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Developable surfaces are of considerable importance to many industry

applications, e.g. sheet metal forming processes. The objective of this pa-

per is to provide algorithms on the approximation of developable surfaces

with pieces of right circular cones. Special emphasis is devoted to prac-

tical choices of free parameters and to error estimation. Furthermore, a

new algorithm for the approximation of spatial curves with a circular arc

spline is presented which stands in close relation to above algorithms on

developable surfaces. The proposed arc spline has contact of order 2 to

the given curve in a series of curve points. The investigation includes a

segmentation algorithm and error estimation.
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1 Introduction

Surfaces which are composed of (general) cylinders, (general) cones, and tangent
surfaces of space curves are called developable surfaces. These are the only sur-
faces that can be unfolded (developed) into a plane without stretching or tearing.
Therefore they are of particular interest in the modeling of surfaces of approx-
imately unstretchable materials, such as paper, leather or thin sheets of metal
(e.g. Mancewicz and Frey, 1992). Even in the design and engineering of double

curved ship surfaces developable surfaces appear in an important intermediate
stage of the manufacturing process (Randrup, 1996).

The first part of the present paper — which is based on the author’s PhD the-
sis (Leopoldseder, 1998) — deals with the approximation of a given developable
surface with a cone spline surface, that is a G1-surface composed of segments of
right circular cones. Subsequent cone segments possess the same tangent plane
along their common ruling. Cone spline surfaces possess parametric and implicit
representations of degree two, and their development and bending into other
developable shapes is elementary.

Local algorithms for this problem have first been introduced by Leopoldseder
and Pottmann (1998). There a Hermite-like interpolation scheme is presented:
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Choose a set of rulings of a developable surface, together with the tangent planes
along these rulings. Then, it is possible to interpolate each pair of consecutive
rulings plus tangent planes with a pair of smoothly joined right circular cone
segments. In this procedure there is still one free parameter which was proposed
to be eliminated by minimizing the distance of the vertices (apices) of the cone
pair.

Here, the paper mentioned above is extended by some error analysis. The
used methods are based on differential geometry of developable surfaces and the
Taylor expansion of the curve of regression (cuspoidal curve). A proof of the
important fact will be given that the cone pairs interpolating two rulings plus
tangent planes of a given developable surface converge nicely as the two rulings
are moved together. Furthermore we suggest an alternative to the choice of the
free parameter which will provide certain advantages in the implementation.

The second part of this paper — beginning with section 6 — deals with the
approximation of space curves with circular arc splines. Its close relationship to
developable surfaces and cone spline surfaces will be outlined in section 6 and
is dealt with in greater detail in a seperate paper (Leopoldseder, 2000). There,
sphere geometry is used to obtain some important results on cone spline surface
algorithms.

Planar arc splines are desirable paths for numerically controlled cutting ma-
chines as their offsets are easy to find. Therefore there is a rich variety of literature
on arc spline approximations of planar curves, mostly with biarc methods (e.g.
Bolton, 1975; Nutbourne and Martin, 1988; Piegl, 1986; Sabin, 1977). The ap-
proximation of twisted curves in 3-space with spatial biarcs has been analyzed
with geometric and analytical methods (Fuhs and Stachel, 1988; Hoschek, 1992;
Nutbourne and Martin, 1988; Sharrock, 1986).

Here, a geometric method of constructing a spatial osculating arc spline is
introduced: First, compute the osculating circles of a set of discrete curve points.
Then, subsequent osculating circles are joined tangent continuously. Unlike the
planar case where there exists a one parameter set of solution arcs joining two
given circles (Meek and Walton, 1996), there are, in general, only two complex
solution arcs in the 3-dimensional case. A segmentation algorithm of the given
curve is presented that is based on geometric properties of the target curve. It
guarantees real solutions for the joining arcs and approximation errors within a
given tolerance. The practicality of the proposed methods is discussed for several
examples.
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2 Fundamentals on cone spline surfaces

Let us first sketch the ’cone pair algorithm’ presented in Leopoldseder and
Pottmann (1998). The following short summary will provide the neccessary back-
ground for the error estimates of section 4.

The basic idea is to choose a sequence of rulings ei of a developable surface Γ,
compute their tangent planes τi and interpolate consecutive G1-Hermite elements
(ei, τi) with a cone pair, i.e. two segments of cones of revolution (right circular
cones) that have the same tangent plane along their common ruling. Note that
throughout this paper we will tacitly allow that a cone may degenerate to a
cylinder.

Figure 1: G1-Hermite data

Figure 1 gives two Hermite elements (e1, τ1), (e2, τ2) which are interpolated
with a cone pair in Figure 2. The spatial position and orientation of (ei, τi)
is determined by an associated orthonormal coordinate frame (xi, ei,pi,ni). xi

denotes a point on the ruling ei with unit direction vector ei. The vector pi is
orthogonal to ei in τi and indicates the direction in which the interpolant between
ei and ei+1 has to connect. The unit normal ni = ei ×pi of τi then always points
to the same side of the surface Γ.

Two elements (e1, τ1), (e2, τ2) are in general position if det(e1, e2,x1−x2) 6= 0
and det(p1,p2,n1−n2) 6= 0. We will not treat the special cases e1 = e2 (cylindri-
cal case), det(e1, e2,x1−x2) = 0, e1 6= e2 (conical case), and det(p1,p2,n1−n2) =
0, e1 6= e2 (surface of constant slope case) here. These cases all lead to a planar
or spherical biarc scheme (Leopoldseder and Pottmann, 1998). All three cases
allow a simple error estimation which is in simple relation to the approximation
errors of the biarcs: In case of the approximation of a (general) cylinder or a sur-
face of constant slope with cone pairs, the approximation error is restricted with
the approximation error of the planar biarc. In the cone case the approximation
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Figure 2: Cone pair with common inscribed sphere

error increases linearly with the distance to the cone vertex. For literature on
approximation errors of planar biarc approximation we refer to Meek and Walton
(1995).

In the general case there exists a unique sphere Σ that touches τi in points
ai of ei, i = 1, 2. Its midpoint m can be found as the intersection point of three
planes, namely the two normal planes through ei to τi and the bisector plane of
τ1 and τ2.

An admissible cone pair Λ1, Λ2 joining (ei, τi) has to touch this sphere Σ along
a biarc c1, c2 (see Figure 2). It is well known (see e.g. Sharrock, 1986; Fuhs and
Stachel, 1988) that there exists a one parameter family of biarcs c1, c2 on Σ
joining (a1,p1) and (a2,p2). The vertices v1 = a1 + µ1e1 and v2 = a2 − µ2e2 of
the corresponding cone segments have to satisfy ‖v2 −v1‖ = |µ1 + µ2| leading to
the bilinear equation

(a2 − a1)
2 − 2µ1(a2 − a1)e1 − 2µ2(a2 − a1)e2 + 2µ1µ2(e1e2 − 1) = 0. (1)

Figure 3 shows a typical function of the vertex distance ‖∆v‖ = ‖v2 − v1‖
with respect to parameter µ1. This (positive) function is of the type ‖∆v‖ =∣∣∣Aµ1+B

Cµ1+D

∣∣∣ with A,B,C,D ∈ R. Minimizing the vertex distance leads to a quadratic

equation in µ1. One has to take attention that only one of the two solutions µ1,
µ̄1 leads to a cone pair useful for applications. In section 4 it will be shown that
in general the practical solution corresponds to the local minimum µ1 that is not

the global minimum. The global minimum µ̄1 would produce a loop in the cone
spline surface.
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Figure 3: Vertex distance function

The chosen parameter µ1 determines v1, and v2 via (1). Thus, we know
the vertices vi, axes ai = vi ∨ mi, boundary rulings ei and the junction ruling
e = v1 ∨ v2 of the cone segments Λi.

In applications one generally has a prescribed region of interest Ω which must
be kept free of singularities. If one of the vertices, say v1, lies inside of Ω, one
can easily move v1 to the nearer boundary of Ω via the parameter µ1. One has
to check, however, that the corresponding vertex v2 stays outside of Ω.

In section 4 we will motivate this minimization of the vertex distance. If the
Hermite elements (ei, τi) stem from a developable surface then in the limit case
of e2 → e1 the chosen cone pair is a practical one. One has to note however, that
minimizing the vertex distance cannot be the best choice in situations where the
original developable surface has a cylindrical ruling. There the singular point is
at infinity and in general the singular points of neighboring rulings lie on different
sides of the surface patch.

Therefore it is more stable to implement the following: Let ā1 = a1 + εe1 be
a point of the ruling e1 which lies well inside the region of interest, and let ā2 =
a2 + εe2 be the point on e2 to equal parameter ε. Each biarc c̄1, c̄2 joining (āi,pi)
determines a suitable cone pair. Figure 2 gives the control points ā1, b̄1, c̄, b̄2, ā2

of the biarc c̄1, c̄2. The control points b̄1 = ā1 + λ̄1p1, b̄2 = ā2 + λ̄2p2 have to
satisfy ‖b̄2 − b̄1‖ = |λ̄1 + λ̄2| which, similar to (1), leads to the bilinear equation

(ā2 − ā1)
2 − 2λ̄1(ā2 − ā1)p1 − 2λ̄2(ā2 − ā1)p2 + 2λ̄1λ̄2(p1p2 − 1) = 0. (2)

Nutbourne and Martin (1988) have shown how to minimize the angle between
the planes of c̄1 and c̄2 which is equivalent to minimizing the angle between the
cone axes a1 and a2. This can be achieved by minimizing the distance |λ̄1 + λ̄2| of
the control points b̄1, b̄2. Additionally, the winding angles of c̄1 and c̄2 are equal
then. Another good choice for λ̄i is obtained by λ̄1 = λ̄2, λ̄i > 0. Here one has to
compute the positive root of a quadratic equation.
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As one could expect, in the limit case e2 → e1 the cone pairs determined
by c̄1, c̄2 converge similar to the cone pairs obtained by minimizing the vertex
distance (see section 4).

3 Differential geometric fundamentals of devel-

opable surfaces

Developable surfaces are surfaces that can be isometrically mapped into the plane.
Assuming sufficient differentiability, they are characterized by the property of
possessing vanishing Gaussian curvature. All nonflat developable surfaces are
envelopes of one parameter sets of planes. It is a well-known result of differential
geometry (see e.g. Kruppa, 1957) that such a developable surface is either a
conical surface, a cylindrical surface, the tangent surface of a twisted curve or a
composition of these three surface types. Thus, developable surfaces are ruled
surfaces, but with the special property that they possess the same tangent plane
at all points of the same generator.

The parametric representation of a ruled surface Γ is

g(u, v) = l(u) + ve(u), (3)

where l(u) represents a curve on Γ with respect to arc length u and e(u) are unit
vectors of the generator lines. For a cylinder e is constant, and for a cone we may
choose l = const as the vertex. In a differential geometric treatment, a tangent
surface is written in the form (3) with u as arc length of the line of regression
l, and e = l′(u) with l′ = dl/du. Let e,p,n be the Frenet frame vectors of l,
with p and n as principal normal and binormal, respectively, and let κ and τ be
curvature and torsion of l. Then the Darboux vector

d(u) = τ(u)e(u) + κ(u)n(u) (4)

defines the axis a(u): l(u) + λd(u) of a cone of revolution ∆(u) with vertex l(u),
which touches Γ along the generator e(u). ∆ is called osculating cone, since it
has contact of order 2 with Γ at all regular points of the common ruling. This
cone may be considered as the counterpart of the osculating circle of a curve; it
determines the curvature behavior of a developable surface along a ruling. The
conical curvature

k(u) = τ(u)/κ(u) (5)

equals k = cot(α) where α denotes half of the opening angle of ∆. This follows
from (4).

The rectifying planes ρ(u) = l(u) + v1e(u) + v2n(u) of l(u) envelop another
developable surface Γ∗. Its generators are the axes a(u) of ∆(u) (Figure 4). The
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Figure 4: Kinematic generation of Γ as a moulding surface

line of regression of Γ∗ is composed of the cuspoidal points

m∗(u) = l(u) − κ

κτ ′ − κ′τ
(u) (τ(u)e(u) + κ(u)n(u)) (6)

on a(u), see e.g. Kruppa (1957). By using equation (5) this can be simplified to

m∗(u) = l(u) − 1

k′(u)
(k(u)e(u) + n(u)) . (7)

If a plane ρ rolls on a developable surface Γ∗ then a curve e in ρ will trace out
a so-called moulding surface. Recently, approximation algorithms for moulding
surfaces have been proposed in Pottmann et al. (1998). Figure 4 identifies devel-
opable surfaces Γ to be special moulding surfaces where the generating curve e
is a straight line. During this motion each point l(0) + µe(0) on e traces out a
surface curve

oµ(u) = l(u) + (µ − u)e(u), µ ∈ R (8)

of Γ. Such a curve intersects all generators of Γ orthogonally as o′

µ · l′ = 0 is
satisfied. These orthogonal trajectories of Γ or filar involutes of l(u) are a spatial
counterpart of involutes of planar curves and form an orthogonal parameter net
on Γ together with the generators e(u). For fixed parameter u the osculating
circles of oµ(u), µ ∈ R have a common rotation axis and lie on the osculating
cone ∆(u).
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4 Approximation quality

Let the given developable surface Γ be the tangent surface of a twisted curve l(u)
which is sufficiently differentiable. Let u denote its arc length, κ(u) and τ(u) its
curvature and torsion. After choosing two Hermite elements (ei, τi), i = 1, 2 of Γ
our algorithm is based on a sphere Σ which touches both Hermite elements. On
Σ we obtain biarcs which correspond to cone pairs joining the Hermite elements.
We now want to analyze our algorithm for Hermite elements (ei, τi) which lie
’close’ to each other.

By using the Taylor expansion of the line of regression l(u) at the point
l(0) we will look into the limit case of joining Hermite elements (e(0), τ(0)) and
(e(u), τ(u)) for u → 0. The spheres Σ(u) touching these Hermite elements will
turn out to converge to a limit sphere which does not possess vanishing radius.
A geometric interpretation of this limit sphere will be given.

There is a one parameter set of cone pairs joining the Hermite elements
(e(0), τ(0)) and (e(u), τ(u)). In section 4.1 we take that cone pair that mini-
mizes the cone vertex distance. In section 4.2 we eliminate the free parameter
via a local biarc c̄1, c̄2 as discussed in section 2. The feasibility of these choices
of the free parameter will be derived from the following calculations.

The Taylor expansion of the line of regression l(u) of Γ at the point l(0) is

l(u) = l(0) + l′(0)u +
l′′(0)

2!
u2 +

l(3)(0)

3!
u3 +

l(4)(0)

4!
u4 + O(u5). (9)

Denoting tangent vector, principal normal vector and binormal vector in l(0)
with e = e(0), p = p(0), n = n(0) and employing the Frenet formulae for spatial
curves the derivatives of l(u) with respect to arc length u are given by

l′(0) = e,

l′′(0) = κp,

l(3)(0) = −κ
2e + κ

′p + κτn, (10)

l(4)(0) = −3κκ
′e + (κ′′ − κ

3 − κτ 2)p + (2κ
′τ + κτ ′)n, . . .

where κ = κ(0) and τ = τ(0) are curvature and torsion at l(0) and κ
′ =

(dκ/du)(0), κ
′′ = (d2

κ/du2)(0), τ ′ = (dτ/du)(0), . . . the derivatives of κ(u)
and τ(u) with respect to arc length in l(0). With l(0) as origin and the Frenet
vectors e,p,n as axes of a coordinate system (9) and (10) give

l(u) =




u − κ
2 u3

3!
− 3κκ

′ u4

4!
+ O(u5)

κ
u2

2!
+ κ

′ u3

3!
+ (κ′′ − κ

3 − κτ 2)u4

4!
+ O(u5)

κτ u3

3!
+ (2κ

′τ + κτ ′)u4

4!
+ O(u5)


 . (11)
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The tangent vector

l′(u) =




1 − κ
2 u2

2!
− 3κκ

′ u3

3!
+ O(u4)

κu + κ
′ u2

2!
+ (κ′′ − κ

3 − κτ 2)u3

3!
+ O(u4)

κτ u2

2!
+ (2κ

′τ + κτ ′)u3

3!
+ O(u4)


 (12)

denotes the direction of the generator e(u) of Γ. The normal vector of the tangent
plane τ(u) along e(u) is given by

n(u) =
l′(u) × l′′(u)

||l′(u) × l′′(u)|| (13)

which leads to

n(u) =




κτ u2

2!
+ (2κτ ′ + τκ

′)u3

3!
+ O(u4)

−τu − τ ′ u2

2!
+ (−τ ′′ + τκ

2 + τ 3)u3

3!
+ O(u4)

1 − τ 2 u2

2!
− 3ττ ′ u3

3!
+ O(u4)


 . (14)

We will now use these equations to join the Hermite elements (e(0), τ(0)) and
(e(u), τ(u)) by a cone pair. First we compute the sphere Σ(u) which touches both
Hermite elements. The center m(u) can be found as intersection of the normal
planes

ν0 : (x − l(0)) · l′′(0) = 0,

νu : (x − l(u)) · l′′(u) = 0

with the tangent planes’ bisector plane

σ : x · (n(0) − n(u)) − l(0) · n(0) + l(u) · n(u) = 0.

Inserting (5), (12) and (14) one obtains

m(u) =




− k
k′

+ kk′′

2k′2 u + O(u2)

0

− 1
k′

+ k′′

2k′2 u + O(u2)


 . (15)

The third coordinate of m(u) denotes the distance to generator e(0) and is there-
fore the radius

r(u) = − 1

k′
+

k′′

2k′2
u + O(u2) (16)

of the sphere Σ(u). With (4) we state

9



Theorem 4.1 The unique sphere that touches two tangent planes τ(u0), τ(u1) of

a developable surface Γ in points of the rulings e(u0), e(u1) converges to a limit

sphere Σ(u0) when u1 → u0. The midpoint m(u0) of this limit sphere lies on the

Darboux axis a(u0) of the ruling e(u0) and its radius equals r(u0) = −1/k′(u0).

With m∗(u) from formula (7) and its derivative

(m∗)′(u) =
kk′′

k′2
(u)e(u) +

k′′

k′2
(u)n(u)

(15) simplifies to

m(u) = m∗(0) +
1

2
(m∗)′(0)u + O(u2). (17)

Thus, in the first order approximation the midpoint m of Σ lies halfway between
m∗(0) and m∗(u) = m∗(0) + (m∗)′(0)u + O(u2).

The geometric interpretation of this property is illustrated in Fig. 5. Similar to

(a) (b)

Figure 5: Kinematic generation of (a) a developable surface and (b) an approxi-
mating cone pair

the kinematic generation of a developable surface as a moulding surface (Fig. 5(a),
see section 3) one can give a kinematic generation of its cone pair approximation.
Let a plane ρ rotate around two intersecting axes a1 and a2 as in Figure 5(b).
Then a line e in ρ will trace out a cone pair. Comparing Fig. 5(a) and (b), the set
of Darboux axes a(u) of Γ is replaced by two rotation axes a1(u) and a2(u) which
intersect in the midpoint m(u) of Σ(u) (see Figure 2). Formula (17) reveals this
geometric property.
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4.1 Minimal vertex distance

Let us assume fixed parameter value u for the moment. Σ(u) and its midpoint
m(u) are uniquely determined by the Hermite elements (e(0), τ(0)), (e(u), τ(u)).
There is still a free parameter for the choice of cone pairs Λ1(u), Λ2(u) which
we will now eliminate by minimizing the vertex distance ‖v2(u)− v1(u)‖. Then,
the vertices v1(u) on e1 := e(0) and v2(u) on e2 := e(u) merely depend on u.
For the computation of the vertices v1(u),v2(u) will minimize their distance, see
section 2. One will expect v1(u), v2(u) to approximate l(0), l(u) as the vertex
polygon of the cone spline surface shall approximate the line of regression.

First we need to calculate the points a1(u) and a2(u) where Σ(u) touches
e1 = e(0) and e2 = e(u) (see Figure 6 for a1(u)). With (15) the parameter λ1(u)

Figure 6: Sphere Σ(u) touching (e(0), τ(0)) and (e(u), τ(u)

in a1(u) = l(0) + λ1(u)l′(0) equals

λ1(u) = − k

k′
+

kk′′

2k′2
u + O(u2) (18)

and this leads to

a1(u) =




− k
k′

+ kk′′

2k′2 u + O(u2)

0

0


 . (19)

The second generator e(u) is touched by Σ(u) in a2(u) = l(u) + λ2(u)l′(u) to
parameter

λ2(u) = (m(u) − l(u)) · l′(u).

With (11), (12) and (15) this simplifies to

λ2(u) = − k

k′
+ (

kk′′

2k′2
− 1)u + O(u2) (20)
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and gives

a2(u) =




− k
k′

+ kk′′

2k′2 u + O(u2)

− τ
k′

u + O(u2)

O(u2)


 . (21)

A possible vertex pair v1(u) = a1(u)+µ1(u)e1(u), v2(u) = a2(u)−µ2(u)e2(u)
where e1(u) = l′(0), e2(u) = l′(u) has to fulfill the bilinear relation (1) for
µ1(u), µ2(u). Inserting (19) and (21) in the quadratic equation for the mini-
mization of the vertex distance one obtains the two solutions

µ1(u) = k
k′

+ (− kk′′

2k′2 + 1
3
− 1

6
)u + O(u2),

µ̄1(u) = k
k′

+ (− kk′′

2k′2 + 1
3

+ 1
6
)u + O(u2).

(22)

Note, that one has to evaluate (19) and (21) up to third order in u to obtain (22).

In the following we will identify µ1(u) of (22) as the useful solution while µ̄1(u)
will not lead to a practically useful cone pair. Let us analyze the good solution
first. With (18) and (22) the vertex v1(u) = a1(u) + µ1(u)l′(0) = l(0) + (λ1 +
µ1)l

′(0) simplifies to

v1(u) = l(0) + (
1

6
u + O(u2))l′(0). (23)

Similarly the vertex v2(u) of Λ2(u) equals

v2(u) = l(u) − (
1

6
u + O(u2))l′(u). (24)

The vector ∆v(u) = v2(u) − v1(u) (Fig. 7) which gives the direction of the

Figure 7: Line of regression l(u) with approximating vertex polygon

common generator v1(u)v2(u) of Λ1(u) and Λ2(u) simplifies to

∆v(u) =
2

3
u




1 + O(u2)
κ

2
u + O(u2)

O(u2)


 . (25)
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Thus, the junction generator v1v2 approximates the generator e(u/2): l(u/2) +
λl′(u/2) of Γ, since

l′(u/2) =




1 + O(u2)
κ

2
u + O(u2)

O(u2)


 .

Equations (23) and (24) give

‖v1(u) − l(0)‖ = ‖v2(u) − l(u)‖ =
1

6
u + O(u2)

which, according to (25), asymptotically equals a quarter of the vertex distance

‖v2(u) − v1(u)‖ =
2

3
u + O(u2).

This shows that a cone spline surface generated with the cone pair algorithm
possesses a vertex polygon v1,v2,v3, . . . such that asymptotically

‖v2 − v1‖ + ‖v4 − v3‖ + · · · =

= 2 (‖v1 − l(0)‖ + ‖v3 − v2‖ + ‖v5 − v4‖ + · · ·)

holds true. This uneven distribution of the vertices can be noticed in Figure 8(b)
which shows the development of a cone spline surface computed with minimizing
the vertex distances.

(a) (b)

Figure 8: Cone spline surface (a) and its development (b)

Finally, let us focus on the second solution µ̄1(u) of (22). Completely similar
to the calculations above we obtain vertices

v̄1(u) = l(0) + ( 1
2
u + O(u2))l′(0),

v̄2(u) = l(u) − ( 1
2
u + O(u2))l′(u).
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The vector

∆v̄(u) = v̄2(u) − v̄1(u) =
1

12
u3




κ
2 + O(u)

κ
′ + O(u)

κτ + O(u)




does not approximate the direction of a generator e of Γ. The resulting cone pair
is not practical for the approximation of Γ.

With both solutions µ1 and µ̄1 the cones Λ1(u), Λ2(u) converge to the os-
culating cone ∆(0) at ruling e(0) as u → 0. This can be easily seen, as the
vertices v1(u),v2(u) converge to the point l(0) and the sphere Σ(u) — which is
inscribed to Λi(u) — converges to a sphere that is inscribed ∆(0), according to
Theorem 4.1. The ’bad’ solution µ̄1 will produce a loop in the cone spline surface,
which describes ∆(0) in its limit case.

Note, that the length of ∆v̄(u) is of third order in u in contrast with the
length of ∆v(u) in (25) which is of first order in u. Thus the solution µ̄1 will
— for sufficiently small u — lead to the global minimum of the vertex distance
function.

We summarize:

Theorem 4.2 Let Γ be the tangent surface of a twisted curve l(u) and (e, τ)(ui),
i = 1, 2 two of its rulings plus tangent planes. When sufficiently close rulings

e(u1), e(u2) are joined with a G1-cone pair while minimizing the distance of the

cone vertices, there are two solutions: The global minimum will produce a loop,

whereas the second local minimum provides a practical solution. In both cases the

cone vertices — the singular points of the cone pair — lie close to the line of

regression of Γ.

4.2 Cone pairs via local biarc c̄1, c̄2

Here we will choose the free parameter not by minimizing the vertex distance
‖v2 − v1‖ as in section 4.1 but via a biarc c̄1, c̄2 to parameters λ̄1 = λ̄2 (compare
with Fig. 2 in section 2). c̄1, c̄2 will interpolate the G1-data (ā1,p1), (ā2,p2) where

ā1(u) = a1(u) + (1 − ε) k
k′
· l′(0),

ā2(u) = a2(u) + (1 − ε) k
k′
· l′(u)

(26)

denote points on the rulings e(0) and e(u). The variable ε is chosen such that āi

lie in the region of interest Ω. Note the constant k
k′

we have added in (26), thus
ε gives a linear scaling on e(0) with origin in l(0) for ε = 0 and unit point in a1

for ε = 1.
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The direction vectors

p1(u) = ±(0, 1, 0)T ,

p2(u) = ±n(u) × l′(u)
(27)

are oriented such that they indicate the direction of the biarc c̄i from ā1 to ā2.

Admissible Bézier control points b̄1(u) = ā1(u) + λ̄1(u)p1(u) and b̄2(u) =
ā2(u) − λ̄1(u)p2(u) are described by the bilinear equation (2) in λ̄1, λ̄2. Letting
λ̄1 = λ̄2 one obtains

λ̄1(u) =
−N ±

√
N2 − 4MO

2O

with M = (ā2(u) − ā1(u))2, N = −2(ā2(u) − ā1(u))(p1(u) + p2(u)) and O =
2(p1(u)p2(u) − 1). Equations (19), (21) and (27) give the solution

λ̄1 = λ̄2 =
1

4

∣∣∣
τε

k′

∣∣∣ u + O(u2).

Comparison with ‖ā2(u) − ā1(u)‖ =
∣∣ τε

k′

∣∣ u + O(u2) identifies above solution as a
practical one.

The plane of circle c̄1 is spanned by ā1(u), b̄1(u) = ā1(u) + λ̄1p1(u) and
b̄2(u) = ā2(u) − λ̄2p2(u). Its normal vector equals d(u) = (τ + O(u), O(u), κ +
O(u))T which is, for u → 0, identical with the Darboux vector to generator e(0),
see equation (4). The axis of cone Λ1(u) passes through the midpoint m(u) (see
equation (15)) of Σ(u) and has direction vector d(u). Intersection of this axis
with the generator e(0) gives the cone vertex v1(u) which again has representation
(23). Analogous considerations lead to equation (24) for the second vertex v2(u).

We conclude: In the limit u → 0 the choice of the free parameter via a
local biarc c̄1, c̄2 leads to the same cone pair solutions that can be obtained by
minimizing the vertex distance as described in section 4.1.

5 Example and error diagrams

Figure 9 illustrates our ’cone pair algorithm’: From a developable surface Γ (see
Fig. 9(a)) four rulings plus tangent planes to parameters t0, t1, t2, t3 are chosen
(see Fig. 9(b)). This data is interpolated by a cone spline surface. In Fig. 9(c)
the six circular cone segments are displayed together with the corresponding cone
vertices. In each of the three segments the free parameter was chosen via a local
biarc c̄1, c̄2 with λ̄1 = λ̄2 (see Figure 2).

Figure 10 compares the conical curvature diagram k(t) of above developable
surface Γ to that of its approximating cone spline surface, which is piecewise
constant, obviously. See equation (5) for the definition of the conical curvature.
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(a) (b) (c)

Figure 9: Developable surface (a), G1-Hermite data (b) and approximating cone
spline surface (c)
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Figure 10: Conical curvature diagrams

Finally, Figure 11 gives the approximation error diagram plotted with contour
lines over the parameter domain of Γ. Clearly, errors are zero along the chosen
rulings e(ti), i = 0, . . . , 3. The sign of the approximation error indicates on which
side of Γ the circular cone patches are lying. Here the maximum approximation
error is smaller than 0.01 where the unit length 1 was defined as the length of
the first ruling of Γ.

6 Sphere geometric connections between devel-

opable surfaces and spatial arc splines

In the algorithms of section 2 biarc methods were used to describe circular arc
splines on cone spline surfaces. There is another close relationship to spatial arc
splines, though.

Developable surfaces are the envelopes of their one parameter set of tangent
planes, i.e. they are dual to a spatial curve. Analogously, a cone spline surface is
dual to a G1-spline curve whose segments are conics. We are specially interested
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Figure 11: Approximation errors of example in Figure 9

in cones of revolution which are special examples of developable surfaces whose
tangent planes all touch a one parameter set of spheres, additionally.

This property motivates using 3-dimensional Euclidean sphere geometry in
which the elements are oriented spheres and oriented planes of Euclidean 3-space.
The so-called isotropic model of this geometry can be obtained with a standard
map of the oriented planes to points of a 3-dimensional space. The tangent planes
of a cone of revolution are mapped to isotropic circles. These are, in general,
ellipses whose top projection are Euclidean circles. The ’cone pair algorithm’
summarized in section 2 is transformed to an isotropic biarc scheme that allows
similar analytic treatment to the well-known Euclidean biarc scheme. For more
details we refer to Leopoldseder (2000).

Also, the algorithm of osculating arc splines in Euclidean 3-space described
in the next section can be applied to isotropic 3-space. There, selected isotropic
osculating circles of a given curve are smoothly joined with isotropic arcs to an
isotropic arc spline that osculates (is in second order contact with) the given
curve in the selected data points. Translated back to the standard model of 3-
dimensional Euclidean sphere geometry we obtain an approximation scheme for
developable surfaces Γ where selected osculating cones of Γ are smoothly joined
with cone segments to a G1-cone spline surface (Leopoldseder and Pottmann,
1998).

We summarize: The sphere geometric approach enables to interpret devel-
opable surfaces as curves in an isotropic 3-space and cone spline surfaces as
isotropic arc splines. This curve interpretation gives deeper insight in cone spline
surfaces and enables to find important properties on cone spline algorithms that
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could not easily be proved directly in Euclidean 3-space (see Leopoldseder, 2000)

7 Algorithms on Spatial Arc Splines

Let g = g(t) be a spatial curve in E3 and c1, . . . , cn the osculating circles of g to
parameters t1, . . . , tn. Now each two consecutive osculating circles ci, ci+1 shall be
joined by an arc with G1 continuity at the junction points. Thus, the given curve
g ∈ E3 is approximated by an arc spline where every second arc is an osculating
arc of g. We will call such an arc spline spatial osculating arc spline henceforth.

Note that the case of g being a planar curve has been analyzed by Meek
and Walton (1996). The case of g being a spherical curve has been treated by
Leopoldseder and Pottmann (1998). Obviously, results on spherical curve ap-
proximation can be derived from the planar case by stereographically projecting
the plane onto a sphere. We know that in both cases there exists a one parameter
set of solution arcs joining two given (oriented) circles. In the following we will
restrict ourselves to the non-planar and non-spherical case.

In section 8 we will first present a geometric method of finding an arc c
connecting two oriented circles in E3. Note, that we will tacitly allow a circle
to degenerate to a straight line which one can interpret as a circle with infinite
radius. We will briefly consider all the special cases and see that there are two
complex solutions in the general case.

In section 9 we will take a closer look at the approximation errors and propose
an algorithm for a good segmentation of the given curve g. Choosing appropriate
initial osculating circles ci of g clearly has great influence on the quality of the
approximation. Finally, in section 10 these results are applied to several examples.

8 Method

Let σ1, σ2 be the planes containing the oriented Euclidean circles c1, c2 in E3. We
first assume σi not to be parallel and treat special cases later. Our goal is to
find control points c1,d, c2 of an arc c joining c1, c2 while preserving the circles’
orientation (Figure 12).

Obviously, the middle control point d has to lie on the line s = σ1 ∩ σ2 and
possess equal tangential distance to c1 and c2. To determine the location of d we
will first rotate σ2 around s such that σ2 and σ1 coincide. The chordal line d of
c1 and the rotated circle c̄2 in σ1 contains all points of σ1 with equal tangential
distance to c1 and c̄2. Its equation is

d : 2x(m2 − m1) − (r2
1 − r2

2) + (m2
1 + m2

2) = 0
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Figure 12: Spatial osculating arc spline

where ri denote the radii and mi the midpoints of the circles. The only possible
location of d is the intersection point of d with s. If d lies outside of c1 and c2

the missing two control points c1 and c2 of c can be found by laying tangents
from d to c1 and c2. We obtain two solutions if the orientation of ci is taken into
consideration. These solutions are not real if d lies in the interior of c1 and c2.
Note, that both possibilities to rotate σ2 into σ1 lead to the same point d.

Special cases that have to be treated separately include the spherical case
(s = d) and the planar case (σ1 = σ2), both of them leading to a one parameter
set of solutions. If σ1 ‖ σ2, σ1 6= σ2 the method given above does not work. Here,
the junction points of a solution arc c lie in the common plane of symmetry of c1

and c2 (Figure 13).

Figure 13: Special case: σ1 ‖ σ2

19



If one of the two circles, say c1, is a line, the intersection of c1 with σ2 gives
d. Figure 14 shows one of the solution arcs which is real because d is lying on
the outside of c2. Last but not least, it is obvious that there are no connecting

Figure 14: Special case: c1 is a straight line

arcs in case of two skew lines c1 and c2.

Theorem 8.1 Let c1, c2 denote two oriented circles in Euclidean 3-space E3,

lying in general spatial position. There exist two complex circular arcs c which

join ci with G1-continuity and preserve the orientation of ci. If the two circles ci

are lying in a plane or on a common sphere there is a one parameter family of

solution arcs.

For our algorithm it is necessary that the solution arcs are real, obviously.
This can be guaranteed as we are not interested in joining arcs of two circles
with arbitrary spatial position. Our circles to be joined are osculating circles of
a given spatial curve, and here we can state:

Theorem 8.2 Let g(t) be a piecewise C∞ curve in Euclidean 3-space E3. To any

point g(t1) there exists a parameter interval U = ]t1, t1 + ∆t] ⊂ R such that the

points g(t1) and g(t2), t2 ∈ U can be joined with a Euclidean triarc in the following

way: the first and the third arc of this triarc lie on the Euclidean osculating circles

c1 and c2 of g(t) to parameters t1 and t2. The joining Euclidean arc c is real and

joins c1 and c2 with G1-continuity while preserving the orientation of ci.

The proof can be found in a separate paper (Leopoldseder, 2000) since here
we do not want to deal with the sphere geometric methods necessary for this
proof.
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9 Segmentation

9.1 Error estimates

The approximation errors of a spatial arc spline can be judged easily. Let x be a
point of the given curve g(t) and c one of the arc splines’ segments with Bézier
points bi and midpoint m (Figure 15). It is computationally easy to check if the

Figure 15: Distance of a point x to an arc c

point x lies in the wedge between the planes α1 and α2 through the rotation axis
of c. The Euclidean distance of x to the circle segment c then is

d(x, c) =
√

d2
n + d2

r. (28)

where dn denotes the component lying normal to the circles’ plane σ and dr is
the radial distance. In the following we will orient dr such that dr > 0 indicates
that the normal projection of x onto σ lies outside of c. Also the orientation of c
determines an orientation of σ and thus an orientation of dn. In the degenerating
case of c being a straight line segment the distance d(x, c) again is well-defined
but we will not distinguish between radial and normal components.

If we choose a segmentation g(t1), . . . ,g(tn) of the given curve g(t) the oscu-
lating circles to the parameters t1, . . . , tn will be used in the approximating arc
spline. It is natural to select those points where the osculating circle approximates
g(t) well. Let

g(u) =




u − κ
2 u3

3!
+ O(u4)

κ
u2

2!
+ κ

′ u3

3!
+ O(u4)

κτ u3

3!
+ O(u4)


 (29)

be the Taylor expansion of g(t) at the point g(0) with respect to arc length u
(compare with (11)). The Frenet frame in g(0) is used as coordinate system and
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κ = κ(0), κ
′ = dκ

du
(0) and τ = τ(0) denote the differential invariants evaluated

at g(0). The osculating arc c0 at g(0) has midpoint

m0 = (0,
1

κ
, 0)T . (30)

The third coordinate in (29) gives the normal component

dn(u) =
1

6
κτu3 + O(u4) (31)

of the distance d(u) between g(u) and c0. The radial component is

dr(u) = ‖g̃(u) − m0‖ − r0

where g̃(u) is the normal projection of g(u) into the xy-plane and r0 the radius
of c0. With (29), (30) and r0 = 1

κ
its Taylor expansion simplifies to

dr(u) = −1

6
κ

′u3 + O(u4) (32)

and together with (28) and (31) we have

d(u) =
1

6

√
τ 2κ2 + κ′2u3 + O(u4). (33)

for the distance between g(u) and c0.

The leading term of (33) provides us with a function

F (t) =
1

6

√
τ(t)2κ(t)2 + κ′(t)2 (34)

such that F (ti) indicates the approximation quality of the osculating circle c(ti)
for t → ti. F (ti) = 0 is equivalent to κ

′(ti) = 0, τ(ti) = 0 or κ
′(ti) = 0, κ(ti) = 0.

In the second case c(ti) degenerates to a straight line, in both cases c(ti) and
g = g(t) hyperosculate, i.e. they are in contact of order 3.

9.2 Segmentation algorithm

A segmentation t0 = ta, t1, . . . , tn of the curve g(t), t ∈ [ta, tb] is practicable if the
following three criteria hold true for each segment:

Criterion 1: The connecting circle of c(ti) and c(ti+1) is real.

Criterion 2: The maximal error between the curve g(t), t ∈ [ti, ti+1] and the
resulting triarc does not exceed a chosen error tolerance.
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Figure 16: Violation of Criterion 3

Criterion 3: Both of the two inner joining points of the triarc lie on the right
side of the oriented osculating circles c(ti) and c(ti+1) (compare with the
bad case in Figure 16).

Note, that in some cases a useful arc spline can be constructed, although
criterion 3 is not fulfilled (see example 2, for instance). This depends on
the joining point of the next arc segment, though.

Possible segmentation algorithms include

• The bisection method: One chooses an evenly distributed segmentation
with respect to arc length first. Each segment is bisected for which one of
the criteria given above does not hold true. Clearly, this method is easy
to implement but will not produce evenly distributed segmentations, in
general.

• Longest triarc method: Let t0 = ta be the first segmentation point. The
next one, t1, will be chosen as largest parameter value such that criteria
1 to 3 are still fulfilled. This procedure is repeated for the next segments.
Thus, one minimizes the number of arc segments involved but completely
ignores the geometric properties of the given curve. The approximation of
a closed curve would give different results depending on the starting point,
for instance.

Here a different approach will be proposed. An initial segmentation will be
performed at the local minimas of the function F (t) of (34). Figure 17 shows
F (t) for a polynomial curve of degree 4 which is taken from example 2 of sec-
tion 10. The osculating arcs to parameters t0, t2, t4, t6, t9 well approximate the
curve g(t). These five segmentation points give four triarc segments. As each
of the osculating circles c(t2), c(t4), c(t6) is used in two triarc segments the com-
puted arc spline is composed of nine arc segments (see Figure 23). Figure 18
shows the approximation error of this initial approximation. Note, that in the
third triarc segment [t4, t6] criterion 3 is violated. The resulting arc spline still
is useful although the segment on the osculating arc c(t6) is very short. In order
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Figure 17: Function F (t) for a polynomial curve of degree 4.
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Figure 18: Approximation error d(t) after initial segmentation

to avoid such situations and in order to reduce the error to the desired accuracy
one has to subdivide segments.

For the subdivision point we choose the peak value of the error function d(t)
within a segment (t1, t3, t5, t7). If d(t) has two peaks of approximately the same
value (see for instance Fig. 20 (a), (b) or Fig. 25 ) one either splits in between or
divides into three segments.

After computing the triarc of the segment [t6, t8] still the error tolerance of
0.01 is exceeded at this segment (the corresponding figure for d(t) is not given).
Subdivision at the maximum error gives t7. The final arc spline is presented in
Figure 24 of the next section.

10 Examples and error diagrams

Example 1: Helical curve Figure 19 (a) shows the approximation of a helical
curve (thin curve) by one triarc segment (thick curve) in top view and front

24



(a) (b)

Figure 19: Approximation with (a) one, (b) two triarc segments

view. Figure 19 (b) shows the approximation of the same curve with two triarc
segments. The big octahedrons indicate the curve points whose osculating circles
were computed. The smaller octahedron are the joining points of different arc
segments. In order to better illustrate the spatial position of the arc segments
their end points are connected to their midpoint with thin lines.

Figure 20 (a) and (b) contain diagrams showing the approximation error d(u)
of the helical curve to the arc splines. Here u is the arc length of the helix. The
occurring error has its peaks at the middle arc segment which can also be clearly
seen in Figure 19 (a). Note the different scalings in the diagrams Fig. 20 (a) and
(b) which tend to disguise the fact that the error has decreased approximately
by factor 1/8 because the segment has been bisected.

In Figure 21 the error d(u) of Fig. 20(a) is split into its normal and radial
components dn(u) and dr(u). The function dn(u) shows that the helical curve lies
on both sides of the plane of the middle arc segment. At the point of vanishing dn

the radial distance dr reaches is maximum. While d(u) is smooth the functions
dn(u) and dr(u) have discontinuities at the junction points. This occurs because
of the twist angle between the planes containing the adjacent arc segments. In
the present example the angle between two consecutive planes equals 25.8◦.

Finally, in Figure 22 we look at curvature and torsion diagrams κ(u), τ(u)
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Figure 20: Approximation error d(u) for (a) one, (b) two triarc segments
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Figure 21: (a) Normal component dn(u), (b) radial component dr(u) of the ap-
proximation error d(u) of Fig. 20(a)

of the helical curve, both of them being constant functions. The dotted lines
indicate the curvature and torsion profile of the approximating arc spline. The
small difference in arc length between curve and arc spline has been treated by
scaling. Obviously the curvature of each arc segment is constant but the torsion
profile of the arc spline needs to be explained. As the arcs are planar curves the
torsion is zero at all points except at the junction points where the torsion is not
defined. For a sufficiently smooth curve the torsion τ(t0) at g(t0) can be defined
by the limes

τ(t0) = lim
∆t→0

∠σ(t0)σ(t0 + ∆t)

‖ġ(t0)‖
(35)

where σ(t) denotes the osculating plane at g(t). At the junction points of the arc
spline there is a sudden rotation of the osculating plane around the tangent vector
without a change in arc length. We will take over the term torsion impulse from
Nutbourne and Martin (1988) for this behavior. We will define such a torsion
impulse T at the joining point of two arc segments c1, c2 by

T =
∠σ0σ1

1
2
(l(c1) + l(c2))

(36)

26



nhoGp nQq+p
r

rDs rGrEt
rDs rIu
rDs rDu�t
rDs rEv
rDs rGvEt
rDs rEw

xDs t vGtIs v wGvDsWurIs rGy
rDs rGyErGt
rDs rEyDu
rDs rGyIu<t
rDs rEyGv
rDs rGyEvGt
rDs rEyGw

r xDs t vEtDs vzwGvIsWu

{ nU|+p

} nU|+p

Figure 22: (a) Curvature and (b) torsion diagrams of a helical curve and its
approximation with one triarc

where σi are the circles’ planes and l(ci) the arc lengths of the segment ci.

Example 2: Polynomial curve of degree 4

Figure 23: Approximation of a polynomial curve of degree 4 with four triarc
segments (9 arc segments)

Figure 23 shows the arc spline approximation of a polynomial curve of degree
4. The bigger octahedra indicate the position of the segmentation points. These
have been chosen at the local minima of the function F (t) (Figure 17). After
further subdivision of the segments as described in section 9.2 one obtains an
osculating arc spline composed of 19 arc segments. Figure 24 gives the final
result.

The approximation errors which go with this arc spline are given in Figure 25
Note the different scaling of the diagram compared to Fig. 18. The maximum
absolute error of 0.01 gives a maximum relative error of 0.00025 with respect to
the arc length of 40.8 of the whole curve.

Figure 26(a) gives the curvature diagram of the polynomial curve and the
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Figure 24: Approximation with nine triarc segments (19 arc segments)

~
~D� ~G~G�
~D� ~G~.�
~D� ~G~G�
~D� ~G~G�
~�� ~��

���
� ~
�#�
���
�[�

�[�
���

���
��� �[�

��� ���

�8��� �k~�� �

Figure 25: Approximation error d(t) for the arc spline approximation of Figure 24

piecewise constant curvature function of the arc spline. Figure 26(b) shows the
torsion function τ(t) and the torsion impulses of the approximating arc spline.

11 Future Research

Our Hermite-type approximation algorithms with cone spline surfaces are based
on data coming from a developable surface. In applications, however, one will
usually have discrete data (e.g. a point cloud) which should be approximated by
a developable surface. Also a (closed) curve might be given as boundary curve of
the surface.

It will be a topic of future research to directly compute a cone spline surface
from such data and omit the intermediate stage of finding a developable surface
to the data first, and approximating it with a cone spline surface afterwards.
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Figure 26: (a) Curvature and (b) torsion diagrams of a polynomial curve g(t)
and its arc spline approximation
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