-Flächen. PhD Thesis, TU Darmstadt, Darmstadt
7. Hoschek, J., Lasser, D. (1993): Fundamentals of Computer Aided Geometric

Design. A. K. Peters, Wellesley, Massachusetts
8. Kass, M., Witkin, A., Terzopoulos, D. (1988): Snakes: Active contour models.

Intern. J. Computer Vision, 1, 321–332
9. Kobbelt, L., Vorsatz, J., Labsik, U., Seidel, H.-P. (1999): A Shrink Wrapping

Approach to Remeshing Polygonal Surfaces. Computer Graphics Forum, 18,
Eurographics ’99 issue, C119–C130

10. Ma, W., Kruth, J. P. (1995): Parametrization of randomly measured points
for the least squares fitting of B-spline curves and surfaces. Computer Aided
Design, 27, 663–675

11. Malladi, R., Sethian, J. A., Vemuri, B. C. (1995): Shape modeling with front
propagation: A level set approach. IEEE Trans. Pattern Anal. and Machine
Intell., 17, 158–175

12. Osher, S. J., Sethian, J. A. (1988): Fronts propagating with curvature depen-
dent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Com-
putational Physics, 79, 12–49

13. Pottmann, H., Wallner, J. (2001): Computational Line Geometry. Springer
Berlin Heidelberg New York

14. Rusinkiewicz, S., Levoy, M. (2001): Efficient variants of the ICP algorithm, in
Proc. 3rd Int. Conf. on 3D Digital Imaging and Modeling, Quebec, Springer-
Verlag

15. Sethian, J. A. (1999): Level Set Methods and Fast Marching Methods. Cam-
bridge University Press

16. Zhao, H. K., Osher, S., Merriman, B., Kang, M. (2000): Implicit and non-
parametric shape reconstruction from unorganized data using variational level
set method. Computer Vision and Image Understanding, 80, 295–314


