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Abstract
In this paper we consider error propagation in geometric constructions from a geometric viewpoint. First we study affine combina-
tions of convex bodies: This has numerous examples in splines curves and surfaces defined by control points. Second, we study in
detail the circumcircle of three points in the Euclidean plane. It turns out that the right geometric setting for this problem is Laguerre
geometry and the cyclographic mapping, which provides a point model for sets of circles or spheres.
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1 Introduction

The aim of this paper is to show how to treat some prob-
lems of error propagation in geometric constructions in a
geometric way.

A geometric construction is a procedure which takes ge-
ometric objects (points, lines, circles) as input, and gives a
geometric object as output. It must be invariant with respect
to some geometry, which is best explained by an example:

We consider a very simple geometry construction: the
intersection of two lines in the Euclidean plane. The in-
put consists of two lines, and the output is a point. If we
translate or rotate the input data, the output undergoes the
same transformation. This means invariance with respect to
Euclidean transformations.

If we speak of error propagation, we mean the following:
Suppose each item of the input data can vary independently
in some domain (for instance, a point varies in a disk). We
can think of input data given imprecisely or of tolerance
zones for the input data. We ask for the set of all possible
outputs. If this is not possible, we would at least want to
know some tolerance zone which contains all possible out-
puts (cf. [13]).

From the geometric point of view, we want precise an-
swers to these questions which are again geometric invari-
ants and do not not contain artifacts of a coordinatization.
The computational viewpoint includes more than that, e.g.,
the complexity of algorithms. One might be more interested
in a faster computation which gives looser error bounds.

Here we discuss the computation of exact tolerance zones.

Interval arithmetic

Interval arithmetic (see [2, 7, 8, 17, 18, 19]) is one of the
basic tools, if one has bounds for input data of some cal-
culations, and wants to compute bounds for the output. A
simple example shows how interval arithmetic is not ‘geo-
metric’ in the sense that it does not give exact error bounds:

Suppose the point
�
x � y � has coordinates x ��� 1 � ε � 1 � ε � ,

y �	�
� ε � ε � . If we rotate this point about 45 degrees, we
know its image

�
x ��� y �
� to have coordinates x ��� y ����� � 2 � 2 �

� 2 � 2 � ε ��� 2 � 2 ��� 2 � 2 � ε � . If we know only the bounds
for x � , y � independently, a further rotation about 45 degrees
gives the point

�
x � ��� y � ��� whose coordinates are bounded

by x � �����
� 2ε � 2ε � , y � ���	� 1 � 2ε � 1 � 2ε � , whereas rotation
of

�
x � y � about 90 degrees gives the bounds x � �����
� ε � ε � ,

y � ����� 1 � ε � 1 � ε � .
A computational scheme which handles error bounds and

tolerances in a geometric way is expected to rotate the tol-
erance square of the point

�
x � y � , but never to increase its

size.
Nevertheless in Sec. 2.4 we show that interval arithmetic

fits in a natural way into our approach.

Special problems

In this paper we restrict ourselves to two different types
of problems: First, we consider geometric constructions
which are affine or even convex combinations of points,

1



which is a geometric operation in affine geometry — if the
input data undergo an affine transformation, the output does
the same.

This includes most of the spline curves defined by control
points. We assume that the control points can vary indepen-
dently in closed convex domains: For a parameter value t
we look for the locus of possible curve points. We will al-
ways assume that the error pertinent in the computation of
the curve point is negligible in comparison to the effect of
changing the control points in their various domains. So the
problem reduces to the problem of affine or convex combi-
nation of planar or spatial domains.

As a second example we consider an elementary Eu-
clidean geometric construction: the circumcircle of three
points. The difference between these two is that the former
is affinely invariant, involving only the linear structure of
real vector space � n , whereas the latter is a Euclidean con-
struction which involves the Euclidean orthogonality rela-
tion and metric.

In general, metric constructions are not as easy to ana-
lyze as affine ones. A detailed algorithmic study of geomet-
ric constructions involving lines and circles is given by [6].
Applications to collision problems involving toleranced ob-
jects are studied in [1]. Nevertheless there is still much to
do in this field.

Another topic is the inverse problem: Given a geometric
construction and a tolerance domain, how must we choose
the input tolerances?

2 Linear combinations of control points
and applications to spline curves.

2.1 Elementary facts about convex bodies

One of the main tools for studying compact convex bodies
of � d is the support function. There is large amount of liter-
ature including some monographs (see e.g. [9] for a detailed
overview of the whole field of convex geometry). For the
convenience of the reader we repeat some basic facts.

We call a plane ε a support plane of K if K has a point in
common with ε and K is entirely contained in one of the two
closed half-spaces defined by ε. For all unit vectors n there
is a unique plane ε

�
n � orthogonal to n which is a support

plane of K such that K lies in the half-space indicated by � n
and bounded by ε

�
n � . The oriented distance of this plane

to the previously fixed origin is the value of the support

function s
�
n � . Then ε has the equation x � n � s

�
n � and K

lies in the half-space x � n � s
�
n � .

The domain of a support function is the unit sphere Sd � 1

of � d . In the plane (n � 2) it is sometimes useful to make
the domain of the support function the interval � 0 � 2π � or
even the entire real line, where an angle φ is identified with
the appropriate point of the unit circle. We will never do
this, because we sometimes evaluate the support function
at vectors n and � n, which are opposite points of the unit
sphere. In the case n � 2 opposite points correspond to an-
gles φ � φ � π, and � φ means something different. In order
to avoid confusion, let us state explicitly that the minus sign
always indicates the opposite point of the unit sphere.

If K is a convex body, λK is the set of all λ � x with x � K.
For two convex bodies K1 � K2 we define their sum K � K1 �
K2 as the set of all x1 � x2 with x1 � K1, x2 � K2. This sum
operation is called Minkowski sum (see e.g. [10]).

For real numbers t1 � t2 we then can define the body
K � t1K1 � t2K2. Especially we define affine combinations�
1 � t � K1 � tK2 of convex bodies, and convex combinations,

which are affine combinations with 0 � t � 1.
Among the basic properties of support functions are the

following: If s : Sd � 1 � � is the support function of K,
then K ��� λK has the support function s � � n ��� λ � s � n � if
λ � 0. The support function s � of � K is given by s � � n ���
s
� � n � . If s1 � s2 are the support functions of K1 � K2, resp.,

and 0 � t � 1, then the convex body K �
�
1 � t � K1 � tK2

has the support function s �
�
1 � t � s1 � ts2. This is clear

from close inspection of Fig. 1, which illustrates the fact
that the boundaries of K1 � K2 � K can be seen as projection
of three closed curves in parallel planes, the middle curve
thereby lying on the unique embedded developable surface
which joins the other two. From this easily follows that the
support function of the convex body λ1K1 � λ2K2 equals
λ1s1 � λ2s2 if both λ1 � λ2 are nonnegative.

As an application of this, we derive the support function
s of a linear combination K � ∑λiKi of convex bodies Ki

with support functions si.

K � ∑
λi 	 0

λiKi � ∑
λi 
 0

λiKi � � ∑
λi 	 0

λiKi � ∑
λi 
 0

� � λi � � � Ki � �

The support function s �i of � Ki is given by s �i
�
n ��� si

� � n � .
Clearly, the support function of a positive linear combina-
tion of convex bodies is the same linear combination of their
support functions. Thus

s
�
n �
� ∑

λi 	 0

λisi
�
n � � ∑

λi 
 0

� � λi � si
� � n � �
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Figure 1: Developable surface and convex combination K ��
1 � t � K1 � tK2 of convex domains

If we know the support function of a convex body, we can
determine its diameters: The distance between supporting
planes with normal vectors n and � n is called the diameter
dn
�
K � of the convex body K ‘in direction n’. Clearly

dn
�
K �
��� s � n � � s

� � n ��� �
If K is a convex combination K � ∑λiKi, then so is the
support function, and we have

dn
�
K � � ∑λidn

�
Ki � �

i.e., the diameter of K is the appropriate convex combina-
tion of the diameters of the convex bodies Ki. Because the
diameter is an indicator of the extent of a convex body in
space, this is useful to know.

We should mention that many other properties of con-
vex bodies (such as perimeter or surface area) can also be
expressed in terms of the support function.

2.2 Curves and surfaces defined by control points

Many curve and surface schemes in Computer Aided Geo-
metric Design consist, in principle, of affine or convex com-
binations of control points. Convex combinations are espe-
cially simple because all coefficients are positive. Important
examples are the following:

� Bézier curves: b
�
t � � ∑Bn

i

�
t � bi where Bn

i

�
t � is the i-th

Bernstein polynomial of degree n. This sum is a convex
combination if 0 � t � 1.

� B-spline curves: b
�
t � � ∑Nn

i � T
�
t � bi where Nn

i � T is the i-
th normalized B-spline function of degree n defined by the
knot vector T . This is a convex combination involving at
most n � 1 control points.

PSfrag replacements
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Figure 2: Bézier curve ∑biBi
�
t � with 0 � t � 1

� The general L-spline spaces defined by a differential op-
erator have bases of positive functions if certain conditions
are met, so they fit here also.
� Interpolatory schemes are often linear as well. An exam-
ple of this is interpolation with C2 cubic B-splines, which is
discussed later.
� Tensor product surfaces (TP surfaces) defined by two
curve schemes with basis functions Ai, Bi by b

�
u � v � �

∑i � j Ai
�
u � B j

�
v � bi j give convex combinations if both curve

schemes do so.
Examples are TP Bézier surfaces in the interior of the

base rectangle, and TP B-spline surfaces.
� Denote the triangular Bernstein polynomials by Bi0i1i2

�
x � .

The point

b
�
x �
� ∑

i0 � i1 � i2 � n

bi0i1i2 Bi0i1i2

�
x � �

of the triangular Bézier surface defined by control points
bi0i1i2 is an affine combination of the control points and a
convex combination in the interior of the base triangle (see
later).

Bézier curves

Bézier curves and surfaces are defined as linear combina-
tions of points with various different types of Bernstein
polynomials. Only in some subset of the parameter do-
main all coefficients are positive. In the following we will
describe the signs of the coefficient functions in different
subsets of the parameter domain, and the resulting support
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Figure 3: Bézier curve ∑biBi
�
t � with � 1 � 2 � t � 3 � 2

functions of the appropriate linear combinations of convex
bodies. We use the following notation: A control point bi

of a curve/surface corresponds to a convex body Ki, which
has support function si. For multi-indices we will use an
appropriately modified notation.

The sign of the ordinary Bernstein polynomials is given
by

sgn
�
Bn

i
�
t � �
� sgn

�
t � n � i sgn

�
1 � t � i

and so the support function s of the convex body K �
∑Bn

i

�
t � Ki is given by

s
�
n �
� ∑Bn

i
�
t � s�i � n � �

where

s�i � n �
�
���� ���

si
�
n � for t � 0 � n � i even, or

t � 1 � i even, or
0 � t � 1

� si
� � n � t � 0 � n � i odd, or t � 1 � i odd.

This can be symbolized by the following diagram, where
the filled circles indicate positive coefficients:

PSfrag replacements
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Fig. 2 and Fig. 3 show the union of all possible K’s when
t ranges in an interval (shaded area). It is clearly seen that
only in the case 0 � t � 1 the diameter of the domain K

�
t �

is a convex combination of the diameters of the domains
Ki: If t �� � 0 � 1 � , the diameter of K

�
t � is rapidly increasing.

This illustrates the fact the often cited ‘optimality’ of the
Bernstein basis is valid only in the interval � 0 � 1 � (see [5]).

C2 cubic spline interpolation

Figure 4: Interpolating ‘interval’ C2 cubic B-spline

Assume we have points x0 � � � � � xL � 1 and look for a C2 cubic
B-spline curve s

�
u � with s

�
i �
� xi, and s

�
t � L � � s

�
t � . This

means we have to find a cubic C2 B-spline function C
�
u �

with the property that C
�
0 � � C

�
L � � C

�
2L � � � � � � 1 and

C
�
i ��� 0 for all other integers i. Then ∑L � 1

i � 0 xiC
�
t � i � is a

solution. It is easily seen that the derivatives C � � i � have to
fulfill the equation

A �
�	

 C � � 0 �

...
C � � L � 1 �

�
�
� �

�	

 C

�
1 � � C

� � 1 �
...

C
�
L � � C

�
L � 2 �

�
�
�

with

A �

�					



4 1 1
1 4 1

1 4 1
. . . . . .

1 1 4

�
�����
� �
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Figure 5: Distribution of signs of triangular Bernstein poly-
nomials — see text for explanation.

The i-th row of the matrix A is obtained by appropriately
shifting its first row (i.e., A is a circulant matrix). The in-
verse of A can be calculated and is again circulant. Its first
row has, apart from some constant factor, the entries

ai �
� � 1 � i � 1 � αL � i � βL � i � � � 1 � L � αi � βi � �

with α � 2 � � 3, β � 1 � α � 2 � � 3. It is easy to see that the
solution C � � 0 � , C � � 1 � � � � � has signs

�
0, � , � , � , � � � ��� 0 � � � � � �

� , � , � , � � where the 0 in brackets is inserted if and only if
L is even. Clearly the signs of C

�
u � in the intervals � i � i � 1 � ,

starting with � 0 � 1 � , are � � � ��� � � � � � � , with the exception
that C has the same sign in the intervals � L � 2 � 1 � L � 2 � and
� L � 2 � L � 2 � 1 � if L is even. This is discussed in [3].

As an example, we choose four rectangles and find all
periodic interpolating cubic C2 B-spline curves which pass
through these rectangles. Because the locus of curve points
for a certain parameter value t is not a convex combination
of the basis rectangles, but only an affine one, its size in-
creases if t is between the knots (see Fig. 4).

Triangular Bézier surfaces

Assume that x0 � x1 � x2 are barycentric coordinates with re-
spect to a triangle p0 � p1 � p2 in the plane (i.e., the point
designated by the coordinate triple x �

�
x0 � x1 � x2 � with

∑xi � 1 is the point x0 p0 � x1 p1 � x2 p2). Then the trian-
gular B-spline surface defined by control points bi0i1i2 in � d

(i0 � i1 � i2 � n) is given by

b
�
x � � ∑

i0 � i1 � i2 � n

bi0i1i2Bi0i1i2

�
x �

where

Bi0i1i2 �
�
i0 � i1 � i2 � !

i0!i1!i2!
xi0

0 xi1
1 xi2

2 �

This is an affine combination, as the sum of all Bi0i1i2 equals
1, and it is clearly a convex combination if x is in the interior
of the triangle p0 p1 p2.

The sign of the basis function Bi0i1i2

�
x0 � x1 � x2 � is given

by

sgn
�
Bi0i1i2

�
x0 � x1 � x2 �
� sgn

�
x0 � i0 sgn

�
x1 � i1 sgn

�
x2 � i2 �

Thus the support function of the convex body K �
∑i0 � i1 � i2 � n Bi0i1i2

�
x0 � x1 � x2 � Ki0i1i2 is given by

s
�
n � � ∑Bi0i1i2

�
x0 � x1 � x2 � s�i0 i1i2

�
n � �

where

s�i0i1i2

�
n �
��� si0i1i2

�
n � if sgn

�
xi0

0 xi1
1 xi2

2 � � 1

� si0i1i2

� � n � if sgn
�
xi0

0 xi1
1 xi2

2 � � � 1 �

This is depicted in a symbolical way in Fig. 5, which shows
the situation for i0 � i1 � i2 � 3. The meaning of the
small circles in the diagram is the following: For all triples�
i0 � i1 � i2 � of nonnegative integers with i0 � i1 � i2 � n there

is a basis function. If we arrange
�
n � 1 � � n � �

n � 1 � �
� � � � 1 circles line by line in a triangular shape, like in Fig.
5, each circle corresponds to a basis function. The bottom
line has i2 � 0, the next one i2 � 1, and so on. The differ-
ent regions in the plane where the barycentric coordinates
x0 � x1 � x2 take different signs, lead to different sign distribu-
tions of the basis polynomials. Filled circles correspond to
positive signs.

Tensor product surfaces

Assume that basis functions Ai, and B j define two curve
schemes. As already mentioned, the tensor product
surface scheme defined by the two curve schemes is
given by basis functions Ai � B j, and the linear combina-
tion K � ∑i � j Ki jAi

�
u � B j

�
v � has support function s

�
n � �

∑i � j s�i j

�
n � Ai

�
u � B j

�
v � , where s�i j

�
n � � si j

�
n � if Ai

�
u � B j

�
v �

is positive, and � si j
� � n � if not. As an example, Figure

6 shows in a symbolical way the sign distribution of TP
Bézier functions. The interpretation of the figure is analo-
gous to Fig. 5.

2.3 Envelopes of families of convex bodies

In the previous section we showed how to compute the lo-
cus K

�
t � of curve points for a fixed parameter value t. This
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�
u ��� Bm

j

�
v �
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Figure 7: Common tangents of convex combination of con-
vex bodies

was a certain affine or convex combination of convex do-
mains. In this section we study the set which is traced out
by K

�
t � if t runs in its parameter interval (the gray area in

Figures 2, 3, and 4). In some cases we are able to determine
the boundary curve of this set.

Curves

We consider a Bézier curve b
�
t � � ∑biBn

i

�
t � . If the bi range

independently in convex bodies Ki, then b
�
t � ranges in the

convex body K
�
t � � ∑Bn

i

�
t � Ki, whose support function can

be computed by the algorithms given above. We describe
the domain in space traced out by the movement of K

�
t � in

more detail.
First we consider the following situation: If K �

�
1 �

t � K1 � tK2, then the common tangent hyperplanes of K1,
K2 are also tangent hyperplanes of K (see Fig. 7). They
correspond to values s1

�
n ��� s2

�
n ��� s

�
n � of the support

functions of K1 � K2 � K, respectively.
The envelope of a convex body K

�
t � which changes with

time can be described in terms of the support functions
s
�
t � n � of K

�
t � . The common tangent hyperplanes of K

�
t �

and K
�
t � ∆t � correspond to normal vectors n � Sd � 1 with

s
�
t � n � � s

�
t � ∆t � n � , or

s
�
t � ∆t � n � � s

�
t � n �

∆t
� 0 �

The limit ∆t � 0 gives

∂
∂t

s
�
t � n � � 0 �

In case of a Bézier curve, we are able to explicitely describe
the tangent hyperplanes of the envelope. On the one hand,
we have d

dt

�
∑n

i � 0 biBn
i

�
t � � � n∑n � 1

i � 0

�
bi � 1 � bi � Bn � 1

i

�
t � , so the

normal vectors corresponding to the envelope’s tangent hy-
perplanes are the zeros of the function

∂
∂t ∑ s�i � n � Bn

i
�
t �
� n

n � 1

∑
i � 0

Bn � 1
i

�
t � � s�i � 1

�
n � � s�i � n � � �

On the other hand, we consider the two convex bodies

K �
�
t �
�

n � 1

∑
i � 0

Bn � 1
i

�
t � Ki � K � � t �
�

n

∑
i � 1

Bn � 1
i

�
t � Ki �

Then K
�
t ��� �

1 � t � K � � t � � tK � � t � (see Fig. 2). The cor-
responding support functions shall be denoted by s

�
t � n ����

1 � t � s � � t � n ��� ts � � t � n � . The common tangent hyper-
planes of K �

�
t � and K � � t � correspond to normal vectors

n � Sd � 1 which fulfill s �
�
t � n ��� s � � t � n � , which is equiva-

lent to

s �
�
t � n �
�

n � 1

∑
i � 0

s�i � 1
�
n � Bn � 1

i

�
t �
�

n � 1

∑
i � 0

s�i � n � Bn � 1
i

�
t �
� s � � t � n �

and we see that it is equivalent to the previous condition
that n defines a tangent hyperplane of the envelope. Thus
we have shown the following

Proposition. The domain traced out by K
�
t � is the en-

velope of the common tangent hyperplanes of the convex
bodies K �

�
t � and K � � t � which correspond to intermediate

points in the recursive construction of a Bézier curve by the
algorithm of P. de Casteljau by successive convex combina-
tions (see Fig. 2).

Another fact follows easily: For all points p contained in
the envelope of the sets K

�
t � we can explicitely find points

bi in the domains Ki together with a parameter value t such
that the curve

�
c � with control points bi assumes the value

p � c
�
t � — we have to choose the bi such that there is a

supporting plane for Ki which contains bi and whose normal
vector is also orthogonal to the envelope at p. This shows
again that this method gives not only an estimate, but the
exact locus of curves defined by control points varying in
the convex domains Ki.
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Surfaces

It is easy to extend the results of the previous paragraph to
surfaces: all Bézier surfaces (triangular and TP-rectangular)
contain Bézier curves. A hyperplane is tangent to the en-
veloping surface of a family of convex bodies K

�
u � v � if and

only if it is tangent to the envelope of two linearly indepen-
dent one-parameter families K

�
u
�
t � � v � t � � .

Without going into detail, this shows the following: For
TP surfaces and triangular surfaces, there is the algorithm
of de Casteljau, which recursively evaluates the surface at
certain parameter values by repeated convex combinations
of the control points. The last step of this algorithm pro-
duces points, which span the tangent hyperplane of the sur-
face at the point eventually constructed in the very last step.
Now the tangent hyperplanes of the envelope, which are
also tangent to K

�
u � v � , are precisely the common tangent

hyperplanes of the convex bodies which correspond to these
points.

2.4 Special Cases

‘Interval’ curves and surfaces

If the coordinates of control points are known to lie in cer-
tain intervals, then an equivalent formulation of this is that
the control point itself varies in some orthogonal parallelo-
tope whose faces are parallel to the coordinate hyperplanes.
If the dimension is 2, this can be expressed by saying that
interval bounds on the coordinates of points are the same as
rectangular domains where the points themselves must be
contained.

Interval curves and surfaces are not new: for instance
interval Bézier curves are studied in [15, 16], and interval
B-splines and their applications to curves and surfaces are
described in [7, 8, 17, 18, 19].

The procedure of linear combination, especially of con-
vex combination, of such parallelotopes again produces
convex orthogonal parallelotopes. If the linear combina-
tion is with nonnegative factors, then the coordinates of the
faces of the box containing the eventual curve or surface
point can be computed by the same linear combination.

The support function of an orthogonal parallelotope is
easily calculated: If the parallelotope in � d has the equa-
tion a1 � x1 � b1 � � � � � ad � xd � bd , and n �

�
x1 � � � � � xd � ,

then let pi
�
n ��� ai if xi � 0 and pi

�
n ��� bi if xi � 0. The

function s
�
n � � p1

�
n � x1 � � � � � pd

�
n � xd then is the support

function of the parallelotope. Fig. 4 shows an example of
an interpolating ‘interval’ spline curve (d � 2).

‘Disk’ curves and surfaces

Another class of convex bodies closed under the operation
of linear combination are the Euclidean balls of radius r,
which in dimension one coincide with the intervals, and
which in dimension two are usually called disks. If the lin-
ear combination of control points which yields the eventual
curve/surface point is nonnegative, then both the midpoint
and the radius of the eventual balls is obtained by the same
linear combination of the midpoints and radii of the con-
trol point balls, respectively. Planar ‘disk’ Bézier curves
are studied in [11].

3 Circles in plane and space

In this section we study a geometric problem of Euclidean
geometry: the circumcircle of three points. It occurs e.g. in
the construction of a Delauny triangulation. It turns out that
the problem is more complicated than the affinely invariant
problems of the previous section, and we will not study it
in its maximum possible generality.

We describe the set of circles in the Euclidean plane
which meet three three circular disks K1, K2, K3. The ge-
ometric setting where this type of problem is most easily
studied is Laguerre geometry (see [12, 20]). Here we use
only elementary concepts, such as oriented circles and ori-
ented contact.

Cycles

An oriented circle or cycle C is defined by its center m ��
m1 � m2 � and a radius r which can be any real number. The

ordinary circle �C � defined by C has center m and radius � r � .
If r � 0, then �C � is a point. Two cycles C �

�
m1 � m2 � r � ,

C � � �
m �1 � m �2 � r �
� are in oriented contact, if

d
�
C � C � �
� �

m1 � m �1 � 2 �
�
m2 � m �2 � 2 �

�
r � r � � 2 � 0 (1)

(see Fig. 8). Obviously a cycle C of zero radius is in ori-
ented contact with another cycle C � , if the point �C � is con-
tained in �C � � . If all radii are nonzero and C � C � are in ori-
ented contact, then �C � touches �C � � .
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Figure 8: Cycles C, C � in oriented contact. Left: rr � � 0.
Right: rr � � 0.

The cyclographic model

We identify a cycle with center
�
m1 � m2 � and radius r with

the point
�
m1 � m2 � r � of � 3 . This interpretation of points

of � 3 as cycles is called the cyclographic model of circle
geometry. Lines and planes in � 3 in this way correspond
to certain sets of cycles, which are called lines or planes, or
one- and two-parameter linear families of cycles.

The pseudo-euclidean squared distance d
�
C � C �
� defined

by Equ. (1) stems from the scalar product

� �
x1 � x2 � x3 � � � x �1 � x �2 � x �3 ���
� x1x �1 � x2x �2 � x3x �3 (2)

via d
�
C � C ��� � �

C � C ��� C � C ��� .
We call lines p � � v in � 3 steep or time-like, if

�
v� v � � 0,

light-like or ideal if
�
v� v ��� 0, and space-like, if

�
v� v � �

0. A plane (i.e., a two-parameter linear family of cycles)
is called space-like if it contains only space-like lines (i.e.,
one-parameter families).

Two cycles C �
�
m1 � m2 � r � and C � � �

m �1 � m �2 � r ��� span a
steep line, if the distance of centers is less than the differ-
ence of radii. Their span is space-like, if the opposite in-
equality holds. Their span is light-like if they are in oriented
contact.

Obviously affine transformations which preserve the
squared distance (1) (or the scalar product (2), which is the
same), preserve oriented contact of cycles. Such transfor-
mations do not change the type of lines and map space-like
planes onto space-like planes.

The Apollonius problem

We want to find cycles C which are in oriented contact with
three given cycles C1 � C2 � C3. This problem is named af-
ter Apollonius of Perga and is easily solved with the cy-
clographic interpretation. Without going into detail, we

PSfrag replacements

A ��� ��� �

A ��� ��� �

A ��� ��� � A ��� ��� �

A ��� ��� �

A ��� ��� �

�C1 �

�C2 �

�C3 �

Figure 9: Six Apollonius circles defined by circles
�C1 � � �C2 � � �C3 � .

describe a solution: Consider the plane ε � �C1 � C2 � C3 � .
Choose the coordinate system in � 2 such that ε con-
tains the x1-axis of � 3 . If ε is space-like, its slope
equals tanh2t for some t, and its points can be written
in the form

�
x1 � αcosh 2t � αsinh 2t � . With the vector n ��

0 � sinh t � cosh t � we define the affine mapping σ : x 	� x �
2
�
n � x � � � n � n � � n which transforms ε to the x1x2-coordinate

plane, and which preserves oriented contact. It transforms
C1 � C2 � C3 to cycles C �1, C �2, C �3 of zero radius. Assume that
the circumcircle of the points �C �1 � , �C �2 � , �C �3 � has center
m � � �

m �1 � m �2 � and radius r � . Then A � � �
m �1 � m �2 � r �
� and

A � �
�
m �1 � m �2 � � r �
� are two cycles in oriented contact with

C �i . Because σ is its own inverse, σ
�
A � � and σ

�
A � � are in

oriented contact with C1, C2, C3.

This shows that there are up to eight solutions to the prob-
lem of finding circles which touch three given circles. They
are found by assigning arbitrary orientations and applying
the procedure described above. Fig. (9) shows an example
and six solutions A � � � � � � � � � The three signs show the sign
of the radius of the circles C1 � C2 � C3 such that the (positively
oriented) solution cycle is in oriented contact with them.
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Figure 10: The curvilinear cube which is defined by three
disks.

Cyclographic image of all circles passing through three
disks

Assume three circular disks Ki in the plane which are dis-
joint. They are bounded by three circles �C1 � , �C2 � , �C3 � ,
where all Ci have nonnegative radius. The cycle with the
same center but opposite radius will be denoted by C �i . To
emphasize that the radius is nonnegative, we write C

�
i for

Ci. Because the disks Ki are disjoint all linear families (i.e.,
lines) spanned by C

�
i � C �j or C

�
j � C �j are space-like.

If X � X � is a further cycle with nonnegative radius, then
it is easy to see that �X � intersects �C1 � if and only if the line
X � C �1 is time-like and the line X � C

�
1 is space-like, which

means d
�
X � � C �1 ��� 0 and d

�
X � � C �1 � � 0.

Thus the set of positively oriented cycles X � which in-
tersect all three disks K1 � K2 � K3 is given by the inequalities

d
�
X
� � C �1 ��� 0 � d

�
X
� � C �2 � � 0 � d

�
X
� � C �3 � � 0 �

d
�
X
� � C �1 ��� 0 � d

�
X
� � C �2 � � 0 � d

�
X
� � C �3 � � 0 �

It is depicted in Fig. 10 together with the three disks and
six of the eight Apollonius circles, and looks like a curvi-
linear cube, whose faces, edges, and vertices correspond to
cycles which touch one, two, or three boundary circles C

�
i ,

C �i , respectively. The eight vertices correspond to the eight
solutions of the Apollonius problem (there are eight solu-
tions, because the planes spanned by three boundary cycles
are space-like for all possible sign combinations).

Lines which meet three disks

If three circular disjoint disks K1 � K2 � K3 in the plane are
given, it may happen that a straight line meets all three of
them. We want to characterize this situation in terms of the

cyclographic model. To each Ki there correspond two cy-
cles C

�
i and C �i like in the previous paragraph. The plane

spanned by C
�
1 � C �2 � C �3 will be denoted by ε � � � , and anal-

ogously for the other sign combinations.

Proposition. No line which meets all three disks Ki, if and
only if all planes ε � � � , ε � � � , ε � � � are space-like.

To prove this we assume that a line meets K1, K2, K3. Then
there is a line L which touches the boundary of two disks
and still intersects the third. Without loss of generality we
assume that L touches �C1 � and �C2 � , and intersects K3. If
K1, K2 are on the same side of L, we let C1 � C

�
1 , C2 � C

�
1 ,

otherwise we give different signs and let C1 � C
�
1 , C2 � C �1 .

Among the elements of the linear family spanned by C1, C2

there is a cycle C such that �C � intersects K3. If we give
C � C3 opposite signs we see that d

�
C � C3 ��� 0, and the span

of C � C3 is time-like. This shows that the plane spanned
by C1 � C2 � C3 is not space-like. If all Ci happen to the have
the same sign, then we may reverse one of them, and the
plane cannot become space-like because its slope increases
by this operation. If we have two minus signs, we reverse
all signs, and the type of the plane does not change. This
shows the ‘if’ part of the statement. The ‘only if’ part is
similar.

Cyclic regions in the plane

The set of all cycles X which are in oriented contact
with two cycles C1 � C2 obviously is given by the equations
d
�
X � C1 ��� d

�
X � C2 ��� 0. Subtracting these two quadratic

equations gives a linear one, namely

�
X � 1

2

�
C1 � C2 � � C1 � C2 � � 0

which is the symmetry plane of C1 � C2 (the symmetry is
in the sense of the pseudo-euclidean scalar product given
by Equ. (2)). If M � 1

2

�
C1 � C2 � then the lines MX and

C1C2 are orthogonal in the sense of the scalar product
(2). Pythagoras’ theorem now says d

�
C1 � X ��� d

�
X � M ���

d
�
C1 � M � which means that d

�
X � M � � � d

�
C1 � M � � const.

This shows that this set C of cycles is contained in a two-
parameter family (i.e., a plane) and has constant distance
from a point M of this plane. It is therefore called a circle
of cycles. The union of all �X � for X � C is called a cyclic
region. C is called space-like, if its carrier plane is.
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Inversions

The mapping which transforms a point x in the plane to
q � �

x � q � ��� x � q � 2 is called an inversion with center q.
It is well known that it transforms circles to circles, except
for the circles which contain the origin, which will be trans-
formed to lines.

This motivates to define the following mapping of cycles:
A cycle X �

�
m1 � m2 � r � is mapped according to

invQ : X 	� X � X � Q�
X � Q � X � Q � � (3)

where Q �
�
q1 � q2 � 0 � . This mapping maps points (i.e., cy-

cles of zero radius) like the ordinary inversion, and it pre-
serves oriented contact. It is an easy exercise to see that this
mapping actually describes the action of the inversion on
cycles.

The mapping invQ is undefined for cycles which are in
oriented contact with the center Q. It is well known that
it transforms a circle C of cycles to a space-like circle of
cycles, if and only if no X � C is in oriented contact with
the inversion center Q (i.e., the point �Q � is contained in no
�X � for X � C ).

Circles which meet three disks — the fat circle

We resume the discussion of the set of cycles C which meet
three disjoint circular disks K1 � K2 � K3. We have already de-
scribed this set by distance inequalities. We now want to
describe the union of circles �C � .

We consider the eight solution circles of the Apollonius
problem for the circles �C1 � � �C2 � � �C3 � . If we choose three
orientations, e.g., C1 � C

�
1 , C2 � C �2 , C2 � C

�
3 , there are

two cycles which are in oriented contact with C1 � C2 � C3.
The cyclic region defined by them is denoted by R � � � , and
the corresponding circle of cycles by C � � � . We can do the
same for all other sign combinations also. Obviously rever-
sion of all signs does not change the cyclic region.

Proposition. The union of all circles which meet three
disks is given by

R � � ��� R � � � � R � � � �
This set will be called a ‘fat circle’.

Proof: Suppose a point x �
�
x1 � x2 � , which will be identified

with the cycle X �
�
x1 � x2 � 0 � , is not contained in R � � � .

Then the inversion invX maps C � � � to a space-like circle

Figure 11: Circles which meet three balls

C �� � � of cycles. In the plane invX acts like the ordinary
inversion, and so any circle containing x is mapped to a
straight line, which intersects the disks invX

�
K1 � , invX

�
K2 � ,

invX
�
K3 � . But we have already shown that this is impossible

if all three carrier planes of C �� � � , C �� � � , C �� � � are space-
like. This shows the statement of the proposition.

Circles in space

Here we ask for circles which intersect three balls, bounded
by spheres. Analogous to the planar case, we consider cy-
cles, which are spheres of radius r and identify the set of
cycles with � 4 . The distance and scalar product is modified
in the obvious way.

A circle of cycles (cf. the definition of the planar version
above) defines a cyclic region, which turns out to be a Dupin
cyclide. This is a surface which is the envelope of oriented
spheres whose centers are contained in a plane, and which
are tangent to two oriented circles there (an example is the
torus, see also [4]).

A procedure similar to the planar case leads to the con-
clusion that the set of circles which intersect three disjoint
balls is bounded by three Dupin cyclides, which are found
by intersecting the three balls with their symmetry plane,
and defining the cyclic regions R � � � , R � � � , R � � � for
them, which are the intersections of the Dupin cyclides with
this symmetry plane. Fig. 11 shows an example.

Extremal properties

We consider again three disjoint planar disks K1, K2, K3

with centers m1, m2, m3, and the set of circles which in-
tersect all three of them. We restrict ourselves to the case
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of all Ki having equal radius r. Consider the three cyclic
regions R � � � , R � � � , R � � � , whose union is the fat circle.
The Euclidean reflection which maps m1 to m2 is a symme-
try of R � � � , and likewise the reflections which interchange
the pairs m1 — m3 and m2 — m3 are symmetries of R � � �
and R � � � , respectively.

Consider the circumcircle �C � of the centers m1 � m2 � m3.
The point of R � � � which has maximum distance δ from
�C � is one of the points where the symmetry line of m1 � m2

meets R � � � ’s boundary. If we fix the points m1 � m3, and
move m2 towards a position which is symmetric with re-
spect to the pair m1 � m2, then δ increases.

There is such a maximal deviation for all three cyclic
regions, and clearly the smallest value of the greatest δ is
attained if each of the centers m1, m2, m3 is in symmetric
position with respect to the other two, which means that m1,
m2, m3 are the vertices of an equilateral triangle.

Conclusions

In the first part of the paper we studied affine and convex
combinations of points from the viewpoint of error propa-
gation. An affine or convex combination of points which are
known to be contained in certain convex domains, is itself
contained in an appropriate combination of these domains.
This leads to precise bounds for Bézier and spline curves
with toleranced control points.

The second part of the paper deals with a geometric con-
struction of Euclidean geometry: the circumcircle of three
points. If these three points are known to be contained in
three disks, then the circumcircle is known to be contained
in the union of three cyclic regions, which are found by
solving the Apollonius problem for the three given disks.

The aim of the paper on the one hand was to show how to
treat geometric constructions of affine and Euclidean geom-
etry, and on the other hand to demonstrate how much more
difficult error propagation problems become if one uses a
richer geometry such as the Euclidean one compared to pla-
nar affine geometry.
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