Categoricity Spectra for Rigid Structures

Ekaterina Fokina
Andrey Frolov
and
Iskander Kalimullin

Abstract  For a computable structure $\mathcal{M}$, the categoricity spectrum is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable copies of $\mathcal{M}$. If the spectrum has a least degree, this degree is called the degree of categoricity of $\mathcal{M}$. In this paper we investigate spectra of categoricity for computable rigid structures. In particular, we give examples of rigid structures without degrees of categoricity.

1 Introduction

We study algorithmic properties of isomorphisms between a computable structure $\mathcal{M}$ and its countable copies. A structure $\mathcal{A}$ is computable if $|\mathcal{A}|$ is a computable subset of $\omega$ and all basic predicates and functions are uniformly computable, or equivalently, the atomic diagram $D(\mathcal{A})$, thought of as a subset of $\omega$, is computable.

We will make use of the following fact. Let $\sigma$ be a computable signature and let $\sigma = \bigcup_i \sigma_i$ for a computable sequence of finite signatures $\sigma_0 \subseteq \sigma_1 \subseteq \ldots$. Let $\mathcal{M}$ be a countable structure in the signature $\sigma$. Then $\mathcal{M}$ is computable iff there exists a computable sequence $(\mathcal{M}_i)_{i \in \omega}$ of finite structures such that

1. $\mathcal{M} = \bigcup_i \mathcal{M}_i$,
2. $\mathcal{M}_i \subseteq \mathcal{M}_{i+1}$, for all $i$, and
3. each $\mathcal{M}_i$ is a $\sigma_i$-structure with domain $\{0, \ldots, t_i\}$, where the function sending $i$ to $t_i$ is computable.

In other words, a computable structure is a structure that may be effectively constructed step by step, where at each step we define a larger and larger finite piece of the structure.

2010 Mathematics Subject Classification: 03C57, 03D45
Keywords: computable structure, rigid structure, computably categorical, categoricity spectrum, degree of categoricity
In this paper we are interested in complexity of isomorphisms between computable presentations of a countable structure. The main notion in this area of investigation is that of computable categoricity. This notion has been part of computable model theory since Frohlich and Shepherdson first produced an example of two computable fields that were isomorphic but not computably isomorphic (see [4]). Mal’cev in [7] studied the question of uniqueness of a constructive enumeration for a model and introduced the notion of a recursively stable model. Later in [8] he built isomorphic computable infinite-dimensional vector spaces that were not computably isomorphic. In the same paper he introduced the notion of an autostable model, which is equivalent to that of a computably categorical model. Since then, the definition of computable categoricity has been standardized and relativized to arbitrary Turing degrees $d$, and has been the subject of much study (see, for example, [5, 6]).

**Definition 1.1** A computable structure $\mathcal{M}$ is $d$-computably categorical if, for every computable structure $\mathcal{A}$ isomorphic to $\mathcal{M}$, there exists a $d$-computable isomorphism from $\mathcal{M}$ onto $\mathcal{A}$. In case $d = 0$, we simply say that $\mathcal{M}$ is computably categorical.

As the above mentioned early examples show, a computable structure does not need to be computably categorical. However, some non-computable degree may compute an isomorphism between any two computable copies of the structure. The following definition intends to describe the set of degrees with this property.

**Definition 1.2** Let $\mathcal{M}$ be any computable structure. The categoricity spectrum of $\mathcal{M}$ is the set

$$\text{CatSpec}(\mathcal{M}) = \{d : \mathcal{M} \text{ is } d\text{-computably categorical}\},$$

the set of all Turing degrees capable of computing isomorphisms among arbitrary computable copies of $\mathcal{M}$.

**Definition 1.3** A Turing degree $d$ is the degree of categoricity of $\mathcal{M}$ if $d$ is the least degree in $\text{CatSpec}(\mathcal{M})$, if it exists. Finally, $d$ is categorically definable if it is the degree of categoricity of some computable structure.

This terminology is intended to recall the notions of the spectrum of a structure $\mathcal{A}$, and the degree of the isomorphism class of $\mathcal{A}$, which was defined by Richter in [10] to be the least degree in the spectrum of $\mathcal{A}$, if such a degree exists.

The notion of the categoricity spectrum and of degrees of categoricity was introduced in [3]. The question under investigation was which Turing degrees are categorically definable. Since there are only countably many computable structures, most Turing degrees are not categorically definable. The main result of that paper gave a partial answer for the case of arithmetical degrees. It was later extended to hyperarithmetical degrees by Csima, Franklin and Shore in [2]:

**Theorem 1.4** (Csima, Franklin and Shore in [2])

1. For every computable ordinal $\alpha$, $0^{(\alpha)}$ is the degree of categoricity of a computable structure.
2. For $\alpha$ a computable successor ordinal, every degree $d$-c.e. in and above $0^{(\alpha)}$ is a degree of categoricity.

The structures produced in [2, 3] have the following additional property: they show that the above mentioned degrees are strong degrees of categoricity, where
a degree \( d \) is a **strong degree of categoricity** if there exists a computable structure \( \mathcal{A} \) with computable copies \( \mathcal{B}, \mathcal{M} \) such that \( \mathcal{A} \) is \( d \)-computably categorical and for every isomorphism \( f: \mathcal{B} \rightarrow \mathcal{M} \), \( d \leq_T f \). Obviously, strong degrees of categoricity are degrees of categoricity.

Furthermore, for all suitable \( \alpha \), for all degrees that are c.e. in and above \( 0^{(\alpha)} \), the constructed structures are rigid. Recall that a structure is rigid if it has no nontrivial automorphisms. If a rigid structure \( \mathcal{M} \) is \( d \)-categorical, then it is also \( d \)-stable, that is, every isomorphism from \( \mathcal{M} \) onto a computable copy is \( d \)-computable. When we pass to \( d \)-c.e. structures, we lose the property of rigidity.

Negative results were provided in the same papers [2, 3]. Namely, if \( d \) is a non-hyperarithmetical degree, then \( d \) cannot be a degree of categoricity. That is, non-hyperarithmetical degrees are not categorically definable. Moreover, Anderson and Csima [1] showed that not all hyperarithmetical degrees are degrees of categoricity:

**Theorem 1.5 (Anderson and Csima in [1])**

1. There exists a \( \Sigma^0_2 \) degree that is not categorically definable.
2. Every degree of a set which is 2-generic relative to some perfect tree is not a degree of categoricity.
3. Every noncomputable hyperimmune-free degree is not a degree of categoricity.

Not every computable structure has a degree of categoricity. The first negative example was built by R. Miller in [9]:

**Theorem 1.6 (R. Miller in [9])** There exists a computable field \( F \) with splitting algorithm which is not computably categorical and such that for some \( d_1, d_2 \in \text{CatSpec}(F) \), \( d_1 \wedge d_2 = 0 \).

However, these examples are not rigid structures. We present new series of computable structures with no degree of categoricity that are rigid. The main theorems we prove in the paper are:

**Theorem 2.2** There exists a computable rigid structure with no degree of categoricity.

**Theorem 2.3** For every c.e. non-zero degree \( x \), there exists an \( x \)-computably categorical computable rigid structure with no degree of categoricity.

## 2 Rigid structures with no degree of categoricity

The main goal of this section is to prove Theorems 2.13 and 2.14. Before we prove the results, we study general properties of categoricity spectra for rigid structures. We recall the following classical result:

**Theorem 2.1 (Kleene-Post-Spector)** Let \( a_0, a_1, \ldots, a_n, a_{n+1}, \ldots \) be an increasing sequence of degrees. Then there exist degrees \( b, c \) that are upper bounds of this sequence and no upper bound of \( \{a_n\} \) is a lower bound for \( b, c \). Equivalently: no non-principal countable ideal of degrees has a least upper bound.

**Proposition 2.2** A rigid computable structure \( \mathcal{M} \) has a degree of categoricity iff the degrees of isomorphisms between computable copies of \( \mathcal{M} \) generate a principal ideal.
**Proof** Let $I$ be an ideal generated by degrees of isomorphisms between various computable copies of $\mathcal{M}$. As $\mathcal{M}$ is rigid, the ideal $I$ is countable. A degree $a$ is a degree of categoricity iff $a$ is the least upper bound of $I$. By the Kleene-Post-Spector Theorem it is possible only if $I$ is a principal ideal generated by $a$. 

We now define an auxiliary computable structure $\mathcal{N}$ with universe partitioned computably into four pieces:

$$\{x_i : i \in \omega\} \cup \{a_i : i \in \omega\} \cup \{b_i : i \in \omega\} \cup \{c_i : i \in \omega\}.$$  

We view $\{x_i : i \in \omega\}$ as an $\omega$-chain, while $\{a_i : i \in \omega\}$, $\{b_i : i \in \omega\}$ and $\{c_i : i \in \omega\}$ serve only as witness elements. The language has one binary predicate $P$. In the structure $\mathcal{N}$, $P$ holds of all pairs of each of the following forms

$$(x_i, x_{i+1}) \quad (x_i, a_i) \quad (a_i, b_i) \quad (x_i, c_i)$$  

for every $i \in \omega$.

Now, given arbitrary subsets $A \subseteq B$ of $\omega$, we are going to define a rigid structure $\mathcal{M}(A,B)$ as the substructure of $\mathcal{N}$ on the universe

$$\{x_i : i \in \omega\} \cup \{a_i : i \in \omega\} \cup \{b_i : i \in B\} \cup \{c_i : i \in A\}.$$  

The following picture shows an example of such a structure for the case where $0 \in A; 1 \notin B$ (hence, also $1 \notin A); 2 \in B \setminus A; 3 \notin B; 4 \in A; 5 \in B \setminus A$:

![Diagram showing an example of a structure for the case where 0 ∈ A; 1 ∉ B, hence also 1 ∉ A; 2 ∈ B \ A; 3 ∉ B; 4 ∈ A; 5 ∈ B \ A.](image)

**Proposition 2.3** For given sets $A \subseteq B$, the structure $\mathcal{M}(A,B)$ is computable iff $A, B$ are computably enumerable.

**Proof** We make use of the equivalent definition of a computable structure mentioned in Introduction. Assume $\mathcal{M}(A,B)$ is computable. Then $\mathcal{M}(A,B) = \bigcup_{s \in \omega} \mathcal{M}_s$, where $\{\mathcal{M}_s\}_{s \in \omega}$ is a computable sequence of finite substructures of $\mathcal{M}(A,B)$. Then enumerate $i$ into $A_s$ whenever two witness elements $a_i, c_i$ connected to $x_i$ appear in $\mathcal{M}_s$. Enumerate $i$ into $B_s$ whenever in $\mathcal{M}_s$ we see a witness element $b_i$ connected to an element connected to $x_i$. Both sequences $\{A_s\}_{s \in \omega}, \{B_s\}_{s \in \omega}$ are computable and $\bigcup A_s = A, \bigcup B_s = B$, therefore, $A$ and $B$ are c.e. 

To prove the opposite direction, given $A$ and $B$, consider a pair of their computable enumerations $\{A_i\}_{i \in \omega}, \{B_i\}_{i \in \omega}$, respectively. Build $\mathcal{M}_s$, defining edges according to the information from $A_s, B_s$, that is, whenever $i$ is enumerated into $B_s$, add an edge from $x_i$ to a chain of two witness elements $(a_i, b_i)$; and whenever $i$ is enumerated into $A_s$, add the second witness element $c_i$ connected to $x_i$. Then $\{\mathcal{M}_s\}_{s \in \omega}$ is an increasing computable sequence of finite substructures of $\mathcal{M}$ and $\bigcup \mathcal{M}_s = \mathcal{M}$, thus, $\mathcal{M}$ is computable. 

[Diagram showing an example of a structure for the case where 0 ∈ A; 1 ∉ B, hence also 1 ∉ A; 2 ∈ B \ A; 3 ∉ B; 4 ∈ A; 5 ∈ B \ A.](image)
From the proof of the proposition, it is clear that each computable representation of \( \mathcal{M}(A, B) \) corresponds to a computable enumeration \( \mathcal{P} = \langle \{A_s\}_{s \in \omega}, \{B_s\}_{s \in \omega} \rangle \) of the sets \( A, B \).

Let \( A \subseteq B \) be c.e. sets. We now explain, how different enumerations of the sets \( A, B \) may affect the complexity of isomorphisms between the corresponding copies of \( \mathcal{M}(A, B) \).

Let \( \mathcal{P}' = \langle \{A'_s\}_{s \in \omega}, \{B'_s\}_{s \in \omega} \rangle \) and \( \mathcal{P}'' = \langle \{A''_s\}_{s \in \omega}, \{B''_s\}_{s \in \omega} \rangle \) be two enumerations of the sets \( A, B \) generating two computable presentations \( \mathcal{M}' \) and \( \mathcal{M}'' \) of \( \mathcal{M}(A, B) \), respectively. Suppose we try to build an isomorphism between \( \mathcal{M}' \) and \( \mathcal{M}'' \). There is no problem to construct the isomorphism between the \( \omega \)-chains formed by \( \{x_i\}_{i \in \omega} \) in the both copies. Now assume that a witness element connected to \( x_i \) has appeared in both copies and we want to extend the partial isomorphism we have built so far. If \( i \notin B \), we know that these elements are the only elements connected to \( x_i \)'s in the corresponding copies and can extend the isomorphism. Otherwise we may run into a trouble. Suppose we extended the isomorphism as above, assuming that the appeared elements are the \( a_i \)'s in their copies of \( \mathcal{M}(A, B) \). If \( i \in B \setminus A \), then we are fine, as the elements \( b_i \) will appear later connected to the \( a_i \)'s and we extend the isomorphism in the unique way. However, if \( i \in A \), that is, if, in fact, two elements, \( a_i \) and \( c_i \) are connected to \( x_i \), it may be the case that in one copy, say \( \mathcal{M}' \), the element \( b_i \) will be connected to the element we believe is \( a_i \) and in the second copy it will be connected to the other element connected to \( x_i \) which has not yet appeared. So, at a later stage we will not be able to extend our partial isomorphism.

Consider the same example as above with \( 0 \in A; 1 \notin B; \ldots \). The picture below shows the explained trouble for \( i = 0 \):

\[
\begin{array}{c}
\bullet & x_0 & x_1 & \ldots \\
\bullet & a_0 & c_0 & a_1 \\
\bullet & b_0 \\
\bullet & f(a_0) & f(a_1) \\
\bullet & f(x_0) & f(x_1) & \ldots \\
\end{array}
\]

In other words, in order to avoid the trouble, whenever \( i \) is enumerated into \( A \), we first need to wait for the stage where \( i \) is enumerated into \( B \) and only then extend the isomorphism between the finite structures built up to this stage. With this idea in mind, we define a new function which will be useful for further reasoning.

For a pair of enumerations

\[ \mathcal{P} = \langle \{A_s\}_{s \in \omega}, \{B_s\}_{s \in \omega} \rangle \]
of the sets $A \subseteq B$, define a function
\[ g(\phi(i)) = (\mu s)(\forall t > s)[i \in A_t \implies \phi(t) \implies i \in B_t]. \]
It is not hard to see that
\[ g(\phi) \equiv_T \{ (s, t) | (\forall t > s)[i \in A_t \implies i \in B_t]\}, \]
which gives a \textit{∀}-definition of $g(\phi)$. Thus, $g(\phi)$ has a c.e. degree. Moreover, $g(\phi) \leq_T A, B$.

**Proposition 2.4** For arbitrary pairs of computable enumerations $\mathcal{M}'$ and $\mathcal{M}''$ of $\mathcal{M}(A, B)$ there exists a pair of computable enumerations
\[ \mathcal{P} = \{ \langle A_s \rangle_{s \in \omega}, \langle B_s \rangle_{s \in \omega} \} \]
of the sets $A$ and $B$, such that the isomorphism $f : \mathcal{M}' \rightarrow \mathcal{M}''$ is computable relative to $g(\phi)$.

**Proof** Let $\mathcal{P}' = \{ \langle A'_s \rangle_{s \in \omega}, \langle B'_s \rangle_{s \in \omega} \}$ and $\mathcal{P}'' = \{ \langle A''_s \rangle_{s \in \omega}, \langle B''_s \rangle_{s \in \omega} \}$ be the pairs of computable enumerations of $A$ and $B$ that result from $\mathcal{M}'$ and $\mathcal{M}''$, respectively. Define $\mathcal{P} = \{ \langle A_s \rangle_{s \in \omega}, \langle B_s \rangle_{s \in \omega} \}$ as follows:
\[ A_s = A'_s \cup A''_s, \]
\[ B_s = B'_s \cap B''_s. \]

Now after the step $g(\phi)(i)$ we can be sure that if $i$ has been enumerated into any of $A'_s$ or $A''_s$, it already appeared in both $B'_s, B''_s$. Thus, after the step $g(\phi)(i)$ we know how to extend the isomorphism onto the elements connected to $x_i$ in such a way that it will not be damaged at later stages.

**Proposition 2.5** For an arbitrary pair of computable enumerations
\[ \mathcal{P} = \{ \langle A_s \rangle_{s \in \omega}, \langle B_s \rangle_{s \in \omega} \} \]
of c.e. sets $A$ and $B$, where $A \subseteq B$, there exist computable copies $\mathcal{M}', \mathcal{M}''$ of the structure $\mathcal{M}(A, B)$ such that the function $g(\phi)$ is computable relative to $f : \mathcal{M}' \rightarrow \mathcal{M}''$ (in fact, $f \equiv_T g(\phi)$).

**Proof** Let $\mathcal{M}'$ be the copy of $\mathcal{M}(A, B)$ constructed as described after Proposition 2.2. We build an isomorphic copy $\mathcal{M}''$ in such a way that the isomorphism between the two presentations computes $g(\phi)$. The universe of $\mathcal{M}''$ also is
\[ \{ x_i : i \in \omega \} \cup \{ a_i : i \in \omega \} \cup \{ b_i : i \in B \} \cup \{ c_i : i \in A \}, \]
but the relation $P$ is defined differently. As before, we declare $P$ to be true on all the pairs
\[ (x_i, x_{i+1}) \langle x_i, a_i \rangle \langle x_{i'}, c_i \rangle, \]
whenever the corresponding elements are in the domain of $\mathcal{M}''$. For $i \in B \setminus A$ we connect $b_i$ to $a_i$, as before. But for $i \in A$ we connect $b_i$ to $a_i$ or to $c_i$ depending on whether $i$ was first enumerated into $A$ or $B$: if $i$ is first enumerated into $A$, then $P(c_i, b_i)$ holds in $\mathcal{M}''$, otherwise $P(a_i, b_i)$ holds in $\mathcal{M}''$ (note, that this also includes the case $i \in B \setminus A$). For our example from above, assume that $0$ is enumerated into $A$ before it is enumerated into $B$, but $4$ is first enumerated into $B$. Then the presentations $\mathcal{M}', \mathcal{M}''$ look as follows:
Obviously, the structures $\mathcal{M}'$ and $\mathcal{M}''$ are isomorphic. Moreover, the isomorphism $f$ determines, whether an element was first enumerated into $A$ or $B$, which is enough to compute the function $g_{\mathcal{P}}$.

**Proposition 2.6** The ideal $I$ generated by the degrees of isomorphisms between various computable copies of the structure $\mathcal{M}(A, B)$ may be generated by the degrees of the functions $g_{\mathcal{P}}$ for various pairs of computable enumerations $\mathcal{P} = \langle \{A_s\}_{s \in \omega}, \{B_s\}_{s \in \omega} \rangle$ of the sets $A, B$.

**Proof** Follows directly from Propositions 2.4 and 2.5.

**Proposition 2.7** The structure $\mathcal{M}(A, B)$ is $d$-computably categorical iff for every pair of computable enumerations $\mathcal{P} = \langle \{A_s\}_{s \in \omega}, \{B_s\}_{s \in \omega} \rangle$ of the sets $A, B$, the function $g_{\mathcal{P}}$ is $d$-computable.

**Proof** Follows directly from Propositions 2.4 and 2.5.

**Proposition 2.8** Let $\mathcal{P} = \langle \{A_s\}_{s \in \omega}, \{B_s\}_{s \in \omega} \rangle$

and

$\mathcal{P}' = \langle \{A'_s\}_{s \in \omega}, \{B'_s\}_{s \in \omega} \rangle$

be pairs of computable enumerations of c.e. sets $A \subseteq B$. Then for the pair of computable enumerations $\mathcal{P}'' = \langle \{A_s \cup A'_s\}_{s \in \omega}, \{B_s \cap B'_s\}_{s \in \omega} \rangle$, the function $g_{\mathcal{P}''}$ computes both the functions $g_{\mathcal{P}}$ and $g_{\mathcal{P}'}$.

**Proof** Notice that the inclusion

$(\forall t > s)[i \in A_t \cup A'_t \Rightarrow i \in B_t \cap B'_t]$

directly implies both inclusions

$(\forall t > s)[i \in A_t \Rightarrow i \in B_t]$

and

$(\forall t > s)[i \in A'_t \Rightarrow i \in B'_t]$. 

...
and
\[(\forall t > s)[i \in A'_t \implies i \in B'_t].\]
Therefore, \(g \not\leq_T g \not\leq_T \) and \(g \not\leq_T g \not\leq_T \).

**Proposition 2.9** There exist c.e. sets \(A \subseteq B\) such that the ideal \(I\) generated by the degrees of isomorphisms between various computable copies of the structure \(\mathcal{A}(A, B)\) is not principal.

Before we give a proof of this statement, we will prove a stronger fact:

**Proposition 2.10** There exist c.e. sets \(A \subseteq B\) such that for every c.e. set \(W\), where \(W \leq_T A, W \leq_T B\), there exist a pair of computable enumerations
\[\mathcal{P} = \langle \{A_s\}_{s \in \omega}, \{B_s\}_{s \in \omega} \rangle\]
of the sets \(A, B\), such that \(g \not\leq_T W\).

**Proof** We will construct c.e. sets \(A\) and \(B\) satisfying the requirements below for all c.e. sets \(W\) and Turing operators \(\Phi\) and \(\Psi\):
\[R_{W, \Phi, \Psi} : W = \Phi(A) = \Psi(B) \implies (\exists \mathcal{P})[g \not\leq_T W],\]
where \(\mathcal{P}\) is a pair of computable enumerations of the sets \(A\) and \(B\).

For each triple \(\mathcal{T} = (W, \Phi, \Psi)\) the requirement \(R_{\mathcal{T}}\) will be met by constructing a computable enumeration
\[\mathcal{P} = \mathcal{P}_{\mathcal{T}} = \langle \{A^\mathcal{T}_s\}_{s \in \omega}, \{B^\mathcal{T}_s\}_{s \in \omega} \rangle\]
of the sets \(A\) and \(B\) satisfying the subrequirements
\[R_{\mathcal{T}, \Theta} : W = \Phi(A) = \Psi(B) \implies g \not\leq \Theta \neq (W),\]
for each Turing operator \(\Theta\).

In fact, for our purposes it is enough to define the enumeration \(A^\mathcal{T}_s\) exactly as the enumeration \(A_s\), but it will not be true for \(B^\mathcal{T}_s\) and \(B_s\). At each stage \(s\), we will have
\[A_s = A^\mathcal{T}_s \subseteq B^\mathcal{T}_{s+1} \subseteq B_{s+1}.\]
Also, in the case of \(W = \Phi(A) = \Psi(B)\) we should have the agreement
\[\bigcup_s B_s = \text{dfn } B = B^\mathcal{T} = \text{dfn } \bigcup_s B^\mathcal{T}_s\]
for \(\mathcal{T} = (W, \Phi, \Psi)\). If \(W \neq \Phi(A)\) or \(W \neq \Psi(B)\) we do not care about a disagreement between \(B\) and \(B^\mathcal{T}\).

In the construction below \(\varphi, \psi\) and \(\theta\) denote the use-functions for Turing operators \(\Phi, \Psi\) and \(\Theta\), respectively.

**The strategy for a subrequirement** \(R_{\mathcal{T}, \Theta}\), where \(\mathcal{T} = (W, \Phi, \Psi)\):

1. Choose a sufficiently large witness \(x\), not yet enumerated into \(A\) nor \(B\) (and, therefore, not enumerated into \(A^\mathcal{T}_s\) nor \(B^\mathcal{T}_s\)).
2. Wait for a stage \(s\) such that \(\Theta_s(W_s, x) = 0\) and
\[W_s \upharpoonright \theta_s(W_s; x) = \Phi_s(A_s) \upharpoonright \theta_s(W_s; x).\]
3. Set a priority restrain on enumeration into \(A\) of elements \(a < \varphi_s(A_s; y)\) for all \(y < \theta_s(W_s; x)\).
4. Enumerate \(x\) into \(B_{s+1}\).
5. Temporarily stop the strategies for subrequirements \(R_{\mathcal{T}, \Theta'}, \Theta' \neq \Theta\).
6. Wait for a stage \( t > s \) such that
\[
W_t \models \theta_s(W_t; x) = \Psi_t(B_t) \models \theta_t(W_t; x).
\]
7. Set a priority restrain on enumeration into \( B \) of elements \( b < \psi_t(B_t; y) \) for all \( y < \theta_t(W_t; x) \).
8. Enumerate \( x \) into \( A_{t+1} = A_{t+1}^\mathcal{J} \) and into \( B_{t+2}^\mathcal{J} \) (so that we have \( g_{\mathcal{J}}(x) = t+1 \neq 0 \)).
9. Resume the strategies for subrequirements \( R_{\mathcal{J}} \mathcal{J} \mathcal{O}, \Theta' \neq \Theta \).

End of strategy description.

Possible outcomes of the strategy for \( R_{\mathcal{J}} \mathcal{J} \mathcal{O}, \mathcal{I} = (W, \Phi, \Psi) \):

A. The strategy gets stuck at 2. Then \( W = \Phi(A) \) implies \( \Theta(W; x) \neq 0 = g_{\mathcal{J}}(x) \).
B. The strategy gets stuck at 6. Then either \( \Phi(A) \neq W \) or \( \Psi(B) \neq W \). A resume of strategies for \( R_{\mathcal{J}} \mathcal{J} \mathcal{O}, \Theta' \neq \Theta \) at 9 does not happen, but the resume is not needed since the whole requirement \( R_{\mathcal{J}} \) is satisfied. Also we have \( x \in B - B^\mathcal{J} \) but an agreement between \( B \) and \( B^\mathcal{J} \) is not needed by the same reason.
C. The strategy successfully finishes at 9. Then \( W = \Psi(B) \) implies that \( g_{\mathcal{J}}(x) = 0 = \Theta(W; x) \) since the \( W \)-use of the computation is preserved via \( B \)-restrains at 7.

Of course, the success of the strategy above can happen only if its restraints are not injured. Namely, if a restraint posed at 3 (A-restraint) or 7 (B-restraint) is injured then we can have a simultaneous change in \( W = \Phi(A) = \Psi(B) \) that causes \( 0 \neq g_{\mathcal{J}}(x) = \Theta(W; x) \) in the outcome 2.

This conflict between different strategies can be solved by standard finite injury arguments. Whenever a restraint of a strategy becomes injured by a higher priority strategy, or whenever the execution of 4 (enumeration into \( B \)) or 8 (enumeration into \( A \)) is blocked due to a restraint of higher priority strategy, we should initialize the injured/blocked strategy.

The initialization of a strategy means
- enumeration of the old witness \( x \in B \) into \( B^\mathcal{J} \) (to avoid a disagreement between \( B \) and \( B^\mathcal{J} \)); and
- restart of the strategy with a new witness \( x \).

To get the whole construction we need
- to fix a priority \( \omega \)-ordering of all quadruples \( \langle W, \Phi, \Psi, \Theta \rangle = \langle \mathcal{J}, \Theta \rangle \);
- to assign to each \( \langle W, \Phi, \Psi, \Theta \rangle = \langle \mathcal{J}, \Theta \rangle \) a strategy for the subrequirement \( R_{\mathcal{J}} \mathcal{O} \);
- to simultaneously run all the strategies.

The obtained sets \( A \) and \( B \) will satisfy the necessary conditions since each strategy acts at finitely many stages, therefore, makes only finitely many injuries to strategies of lower priority.

Now we are ready to prove Proposition 2.9.

Proof of Proposition 2.9  Take the sets \( A, B \) constructed in Proposition 2.10 and build the corresponding \( \mathcal{M}(A, B) \). By Proposition 2.4, for every isomorphism \( f \) between two copies of \( \mathcal{M}(A, B) \), there exists a computable enumeration
\[ \mathcal{D} = \langle \{ A \}_{s \in \omega}, \{ B \}_{s \in \omega} \rangle \text{ of } A, B, \text{ such that } f \leq_T g_{\mathcal{D}}. \text{ Recall that } g_{\mathcal{D}} \leq_T A, B. \text{ Let } W \text{ be the c.e. set} \]
\[ W = \{ (x, s) : (\exists t > s) [x \in A \land x \notin B_t] \} \equiv_T g_{\mathcal{D}}, \]

For this \( W \), there exists an enumeration \( \mathcal{P} \) of \( A, B \), such that \( g_{\mathcal{P}} \nleq_T W \) by Proposition 2.10. Then by Proposition 2.5, there exists an isomorphism \( f' \geq_T g_{\mathcal{P}} \) between some computable copies of \( \mathcal{M}(A, B) \). Then \( f' \nleq_T W \), thus, \( f' \nleq_T f \).

Similarly, for a finite set \( f_1, \ldots, f_n \) of isomorphisms between computable copies of \( \mathcal{M}(A, B) \), find the corresponding pairs of enumerations \( \mathcal{D}_1, \ldots, \mathcal{D}_n \). Then by Proposition 2.8 there exists an enumeration \( \mathcal{D} \) such that \( g_{\mathcal{D}} \geq_T \mathcal{D}_1 \wedge \ldots \wedge \mathcal{D}_n \). For \( \mathcal{D} \), find \( \mathcal{P} \) and \( f' \) as above using Proposition 2.10 and 2.5. Then \( f' \nleq_T f_1 \oplus \ldots \oplus f_n \), that is, the ideal is not principal.

Note that the construction of the set \( B \) in the proof of Proposition 2.10 is compatible with the standard c.e. permitting method. Namely, let \( X \) be a c.e. non-computable set, and let \( f \) be a computable function with its range equal to \( X \). We can modify our strategy for the requirements \( R_{\mathcal{P}, \mathcal{D}} \) accepting several active witnesses in the following way.

**Modified requirements** \( R_{\mathcal{P}, \mathcal{D}} \):

1. If there is an active and certified witness \( x > f(s) \), where \( s \) is a current stage, then immediately go to 4 below. Otherwise choose a new active (sufficiently large) witness \( z \), not yet enumerated into \( A \) and \( B \) (and, therefore, into the enumerations \( A_{s}^{\mathcal{P}} \) and \( B_{s}^{\mathcal{P}} \)).
2. Wait for a stage \( s \) such that either \( x > f(s) \) for some active certified witness \( x \), or \( \Theta_{s}(W_{s}, z) = 0 \) and
\[ W_{s} \upharpoonright \Theta_{s}(W_{s}; z) = \Phi_{s}(A_{s}) \upharpoonright \Theta_{s}(W_{s}; z). \]

In the former case we immediately go to 4 below. In the latter case, the active witness becomes certified and immediately go to 3.
3. Set a priority restrain on enumeration into \( A \) of elements \( a < \Phi_{s}(A_{s}; y) \) for all \( y < \Theta_{s}(W_{s}; z) \). Return to 1.
4. Enumerate \( x \) into \( B_{s+1} \ldots \)

(The steps 4–9 are absolutely the same as before.)

Note that if we had infinitely many certified witnesses for a single strategy, then
\[ a \notin X \iff (\exists s)(\exists x > a)[a \notin \{ f(0), \ldots, f(s) \} \land x \text{ is certified at } s], \]
contradicting the non-computability of \( X \). Hence, each strategy certifies only finitely many witnesses, so that the total restraint posed on 3 is finite.

The modified strategy produces the set \( B \) with the property
\[ x \notin B \iff (\exists s)[x \notin B_{s} \land X \upharpoonright x \subseteq \{ f(0), \ldots, f(s) \}], \]
and therefore we have \( B \leq_T X \). Thus, we have proved

**Proposition 2.11** For every c.e. non-computable set \( X \) there exist c.e. sets \( A \subseteq B \) such that \( B \leq_T X \) and for every c.e. set \( W \), where \( W \leq_T A, W \leq_T B \), there exist a pair of computable enumerations
\[ \mathcal{P} = \langle \{ A \}_{s \in \omega}, \{ B \}_{s \in \omega} \rangle \]
of the sets \( A, B \), such that \( g_{\mathcal{P}} \nleq_T W \).
Using Proposition 2.11 instead of Proposition 2.10 we get a “permitting” version of Proposition 2.9.

**Proposition 2.12** For every c.e. non-computable set $X$ there exist c.e. sets $A \subseteq B$ such that $B \leq_T X$ and the ideal $I$ generated by the degrees of isomorphisms between various computable copies of the structure $\mathcal{M}(A, B)$ is not principal.

From Propositions 2.2 and 2.9, we immediately get the main result of the paper:

**Theorem 2.13** There exists a rigid computable structure with no degree of categoricity.

Using Proposition 2.12 instead of Proposition 2.9 we get an even stronger result:

**Theorem 2.14** For every c.e. non-zero degree $x$, there exists an $x$-computably categorical rigid computable structure with no degree of categoricity.

### 3 Open Problems

Even though the notion of computable categoricity appeared in the very beginning of computable model theory, the study of categoricity spectra and degrees of categoricity is a relatively new topic. A number of questions remain unsolved. Here we mention just a couple of them. More can be found in [2, 3].

**Question 3.1** Can a union of two cones be the categoricity spectrum of a computable structure?

**Question 3.2** Can a d-c.e. degree be a degree of categoricity of a rigid structure?

Recall that the known examples are rigid for c.e. degrees of categoricity but not rigid for properly d-c.e. degrees of categoricity.

### References


Acknowledgments

The first author was partially supported by the Austrian Science Fund FWF through the project V206-N13 and by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation through the project NSh-276.2012.1. The second author was partially supported by the Federal Agency of Science and Innovations of the Russian Federation through the project 14.A18.21.0368, by the Russian Foundation for Basic Research through the projects RFBR-12-01-31397, RFBR-12-01-97008, and RFBR-10-01-00399, and by the Russian Foundation President grants through the project MK-3504.2013.1. The third author was partially supported by the Federal Agency of Science and Innovations of the Russian Federation through the projects 14.A18.21.0360 and 14.A18.21.1127, by the Russian Foundation for Basic Research through the projects RFBR-12-01-31389, RFBR-12-01-97008 and by the Russian Foundation President grants through the project MD-4838.2013.1.

Fokina
Kurt Gödel Research Center for Mathematical Logic
University of Vienna
Währingerstraße 25
Vienna 1090
AUSTRIA
efokina@logic.univie.ac.at

Frolov
Department of Mathematics
Kazan (Volga Region) Federal University
18 Krelevskaya str.
Kazan 420008
RUSSIA
Andrey.Frolov@ksu.ru

Kalimullin
N. G. Chebotarev Research Institute of Mechanics and Mathematics
Kazan (Volga Region) Federal University
17 Krelevskaya str.
Kazan 420008
RUSSIA
Iskander.Kalimullin@ksu.ru