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Abstract. Shadow systems are used to establish new asymmetric Lp

volume product and asymmetric Lp volume ratio inequalities, along
with their equality conditions. These inequalities have Reisner’s volume
product inequality for L1 zonotopes as a special case. Moreover,
uniqueness of the extremals in the symmetric setting is obtained.
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1. Introduction

In the last decades, characterizing the minimizers of the volume product,
that is the product of the volumes of a convex body and its polar reciprocal,
has become a central quest. The celebrated Blaschke–Santaló inequality
characterizes ellipsoids as the maximizers of this functional on convex bodies
(compact convex subsets of Rn with nonempty interior). In contrast,
Mahler’s longstanding conjecture that its minimizers are the simplices
remains open, and also the variant of the conjecture for origin-symmetric
convex bodies appears to be extremely difficult to attack. However, due to
the strong research interest in the problem, substantial inroads have been
made (see e.g. [1,3,6,7,10,13,18–20,31,33,34,38,39,41]).

One of the most striking partial results towards Mahler’s conjecture
for origin-symmetric convex bodies is Reisner’s characterization of the
minimizers of the volume product among zonotopes and zonoids, that is
Minkowski sums of origin-symmetric line segments in Rn, and their limits
with respect to the Hausdorff distance [13,38]. Since this important result,
Minkowski addition has been absorbed into the more general concept of
Lp addition for p ≥ 1, and it turned out that many key tools of the
Brunn–Minkowski theory have Lp analogues; see [8, 24, 25]. This progress
sparked the rapid development of a new Lp Brunn–Minkowski theory (see
e.g. [9,12,21,23,26–30,32,35–37,44,46–48,51]).
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However, it took another ten years until an Lp version of Reisner’s
volume product inequality was established. Using a new ingenious antisym-
metrization technique, Campi and Gronchi [7] proved an Lp volume product
inequality—together with its dual volume ratio inequality—that contains
Reisner’s result as a special case. Moreover, an even Orlicz extension was
discovered very recently (see [49]). However, all of these generalizations
are restricted to the origin-symmetric setting and the equality conditions
remained open. In this article we establish inequalities for the asymmetric
Lp volume product and the asymmetric Lp volume ratio, along with a
characterization of the extremals.

The seminal work in the new asymmetric Lp Brunn–Minkowski theory
is Ludwig’s discovery and characterization [22] of both the asymmetric Lp
centroid body operator and the asymmetric Lp projection body operator.
Soon after that, the asymmetric Lp Brunn–Minkowski theory built up
momentum (see e.g. [14–16]). For instance, the asymmetric Lp centroid
body operator turned out to be tailor-made to establish an Lp extension of
the Blaschke–Santaló inequality for all convex bodies [15], whereas earlier
work by Lutwak and Zhang had been limited to the origin-symmetric
setting [32]. However, no reverse isoperimetric inequalities, that is geometric
inequalities that have simplices or parallelepipeds as their extremals, have
been obtained in the asymmetric Lp framework yet.

In this article we establish such sharp reverse isoperimetric inequalities,
along with their equality conditions, for the new notion of asymmetric Lp
zonotope. These zonotopes are the Lp sums of line segments in Rn (n ≥ 2)
with one endpoint at the origin. More precisely, if Λ is a finite set of vectors
from Rn \ {o}, then the associated asymmetric Lp zonotope Z+

p Λ is the
unique compact convex set with support function (see Section 2)

h(Z+
p Λ, u) := p

√∑
w∈Λ
〈w, u〉p+,

where u ∈ Rn and 〈·, ·〉+ = max{0, 〈·, ·〉} denotes the positive part of the
Euclidean scalar product. In particular, the asymmetric L1 zonotopes Z+

1 Λ
are the Minkowski sums of line segments with one endpoint at the origin,
and we observe in Section 2 that these are, up to translation, the classic
origin-symmetric zonotopes. Hence also the asymmetric Lp zonotopes can
be used to embed Reisner’s inequality into an Lp setting.

Our first main result is an asymmetric Lp volume product inequality
that includes, as the special case p = 1, Reisner’s characterization of
parallelepipeds as the minimizers of the volume product among zonotopes.
Throughout this article we call a subset of Rn spanning if it spans Rn. We
always use Λ⊥ = {e1, . . . , en} to denote the canonical basis. Moreover, we
write Z+,∗

p Λ for the polar body of Z+
p Λ with respect to the Santaló point

(see Section 2 for the definition).

Theorem 1. Suppose p ≥ 1 and Λ ⊆ Rn \ {o} is finite and spanning. Then
V (Z+,∗

p Λ)V (Z+
1 Λ) ≥ V (Z+,∗

p Λ⊥)V (Z+
1 Λ⊥)

with equality for p > 1 if and only if Λ is a GL(n) image of the canonical
basis. If p = 1, then equality holds if and only if Z+

1 Λ is a parallelepiped.
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The theorem is an asymmetric counterpart to Campi and Gronchi’s
volume product inequality for symmetric Lp zonotopes [7], which in turn
provides a stronger lower bound under the additional symmetry assumption.
We show in Section 6 how the key ingredients in the proof of Theorem 1 also
yield the Campi–Gronchi inequality together with new equality conditions.

The second main result presented in this article is an asymmetric Lp
volume ratio inequality, and a natural dual to Theorem 1. Surprisingly, the
extremizers turn out to be very different, and we use the notion of obtuse
set to describe them (see e.g. [2]).

Definition. A set Λ of vectors from Rn is called obtuse if every pair of
distinct vectors u, v from Λ satisfies

〈u, v〉+ = 0.

For example, the canonical basis Λ⊥ and its symmetrization Λ⊥ ∪ −Λ⊥
are obtuse. The next theorem states that precisely the GL(n) images of
obtuse sets are the maximizers of the asymmetric Lp volume ratio.

Theorem 2. Suppose p > 1 and Λ ⊆ Rn \ {o} is finite and spanning. Then

V (Z+
p Λ)

V (Z+
1 Λ)

≤
V (Z+

p Λ⊥)
V (Z+

1 Λ⊥)
with equality if and only if Λ is a GL(n) image of an obtuse set.

The Lp volume ratio inequality for origin-symmetric Lp zonotopes has
been established earlier [7]. This result due to Campi and Gronchi, together
with new equality conditions, is in fact a special case of our Theorem 2 (see
Section 6). We remark that a standard limiting argument yields results
similar to Theorem 1 and Theorem 2 in the continuous setting, though
without equality conditions.

The proofs of our main results make critical use of the notion of shadow
system (see e.g [40,45]) and related ideas, techniques and results by Campi–
Gronchi [4–7] and Meyer–Reisner [33]; we provide the definition of this
notion and more general background material in Section 2. In Section 3 we
recall Campi and Gronchi’s stepwise reduction of multisets to the canonical
basis [7], and prove that this process is compatible with the asymmetric Lp
volume product and the asymmetric Lp volume ratio. Some preparatory
lemmas concerning the equality conditions are presented in Section 4, and
we move on to the proof of the main theorems in Section 5. The final
section of this article is dedicated to the symmetric versions of Theorem 1
and Theorem 2.

Acknowledgments. The work of the author was supported by the Aus-
trian Science Fund (FWF), within the project “Minkowski valuations and
geometric inequalities”, project number: P 22388-N13. Part of the work
was done during a research visit to the Institut de Mathématiques de
Toulouse. The author is very grateful to Franck Barthe for his invitation
and hospitality. Moreover, the author thanks Franck Barthe for suggesting
the name obtuse set and a simplification of the proof of Theorem 3.2.
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2. Background material

In the following, we collect the background material that is required for
our main theorems. More specifically, we recall classic definitions and results
from convex geometry, along with recently discovered properties of shadow
systems. In addition to the references indicated below, the reader may wish
to consult the monographs [11,42].

Throughout this article, a convex body is a compact convex subset of Rn
(n ≥ 2) with nonempty interior. If K is a convex body, then we denote by
V (K) its n-dimensional volume and by

h(K,u) = max{〈x, u〉 : x ∈ K}
its support function at u ∈ Rn. The sublinear support function characterizes
a convex body and, conversely, every sublinear function on Rn is the support
function of a nonempty compact convex set. It is an immediate consequence
of the definition that convex bodies K,L satisfy K ⊆ L if and only if
h(K, ·) ≤ h(L, ·).

Support functions can also be used to introduce a concept of duality: for
every interior point s of a convex body K,

Ks = {x ∈ Rn : h(K − s, x) ≤ 1}
defines a convex body that is called the polar body of K with respect to s.
The unique point s in the interior of K that is uniquely determined by the
property that V (Ks) is minimal among all possible choices of s is called the
Santaló point of K and denoted by s(K). To shorten notation, we adopt the
convention to write K∗ for Ks(K). It is well known that polarization with
respect to the Santaló point is translation invariant,

(K + y)∗ = K∗ for y ∈ Rn,

and GL(n) contravariant,

(φK)∗ = φ−TK∗ for φ ∈ GL(n).
Here, φ−T denotes the inverse of the transpose φT of the matrix φ.
In particular, the volume product V (K∗)V (K) is a translation invariant
GL(n) invariant functional on convex bodies, and thus all nondegenerate
parallelepipeds have the same volume product.

In the following, we consider Lp zonotopes associated not only with sets,
as defined in the introduction, but more generally with multisets, that is
sets that may contain more than one copy of an element. More precisely, a
multiset Λ is identified with its multiplicity function Λ : Rn → N∪ {0} that
generalizes the characteristic function of sets. We say that a vector is an
element of a multiset if the corresponding multiplicity function evaluated at
the vector is greater than zero, and call a multiset finite if it contains only
a finite number of vectors. If these vectors span Rn, then we say that the
multiset is spanning.

The elementary operations between multisets can be defined using the
above identification. For instance, the union Λ1]Λ2 of two multisets Λ1,Λ2
has the multiplicity function Λ1 + Λ2, and Λ1 \Λ2 denotes the multiset with
multiplicity function max{Λ1 − Λ2, 0}. We write multisets in the usual set
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notation; that is, Λ = {v1, . . . , vm}, where vectors appear according to their
multiplicity.

Asymmetric Lp zonotopes associated with finite and spanning multisets
Λ = {v1, . . . , vm} are well-defined by their support function (u ∈ Rn)

(1) h(Z+
p Λ, u) = p

√√√√ m∑
i=1
〈vi, u〉p+,

because Minkowski’s inequality, together with the simple inequality
(2) max{0, r + s} ≤ max{0, r}+ max{0, s}
for real numbers r, s, implies that this function is sublinear. Motivated
by this definition, we identify multisets that only differ in the number of
o-vectors they contain, and work with the representative that contains none.
A first simple consequence of definition (1) is that the operator Z+

p on finite
and spanning multisets is GL(n) equivariant: Z+

p φΛ = φZ+
p Λ holds for all

φ ∈ GL(n), because

(3) h(Z+
p φΛ, u)p =

m∑
i=1
〈φvi, u〉p+ =

m∑
i=1
〈vi, φTu〉p+ = h(φZ+

p Λ, u)p

holds for all u ∈ Rn. Moreover, for 1 ≤ p < q < ∞, we have that
Z+
p Λ ⊇ Z+

q Λ; this inclusion follows from the inequality for finite sequences
of nonnegative numbers ai (see [17, Theorem 19])

(4) p

√∑
i

api ≥ q

√∑
i

aqi ,

with equality if and only if only one ai is positive. In particular, all
asymmetric Lp zonotopes associated with finite and spanning multisets have
nonempty interior because they contain the L∞ zonotope, that is the convex
hull of the points in Λ and the origin. Before we move on to shadow systems,
we remark that the case p = 1 of definition (1) is closely related to the
origin-symmetric classic zonotope Z1Λ, where (u ∈ Rn)

h(Z1Λ, u) =
m∑
i=1
|〈vi, u〉|.

More specifically, the computation

h(Z1Λ, u) =
m∑
i=1
|〈vi, u〉| = 2

m∑
i=1
〈vi, u〉+ −

〈 m∑
i=1

vi, u
〉

implies that the two zonotopes Z1Λ and Z+
1 Λ are homothetic:

(5) Z1Λ = 2Z+
1 Λ−

m∑
i=1

vi.

In particular, we have that V (Z+,∗
1 Λ)V (Z+

1 Λ) = V (Z∗1Λ)V (Z1Λ) holds for
all finite and spanning multisets Λ.

The notion of shadow system (or linear parameter system) has been
introduced by Rogers and Shephard [40, 45] to describe certain types of
one-parameter families of points in Rn. For our purposes, all of these families
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depend on a parameter t ∈ [−a−1, 1], where a is a positive real number. In
this article, we consider shadow systems of multisets and shadow systems of
convex bodies.

Definition.
(i) A shadow system of multisets along the direction v ∈ Sn−1 is a

family of finite and spanning multisets Λt, t ∈ [−a−1, 1], such that
Λt = {vi + tβiv : 1 ≤ i ≤ m},

where Λ0 = {v1, . . . , vm} is a finite and spanning multiset and βi,
1 ≤ i ≤ m, are real numbers.

(ii) A shadow system of convex bodies along the direction v ∈ Sn−1 is
a family of convex bodies Kt, t ∈ [−a−1, 1], such that

Kt = conv{x+ tβ(x)v : x ∈M},
where M ⊆ Rn is a bounded set and β is a real-valued bounded
function on M . Here, as usual, conv{x+ tβ(x)v : x ∈M} denotes
the convex hull of the set {x+ tβ(x)v : x ∈M}.

By definition, the orthogonal projection of a shadow system of convex
bodies along the direction v onto the hyperplane v⊥ is independent of the
parameter t. However, it is not hard to see that a one-parameter family
of convex bodies with this property is not necessarily a shadow system.
Campi and Gronchi [4] have shown that shadow systems of convex bodies
are distinguished by properties of their graph functions, where, for a convex
body K and v ∈ Sn−1, the uppergraph function gv(K, ·) and the lowergraph
function g

v
(K, ·) of a convex body K are defined by (x ∈ v⊥)

gv(K,x) := sup{λ ∈ R : x+ λv ∈ K};
g
v
(K,x) := inf{λ ∈ R : x+ λv ∈ K}.

(6)

More precisely, they have obtained the following result. Here and throughout
the paper, ·|H denotes the orthogonal projection onto a hyperplane H.

Theorem 2.1 ([4]). Let Kt, t ∈ [−a−1, 1], be a one-parameter family of
convex bodies such that Kt|v⊥ is independent of t. Then Kt, t ∈ [−a−1, 1],
is a shadow system of convex bodies along the direction v if and only if for
every x ∈ K0|v⊥, the functions t 7→ gv(Kt, x) and t 7→ −g

v
(Kt, x) are convex

and
(7) g

v
(Kλs+µt, x) ≤ λgv(Ks, x) + µg

v
(Kt, x) ≤ gv(Kλs+µt, x)

for every s, t ∈ [−a−1, 1] and λ, µ ∈ (0, 1) such that λ+ µ = 1.

Many useful properties of shadow systems of convex bodies stem from
the fact that they can be viewed as a family of projections of an (n + 1)-
dimensional convex body onto Rn. For instance, Shephard [45] used this
fact to prove the convexity of mixed volumes of shadow systems as a function
of t. In this article we restrict ourselves to the volume.

Theorem 2.2 ([40]). Suppose Kt, t ∈ [−a−1, 1], is a shadow system of
convex bodies. Then V (Kt) is a convex function of t.
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We remark that this theorem is also an immediate consequence of
Theorem 2.1 and Fubini’s theorem. A dual analogue of Theorem 2.2 was
discovered recently: Campi and Gronchi, in the case of origin-symmetric
convex bodies, have established that the volume of polars of shadow systems
of convex bodies with respect to the Santaló point is the inverse of a convex
function [6]. This result has been extended to the general non-symmetric
case by Meyer and Reisner [33].

Theorem 2.3 ([33]). Suppose Kt, t ∈ [−a−1, 1], is a shadow system of
convex bodies. Then V (K∗t )−1 is a convex function of t.

In the spirit of this theorem, it is natural to ask for properties of shadow
systems that satisfy that the map t 7→ V (K∗t )−1 is not only convex, but in
fact affine on [−a−1, 1]. To answer this question, Meyer and Reisner [33]
have proved a characterization theorem under the additional assumption
that the map t 7→ V (Kt) is affine in t.

We conclude the section by summarizing the implications of this theorem
in our setting. In particular, we restrict ourselves to situations where V (Kt)
is independent of t. In the formulation of this theorem, as usual, In−1
denotes the (n− 1)-dimensional identity matrix.

Theorem 2.4 ([33]). Suppose Kt, t ∈ [−a−1, 1], is a shadow system of
convex bodies along the direction v = e1 and V (Kt) is independent of t.
Then the volume of K∗t is independent of t if and only if there are a real
number α and a vector z ∈ R1×(n−1) such that

Kt = tαe1 +
(

1 tz
o In−1

)
K0.

3. Orthogonalization of multisets

Classic symmetrization techniques such as Steiner symmetrization are
frequently used to show that affine invariant functionals attain a global
extremum at ellipsoids. In contrast, proofs of reverse inequalities, where
equality is attained at simplices or parallelepipeds, require some form
of antisymmetrization. The main aim of this section is to recall the
antisymmetrization technique discovered by Campi and Gronchi [7] that
allows to transform multisets to the canonical basis, and thus the associated
zonotopes to parallelepipeds. Remarkably, it is compatible (see Corollary
3.3) with both the inverse asymmetric Lp volume product

1
V (Z+,∗

p Λ)V (Z+
1 Λ)

and the asymmetric Lp volume ratio

V (Z+
p Λ)

V (Z+
1 Λ)

.

This transformation is constructed in the following way: let a > 0 and
suppose Λ = {v1, . . . , vm} is a finite multiset such that Λ \ {v1} is spanning.
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Then set v = ‖v1‖−1v1 and for t ∈ [−a−1, 1] define

(8) Λat = {w1(t), . . . , wn(t)}, where wi(t) =
{
v1 + ta‖v1‖v, i = 1;
vi − t〈vi, v〉v, otherwise.

Apart from the fact that Λa0 = Λ, note that the vector w1(1) is orthogonal
to the remaining vectors in Λ1, while w1(−a−1) = o. Moreover, by
construction, Λt, t ∈ [−a−1, 1], is a shadow system of multisets along the
direction v.

The crucial observation behind this definition is, however, that there is
a real number a > 0 such that the process preserves the volume of the
associated L1 zonotope. By (5), this important result due to Campi and
Gronchi also holds for the asymmetric L1 zonotope:

Theorem 3.1 ([7]). Suppose Λ = {v1, . . . , vm} is a finite multiset such that
Λ\{v1} is spanning. Then there exists a positive number a = a(Λ) such that
V (Z+

1 Λat ) is independent of t, where Λat , t ∈ [−a−1, 1], is defined by (8).

Throughout this article, all orthogonalizations of multisets of the form
(8) will be defined using this canonical choice of a = a(Λ) > 0, and we call
(9) Λt := Λat , t ∈ [−a−1, 1],
the orthogonalization of Λ with respect to v1. Hence, by construction, the
volume of the asymmetric L1 zonotope associated with an orthogonalization
is a constant function of t.

Conversely, there are simple examples that show that V (Z+
p Λt) is not

necessarily independent of t if p > 1. The volume of these zonotopes and
their polars can be controlled using the fact that the family of asymmetric Lp
zonotopes associated with a general shadow system of multisets is a shadow
system of convex bodies. The proof of this statement exploits the fact that
a certain class of operators maps shadow systems to shadow systems (see
e.g. [4,5]). In particular, it is a generalization of a theorem by Campi and
Gronchi [7] (and their proof) to the asymmetric setting.

Before we formulate and prove this theorem, we establish alternative
representations of the graph functions (see e.g. [4]). These will make it easier
to confirm that the hypotheses of the characterization theorem for shadow
systems (Theorem 2.1) are satisfied. Let K be a convex body, v ∈ Sn−1,
and x ∈ v⊥. By definition (6) of the uppergraph function and the definition
of the support function, it follows that

gv(K,x) = sup{λ ∈ R : 〈x+ λv, u〉 ≤ h(K,u) for all u ∈ Rn}
= sup{λ ∈ R : λ〈v, u〉 ≤ h(K,u)− 〈x, u〉 for all u ∈ Rn}.

Due to continuity in u, the inequality
(10) λ〈v, u〉 ≤ h(K,u)− 〈x, u〉
holds for all u ∈ Rn if and only if it holds for all u ∈ Rn \ v⊥. In fact, by
1-homogeneity in u, it is sufficient to consider u ∈ Rn that satisfy |〈v, u〉| = 1.
Since inequality (10) provides an upper bound on λ precisely if 〈v, u〉 > 0,
we may therefore assume that u = v + w, where w ∈ v⊥. Consequently,

gv(K,x) = inf
w∈v⊥

{h(K, v + w)− 〈x,w〉}.(11)
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Similar arguments also give the dual result for the lowergraph function:
g
v
(K,x) = − inf

w∈v⊥
{h(K,−v − w) + 〈x,w〉}(12)

for all x ∈ v⊥.

Theorem 3.2. Suppose p ≥ 1. If Λt, t ∈ [−a−1, 1], is a shadow system
of multisets along the direction v ∈ Sn−1, then Z+

p Λt, t ∈ [−a−1, 1], is a
shadow system of convex bodies along the direction v.

Proof. We adopt the notation used in the formulation of Theorem 2.1:
throughout this proof s and t denote real numbers in [−a−1, 1], x is a
point in Z+

p Λ0|v⊥ , and λ, µ ∈ (0, 1) satisfy λ + µ = 1. Clearly, Z+
p Λt|v⊥

is independent of t, so it remains to show that the hypotheses of Theorem
2.1 on properties of the graph functions are satisfied.

By assumption, the shadow system Λt is equal to, say, {v1(t), . . . , vm(t)}
where vi(t) = vi + tβiv. For notational convenience we define

‖f‖p(t) := p

√√√√ m∑
i=1
|f(vi(t))|p

for real-valued functions f on Rn, and [·]+ := max{·, 0}. With these
definitions the support function of Z+

p Λt can be written in the form (u ∈ Rn)

(13) h(Z+
p Λt, u)p =

m∑
i=1

[〈vi, u〉+ tβi〈v, u〉]p+ = ‖〈·, u〉+‖pp(t).

To establish the convexity of the uppergraph function as a function of t,
we note that, by (11) and (13), gv(Z+

p Λλs+µt, x) is equal to
inf

w1,w2∈v⊥
{‖〈·, v + λw1 + µw2〉+‖p(λs+ µt)− 〈x, λw1 + µw2〉}.

By (13), we have
‖〈·, v + λw1 + µw2〉+‖pp(λs+ µt)

=
m∑
i=1

[
λ
(
〈vi, v + w1〉+ sβi

)
+ µ

(
〈vi, v + w2〉+ tβi

)]p
+ ,

and therefore Minkowski’s inequality implies that
‖〈·, v + λw1 + µw2〉+‖p(λs+ µt)

≤ λ‖〈·, v + w1〉+‖p(s) + µ‖〈·, v + w2〉+‖p(t).
(14)

Thus, an application of inequality (14) together with (11) shows that
(15) gv(Z+

p Λλs+µt, x) ≤ λgv(Z+
p Λs, x) + µgv(Z+

p Λt, x).
Hence the map t 7→ gv(Z+

p Λt, x) is convex.
Since Λt is also a shadow system in direction −v, the vector v can be

replaced by −v in inequality (15). Therefore, by application of the identity
g−v(·, x) = −g

v
(·, x), we obtain that also the map t 7→ −g

v
(Z+

p Λt, x) is
convex.

We proceed with the proof of the only remaining inequality (7). First, we
claim that
(16) g

v
(Z+

p Λλs+µt, x) ≤ λgv(Z+
p Λs, x) + µg

v
(Z+

p Λt, x).
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To see this, put w = µ−1(w1 − λw2) in (12), where w1, w2 ∈ v⊥, to obtain

−µg
v
(Z+

p Λt, x) = inf
w1,w2∈v⊥

{h(Z+
p Λt,−µv − w1 + λw2) + 〈x,w1 − λw2〉}.

Then, by expanding the support function in the right-hand side of this
equation using (13), we observe that −µg

v
(Z+

p Λt, x) is equal to

(17) inf
w1,w2∈v⊥

 p

√√√√ m∑
i=1

[〈vi,−µv − w1 + λw2〉 − βiµt]p+ + 〈x,w1 − λw2〉

 .
Since

〈vi,−µv − w1 + λw2〉 − βiµt
= 〈vi,−v − w1〉 − βi(λs+ µt) + λ〈vi, v + w2〉+ βiλs,

an application of inequality (2), together with Minkowski’s inequality and
(13), yields that expression (17) is dominated by

inf
w1,w2∈v⊥

{
h(Z+

p Λλs+µt,−v − w1) + 〈x,w1〉

+ λh(Z+
p Λs, v + w2)− λ〈x,w2〉

}
.

Thus, by (11) and (12),

(18) − µg
v
(Z+

p Λt, x) ≤ −g
v
(Z+

p Λλs+µt, x) + λgv(Z+
p Λs, x),

which is just the desired inequality (16).
To conclude the proof, we note that the inequality

g−v(Z
+
p Λλs+µt, x) ≤ µg−v(Z+

p Λt, x) + λg−v(Z
+
p Λs, x).

can be derived from inequality (16) by first replacing v by −v, then
interchanging λ and µ, and finally interchanging s and t. Since

g−v(·, x) = −gv(·, x) and g−v(·, x) = −g
v
(·, x)

the remaining second part of inequality (7) follows immediately. �

We conclude the section with a corollary on the implications of this
theorem towards the behavior of the asymmetric Lp volume product and
the asymmetric Lp volume ratio.

Corollary 3.3. Suppose p ≥ 1 and Λ is a finite and spanning multiset. If
Λt, t ∈ [−a−1, 1], is an orthogonalization of Λ defined by (9), then:

(i) The map t 7→ V (Z+,∗
p Λt)−1 is convex. In particular, the inverse

asymmetric Lp volume product associated with Λt is a convex
function of t.

(ii) The map t 7→ V (Z+
p Λt) is convex. In particular, the asymmetric

Lp volume ratio associated with Λt is a convex function of t.

Proof. The volume of the asymmetric L1 zonotope associated with Λt is
independent of t by construction, and Z+

p Λt, t ∈ [−a−1, 1], is a shadow
system of convex bodies by Theorem 3.2. Hence the convexity of the volume
with respect to t, Theorem 2.2, and its dual statement, Theorem 2.3, yield
the assertions. �
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4. The equality conditions

The central result in the previous section (Corollary 3.3) implies that
the inverse asymmetric Lp volume product and the asymmetric Lp volume
ratio are nondecreasing if Λ is replaced by either Λ−a−1 or Λ1, because
convex functions attain global maxima at the boundary of compact intervals.
We establish in Section 5 that iterations of this step yield the inequalities
asserted in our main theorems. However, to study the equality conditions,
it is necessary to determine under which circumstances applications of
Corollary 3.3 strictly increase these functionals.

In this section, we address this issue both directly and indirectly. We
motivate our results by considering the special case Λ = Λ⊥ ] Λe1 , where
Λe1 is a finite multiset of multiples of the first canonical basis vector e1.
For p > 1 we show that multisets Λ of this type have a greater associated
asymmetric Lp volume product than the canonical basis Λ⊥ if Λe1 is not
empty. Moreover, we prove that Λ has the same associated asymmetric Lp
volume ratio as the canonical basis if and only if Λe1 contains at most one
negative multiple of e1.

We first look at multisets that contain vectors that point into the same
direction (that is vectors that are positive multiples of each other) and show
that these are not among the extremizers of both the associated asymmetric
Lp volume product and the associated asymmetric Lp volume ratio.

Lemma 4.1. Suppose p > 1 and Λ is a finite and spanning multiset. Replace
all vectors in Λ that point in the same direction by their sum, and denote
this new multiset by Λ. Then Z+

1 Λ = Z+
1 Λ. Moreover, the inequalities

(19)
V (Z+

p Λ)
V (Z+

1 Λ)
≤
V (Z+

p Λ)
V (Z+

1 Λ)
and V (Z+,∗

p Λ)V (Z+
1 Λ) ≥ V (Z+,∗

p Λ)V (Z+
1 Λ)

hold with equality if and only if Λ = Λ.

Proof. The multiset Λ is equal to, say, {v1, . . . , vm}. By construction of
Λ = {w1, . . . , wk}, there is a partition (Ij)kj=1 of {1, . . . ,m} such that

wj =
∑
i∈Ij

vi

for 1 ≤ j ≤ k, and the vectors in every {vi : i ∈ Ij} point in the same
direction. Thus, Z+

1 Λ = Z+
1 Λ follows from the computation (u ∈ Rn)

h(Z+
1 Λ, u) =

k∑
j=1

∑
i∈Ij

〈u, vi〉


+

=
k∑
j=1

∑
i∈Ij

〈u, vi〉+ = h(Z+
1 Λ, u),

where, again, [·]+ = max{·, 0}. Similarly,

h(Z+
p Λ, u)p =

k∑
j=1

∑
i∈Ij

〈u, vi〉

p
+

=
k∑
j=1

∑
i∈Ij

〈u, vi〉+

p .
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Due to the fact that the L1 sum dominates the Lp sum (see inequality (4)),
we now have

h(Z+
p Λ, u)p ≥

k∑
j=1

∑
i∈Ij

〈u, vi〉p+ = h(Z+
p Λ, u)p

with equality if and only if all sums over i ∈ Ij contain at most one positive
summand. In particular, if Λ 6= Λ because, say, v1 and v2 point in the same
direction, then h(Z+

p Λ, v1) > h(Z+
p Λ, v1). Hence

Z+
p Λ ⊆ Z+

p Λ

with equality if and only if Λ = Λ. The first inequality of (19) now follows
immediately. Moreover, since polarity (with respect to the origin) reverses
set inclusion,

Z+,∗
p Λ = (Z+

p Λ− s(Z+
p Λ))o ⊇ (Z+

p Λ− s(Z+
p Λ))o

with equality if and only if Λ = Λ. Thus the estimate

V (Z+,∗
p Λ) ≥ V ((Z+

p Λ− s(Z+
p Λ))o) ≥ V (Z+,∗

p Λ)

proves the second inequality of (19) together with the asserted equality
conditions. �

In particular, the previous lemma implies that a multiset of the form
Λ⊥ ] Λe1 maximizes the associated asymmetric Lp volume ratio only if
Λe1 = {−µe1}, where µ is a nonnegative number. In fact, the asymmetric Lp
volume ratio attains the same value for all µ ≥ 0, because, more generally,
all obtuse sets have the same associated asymmetric Lp volume ratio. Before
we formulate and establish this proposition, a few remarks on obtuse sets
are in order.

A first observation is that a set that can be written as a disjoint union
Λ⊥ ∪ {v1, . . . , v`} is obtuse if and only if there are disjoint nonempty
subsets I1, . . . , Im of {1, . . . , n} and negative numbers λi such that, for every
j ∈ {1, . . . , `},

(20) vj =
∑
i∈Ij

λiei.

We show in the next lemma that every spanning obtuse set has a linear
image of this type, and establish a property of asymmetric Lp zonotopes
associated with such sets.

Lemma 4.2. Suppose p ≥ 1. If Λ is a spanning obtuse set, then the
following three statements hold:

(i) If B ⊆ Λ is a basis, then the vectors in Λ \ B are pairwise orthogonal
and have nonpositive components with respect to the basis B.

(ii) Every GL(n) image of Λ that contains the canonical basis Λ⊥ is obtuse.
(iii) Suppose in addition that Λ contains the canonical basis. For every

y ∈ Z+
p Λ there is a φ ∈ GL(n) such that φy has nonnegative coordinates

with respect to the canonical basis and Λ⊥ ⊆ φΛ.
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Proof. We start with the proof of assertion (i). For this purpose, let φB
denote the n × n matrix whose columns are the vectors b1, . . . , bn in B. If
v1 is a vector in Λ \B, then there are real numbers λi such that

v1 =
n∑
i=1

λibi.

In other words, v1 = φBλ, where λ is the vector (λ1, . . . , λn)T . Since
〈bj , v1〉 ≤ 0 for every j ∈ {1, . . . , n} by assumption, we have that

(21) (φTBφB)λ has nonpositive components.

The matrix φTBφB is positive definite with nonpositive off-diagonal entries
because Λ is obtuse. Hence (see e.g. [52, pp. 42–45]), observation (21)
implies that every λi is nonpositive. In other words, v1 has nonpositive
components with respect to the basis B. Now let v2 = φBµ denote a
second vector in Λ \ B, where again µ = (µ1, . . . , µn)T . Then (φTBφB)µ
has nonpositive components. By assumption,

0 ≥ 〈v1, v2〉 = (φBλ)T (φBµ) = λT (φTBφB)µ ≥ 0;

thus v1 and v2 are orthogonal.
To prove assertion (ii), let ψ denote a linear map from GL(n) such that

B := ψ−1Λ⊥ ⊆ Λ. We will show that every pair of distinct vectors u, v from
Λ satisfies

(22) 〈ψu, ψv〉 ≤ 0.

If we assume that u, v ∈ B, then (22) follows immediately because ψu and
ψv are distinct canonical basis vectors. To show that (22) also holds if
u ∈ Λ \B, we apply the first part of the lemma: a vector u from Λ \B has
nonpositive coordinates, say λi, with respect to the basis B. Consequently,
if j is such that 〈ψbj , ψv〉 = 1, then

〈ψu, ψv〉 =
〈 m∑
i=1

λiψbi, ψv
〉

= λj ≤ 0.

Only the proof of (22) for u, v ∈ Λ \ B remains. Let λi and µi denote
the coordinates with respect to the basis B of u and v, respectively. These
coordinates induce a partition {Bu,v, Bu, Bv, B0} of B, where

Bu,v = {bi ∈ B : λi 6= 0 and µi 6= 0};
Bu = {bi ∈ B : λi 6= 0 and µi = 0};
Bv = {bi ∈ B : λi = 0 and µi 6= 0};
B0 = {bi ∈ B : λi = 0 and µi = 0}.

(23)

For every bj ∈ Bu,v the set {v} ∪B \ {bj} is a basis. By the first part of the
lemma, bj and u are orthogonal. In particular,

(24) u ⊥ spanBu,v,

where spanBu,v denotes the linear hull of Bu,v. Similarly, the fact that
{u, v} ∪B \ {bj , bk} is a basis when bj ∈ Bu,v and bk ∈ Bu implies that

(25) spanBu,v ⊥ spanBu.
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By (23) and (25), the vector u is the sum of two orthogonal vectors:
u = u1 +u2, where u1 ∈ spanBu,v and u2 ∈ spanBu. Moreover, by (24), the
vector u is orthogonal to u1. This is only possible if u1 = o; thus Bu,v = ∅.
Consequently, the computation

〈ψu, ψv〉 =
n∑

i,j=1
λiµj〈ψbi, ψbj〉 =

n∑
i=1

λiµi = 0

verifies (22) when u, v ∈ Λ \B.
For the proof of assertion (iii) write y =

∑n
i=1 yiei and assume that,

say, yk < 0. By assumption Λ is equal to, say, Λ⊥ ∪ {v1, . . . , v`}, and we
make use of (20) to write every vj as a sum of canonical basis vectors with
negative coefficients. Since h(Z+

p Λ,−ek) > 0, there exists a j such that
k ∈ Ij . Let m(j) denote an index in Ij where max{ yi

λi
: i ∈ Ij} is attained.

Clearly, ym(j) < 0. Now define φ ∈ GL(n) through its action on the basis
{e1, . . . , em(j)−1, vj , em(j)+1, . . . , en}:

φvj = em(j) and φei = ei for i 6= m(j).
Then φΛ clearly contains the canonical basis. Moreover, substituting the
identity

em(j) = 1
λm(j)

vj +
∑

i∈Ij\{m(j)}

−λi
λm(j)

ei

into the right-hand side of

φy =
n∑
i=1

yiφei = ym(j)φem(j) +
∑
i/∈Ij

yiei +
∑

i∈Ij\{m(j)}
yiei,

we obtain

φy =
ym(j)
λm(j)

em(j) +
∑
i/∈Ij

yiei +
∑

i∈Ij\{m(j)}

(
yi − ym(j)

λi
λm(j)

)
ei.

In particular, by definition of m(j), the vector φy has nonnegative coor-
dinates with respect to all canonical basis vectors ei such that i ∈ Ij . The
remaining negative coordinates can be dealt with by iterating this argument.

�

One of the immediate implications of the above lemma is that a spanning
obtuse set contains at least n and not more than 2n vectors. Moreover, we
are now in a position to prove the “if” part of the equality conditions of
Theorem 2.

Proposition 4.3. Suppose p ≥ 1 and Λ is a spanning obtuse set. Then
V (Z+

p Λ)
V (Z+

1 Λ)
=
V (Z+

p Λ⊥)
V (Z+

1 Λ⊥)
.

Proof. By the GL(n) invariance of the asymmetric Lp volume ratio and
Lemma 4.2, we may assume that Λ = {v1, . . . , vm} contains the canonical
basis. In a first step, we establish the dissection formula

(26) Z+
p Λ =

⋃
1≤i1<···<in≤m

Z+
p {vi1 , . . . , vin}.
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Note that only the fact that Z+
p Λ is a subset of the right-hand side of (26)

requires a proof. To this end, let y ∈ Z+
p Λ. It is sufficient to show that there

is a φ ∈ GL(n) such that y ∈ Z+
p φ
−1Λ⊥ and φ−1Λ⊥ ⊆ Λ to establish (26).

It follows from Lemma 4.2 that there is a φ ∈ GL(n) such that φy has
nonnegative coordinates with respect to the canonical basis and Λ⊥ ⊆ φΛ.
Moreover, the set φΛ is obtuse. In particular, say,

φΛ = Λ⊥ ∪ {w1, . . . , w`}
and there are disjoint subsets I1, . . . , I` of {1, . . . , n} and negative numbers
λi such that, for 1 ≤ j ≤ `,

wj =
∑
i∈Ij

λiei.

The support function of the associated asymmetric Lp zonotope is (u ∈ Rn)

h(Z+
p φΛ, u)p =

n∑
i=1
〈ei, u〉p+ +

∑̀
j=1

〈∑
i∈Ij

λiei, u
〉p

+.

Applying inequality (2) and Hölder’s inequality to the right-hand side of
this identity, we obtain

h(Z+
p φΛ, u)p ≤

n∑
i=1
〈ei, u〉p+ +

∑̀
j=1

∑
i∈Ij

〈λiei, u〉+

p

≤
n∑
i=1
〈ei, u〉p+ +

∑̀
j=1

∑
i∈Ij

〈λiei, u〉p+

∑
i∈Ij

1

p−1

.

Therefore,

h(Z+
p φΛ, u)p ≤

n∑
i=1
〈ei, u〉p+ +

∑̀
j=1

∑
i∈Ij

〈|Ij |
p−1

p λiei, u〉p+,

where |Ij | denotes the cardinality of Ij . Hence there exist nonnegative
numbers µ1, . . . , µn such that

Z+
p φΛ ⊆ Z+

p {e1, . . . , en,−µ1e1, . . . ,−µnen}.
In particular,
(27) φy ∈ Z+

p {e1, . . . , en,−µ1e1, . . . ,−µnen}.
It remains to show that (27) holds when µ1 = · · · = µn = 0. First, we
establish (27) for µ1 = 0. To this end, let s ≥ 0 and set

Λ(s) := {e1, . . . , en,−se1,−µ2e2, . . . ,−µnen}
For x ∈ e⊥1 ∩e⊥2 , by (11), the uppergraph function ge2(Z+

p Λ(s), x) is equal
to the infimum of

p

√√√√〈e1, w〉p+ + 〈−se1, w〉p+ +
n∑
i=2
〈ei, e2 + w〉p+ + 〈−µiei, e2 + w〉p+ − 〈x,w〉

over all w ∈ e⊥2 . The scalar product 〈x,w〉 does not depend on the
first component of w, hence it suffices to compute the infimum over all
w ∈ e⊥1 ∩e⊥2 . It is now obvious that the uppergraph function ge2(Z+

p Λ(s), x)
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is independent of s for every x ∈ e⊥1 ∩ e⊥2 . The same argument applied to
the lowergraph function leads to the same conclusion, so we infer that
(28) Z+

p Λ(s) ∩ e⊥1 is independent of s.

Moreover, the support function of Z+
p Λ(s) evaluated at vectors w ∈ e⊥1 is a

constant function of s. Equivalently,
(29) Z+

p Λ(s)|e⊥1 is independent of s.

At s = 1, the convex body Z+
p Λ(1) is symmetric with respect to reflections

in the hyperplane e⊥1 . Together with observations (27), (28), and (29), this
implies

φy|e⊥1 ∈ Z
+
p Λ(µ1)|e⊥1 = Z+

p Λ(1)|e⊥1 = Z+
p Λ(1) ∩ e⊥1 = Z+

p Λ(s) ∩ e⊥1
for all s. In particular, g

e1
(Z+

p Λ(s), φy|e⊥1 ) is nonpositive for all s. Moreover,
by (11), the uppergraph function ge1(Z+

p Λ(s), φy|e⊥1 ) is independent of s,
because, for w ∈ e⊥1 , h(Z+

p Λ(s), e1 + w) is. Hence

φy ∈ {φy|e⊥1 + re1 : 0 ≤ r ≤ ge1(Z+
p Λ(µ1), φy|e⊥1 )}

= {φy|e⊥1 + re1 : 0 ≤ r ≤ ge1(Z+
p Λ(0), φy|e⊥1 )} ⊆ Z+

p Λ(0).

Repeating this argument for µ2, . . . , µn, we have that φy is contained in
Z+
p Λ⊥, which completes the proof of (26).

The intersection of any two distinct parts in the dissection (26) of Z+
p Λ has

volume zero. To see this, let Λ1,Λ2 ⊆ Λ each contain n vectors and assume
that Λ1 6= Λ2. If one of these sets is not spanning, then the intersection
Z+
p Λ1 ∩Z+

p Λ2 is a set of volume zero contained in a hyperplane. Otherwise,
without loss of generality, Λ1 = Λ⊥ and Λ2 does not contain e1. In particular,
h(Z+

p Λ1,−e1) = 0. Moreover, due to the assumption that Λ is obtuse,
h(Z+

p Λ2, e1) = 0. Combining these two observations we obtain that the
intersection Z+

p Λ1∩Z+
p Λ2 is a set of volume zero contained in the hyperplane

e⊥1 .
Consequently, by (26), we have

V (Z+
p Λ) =

∑
1≤i1<···<in≤m

V (Z+
p {vi1 , . . . , vin}).

The GL(n) equivariance of Z+
p together with (26) for p = 1 now implies that

the right-hand side of this equation is equal to∑
1≤i1<···<in≤m

V (Z+
p Λ⊥)

V (Z+
1 Λ⊥)

V (Z+
1 {vi1 , . . . , vin}) =

V (Z+
p Λ⊥)

V (Z+
1 Λ⊥)

V (Z+
1 Λ).

Hence we have proved that

V (Z+
p Λ) =

V (Z+
p Λ⊥)

V (Z+
1 Λ⊥)

V (Z+
1 Λ). �

The situation is different in the case of the asymmetric Lp volume product.
For p > 1 the next lemma asserts that sets of the form Λ⊥ ∪ {−µe1}, where
µ is a positive number, are not among the extremizers of the functional.
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Lemma 4.4. Suppose p ≥ 1 and Λ = Λ⊥ ∪ {−µe1}, where µ > 0. Then

(30) V (Z+,∗
p Λ)V (Z+

1 Λ) ≥ V (Z+,∗
p Λ⊥)V (Z+

1 Λ⊥)

with equality if and only if p = 1.

Proof. Let Λt, t ∈ [−a−1, 1], denote the orthogonalization of Λ with respect
to e1 defined by (9). Corollary 3.3 asserts that the inverse asymmetric Lp
volume product associated with Λt is a convex function of t, so we have

1
V (Z+,∗

p Λ)V (Z+
1 Λ)

≤ max
t∈{−a−1,1}

1
V (Z+,∗

p Λt)V (Z+
1 Λt)

.

By the GL(n) invariance of the asymmetric Lp volume product and the
definition of Λt, the right-hand side of this inequality is just

1
V (Z+,∗

p Λ⊥)V (Z+
1 Λ⊥)

;

thus only the equality conditions of inequality (30) remain to be proven.
That equality holds for p = 1 is an immediate consequence of the fact that

all parallelepipeds have the same volume product, so let p > 1 and assume
that equality holds. Note that then V (Z+,∗

p Λt) is a constant function of t.
By definition (9),

Λt = {(1 + ta)e1,+µ(t− 1)e1, e2, . . . , en}.

In particular, Λt is a spanning obtuse set for every t ∈ [−a−1, 1]. Hence
Proposition 4.3 implies that V (Z+

p Λt) is independent of t and Theorem 2.4
guarantees the existence of a real number α and a vector z ∈ R1×(n−1) such
that

(31) Z+
p Λt = tαe1 + Z+

p φtΛ,

where
φt =

(
1 tz
o In−1

)
.

Equivalently, for all u ∈ Rn,

(32) h(Z+
p Λt, u) = tα〈e1, u〉+ h(Z+

p φtΛ, u).

The constant α can be computed: for all t ∈ [−a−1, 1], the zonotope Z+
p Λt is

symmetric with respect to permutations of all coordinates except the first.
Due to identity (31), this implies that z has n− 1 equal components, say ζ.
If ζ ≤ 0, then by substituting u = e1 and t = 1 in equation (32), we obtain

1 + a = α+ 1;

thus a = α. If ζ > 0, then the same argument with t = −a−1 yields the
same conclusion.

We will now determine z = (ζ, . . . , ζ). Simple computations based on the
representations of the graph functions (11) and (12) show that

ge1(Z+
p Λ1, e2) = g

e1
(Z+

p Λ1, e2) = 0,

or, equivalently,

(33) {e2} = Z+
p Λ1 ∩ ({e2}+ span{e1}).
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Moreover, by (4), the convex body Z+
p φ1Λ contains all the points in φ1Λ.

In particular, it contains ζe1 + e2. Combining this observation with (31) for
t = 1 and (33), we obtain that

e2 = (a+ ζ)e1 + e2;

thus ζ = −a.
Now putting u = e1 + e2 and t = −a−1 in equation (32) leads to the

desired contradiction

1 = −1 + p

√√√√1p + 2p +
n∑
i=3

1p. �

We conclude this section with a lemma due to Reisner [38] on the equality
conditions of Theorem 1 when p = 1. Here, we give a new proof using shadow
systems.

Lemma 4.5. Suppose Λ is a finite and spanning multiset. If Z+
1 Λ is not a

parallelepiped, then Λ is not a minimizer of V (Z+,∗
1 Λ)V (Z+

1 Λ).

Proof. Since the convex bodies Z+
1 Λ and Z1Λ are homothetic by (5), we

may prove the lemma for Z1 instead of Z+
1 .

Up to a linear transformation Λ is equal to, say, Λ⊥ ] {v1, . . . , v`} where
` ≥ 1. By the invariance of Z1Λ under reflections of vectors in the origin,
and Lemma 4.1, we may assume that Λ contains no pair of parallel vectors.
Without loss of generality, Λ \ {e1} is still spanning. Let Λt, t ∈ [−a−1, 1],
denote the orthogonalization of Λ with respect to e1. Then, by (5) and
Corollary 3.3,

(34) 1
V (Z∗1Λ)V (Z1Λ) ≤ max

t∈{−a−1,1}

1
V (Z∗1Λt)V (Z1Λt)

with equality if and only if V (Z∗1Λt) is independent of t.
The proof of the lemma is complete if we can show that (34) is a strict

inequality. Assume that equality holds. By Theorem 2.4 for t = 1, there is
a constant α and a matrix φ ∈ GL(n),

φ =
(

1 z
o In−1

)
for some z ∈ R1×(n−1),

such that

Z1
(
{(1 + a)e1, e2, . . . en, } ] {v1|e⊥1 , . . . , v`|e⊥1 }

)
= αe1 + Z1({e1, φe2, . . . , φen} ] {φv1, . . . , φv`}).

(35)

Moreover, α = 0 because L1 zonotopes are origin-symmetric. Note that the
two zonotopes in equation (35) are generated by multisets that contain only
one vector parallel to e1 each. Because these two vectors, that is (1 + a)e1
and e1, are not equal, and the generating measures of zonoids are unique
(see [42, Theorem 3.5.3]), we have arrived at a contradiction. �
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5. Proofs of the main theorems

We are now in a position to establish the main theorems. In fact, we
prove that these do not only hold for sets, but also for multisets. The core
arguments in both proofs are similar, so we collect them in a lemma.

Lemma 5.1. Suppose Φ is a real-valued GL(n) invariant function on finite
and spanning multisets. Moreover, assume that Φ(Λt) is a convex function
of t whenever Λt, t ∈ [−a−1, 1], is an orthogonalization of a multiset Λ
defined by (9). Then, for every finite and spanning multiset Λ, there exists
a multiset Λe1 of multiples of e1 such that

(36) Φ(Λ) ≤ Φ(Λ⊥ ] Λe1).

Moreover,
(i) if Λ is not a GL(n) image of Λ⊥ and equality holds in (36), then

Λe1 is not the empty set.
(ii) if Λ is not a GL(n) image of an obtuse set and equality holds in

(36), then Λe1 contains a positive multiple of e1.

Proof. By the GL(n) invariance of Φ, we may assume that the multiset Λ
contains the canonical basis. We will transform this Λ into a multiset of the
form Λ⊥ ]Λe1 in a finite number of steps and start with the construction of
one step of this reduction process.

If 1 ≤ i ≤ n is such that Λ \ {ei} is spanning, then let Λt, t ∈ [−a−1, 1],
denote the orthogonalization of Λ with respect to ei; see (9). By assumption,
the map t 7→ Φ(Λt) is convex and hence attains its global maximum at one
of the endpoints of the interval. If the maximum is attained at t = 1, then
we define

(37) Λ[i] := ψ1Λ1,

where ψ1 ∈ GL(n) is the linear map that rescales the ith canonical basis
vector such that Λ[i] again contains the canonical basis Λ⊥. If this function
attains its unique global maximum at t = −a−1, then we choose any
ψ−a−1 ∈ GL(n) that fixes all canonical basis vectors except ei such that
Λ⊥ ⊆ ψ−a−1Λ−a−1 and set

Λ[i] := ψ−a−1Λ−a−1 .

Finally, we define Λ[i] := Λ in situations where Λ \ {ei} is not spanning.
Note that, in all cases, Λ[i] contains the canonical basis and the value of Φ
is not decreased by this transformation:

(38) Φ(Λ) ≤ Φ(Λ[i]).

Moreover, equality holds in inequality (38) only if Λ[i] \ {ei} is just the
orthogonal projection of Λ \ {ei} onto e⊥i .

We will now apply iterations of this process to a given multiset Λ to prove
the lemma. For this purpose, set Λ0 := Λ and define the multisets Λi+1,
i ≥ 0, inductively:

Λi+1 = Λi[n] · · · [2].



SHADOW SYSTEMS OF ASYMMETRIC Lp ZONOTOPES 20

By construction, there is a finite index i⊥ such that Λi⊥ only contains the
canonical basis and multiples of e1. Also, repeated applications of inequality
(38) yield
(39) Φ(Λ) = Φ(Λ0) ≤ · · · ≤ Φ(Λi⊥),
which is just inequality (36).

If Λ is not a GL(n) image of Λ⊥, then, by the GL(n) invariance of Φ, we
may assume that Λ⊥ ⊆ Λ and that Λ \Λ⊥ contains a vector with a nonzero
first component. Under the assumption that equality holds in inequality
(39), the multiset Λi⊥ contains the projection of this vector onto e1. Hence
there is a nonzero multiple of e1 in Λi⊥ \ Λ⊥.

If Λ is not a GL(n) image of an obtuse set, then we may assume that
Λ⊥ ⊆ Λ and Λ \ Λ⊥ contains a vector with a positive first component. As
before, equality in inequality (39) implies that this positive component is
preserved. �

We proceed with a proof of the following slight refinement of Theorem 1.

Theorem 5.2. Suppose p ≥ 1 and Λ is a finite and spanning multiset. Then
V (Z+,∗

p Λ)V (Z+
1 Λ) ≥ V (Z+,∗

p Λ⊥)V (Z+
1 Λ⊥)

with equality for p > 1 if and only if Λ is a GL(n) image of the canonical
basis Λ⊥. If p = 1, then equality holds if and only if Z+

1 Λ is a parallelepiped.

Proof. First let p > 1. The asymmetric Lp volume product is GL(n)
invariant, so there is nothing to show if Λ is a GL(n) image of the canonical
basis. Otherwise, by Corollary 3.3, the inverse asymmetric Lp volume
product

PΛ := 1
V (Z+,∗

p Λ)V (Z+
1 Λ)

satisfies the hypotheses of Lemma 5.1. This lemma asserts that there is a
multiset Λe1 of multiples of e1 such that
(40) PΛ ≤ P(Λ⊥ ] Λe1)
with equality only if Λe1 is not empty. By Lemma 4.1,
(41) P(Λ⊥ ] Λe1) ≤ P(Λ⊥ ] Λe1)
with equality if and only if Λe1 = {−µe1}, where µ ≥ 0. If Λe1 is empty or
contains only positive multiples of e1, then Λ⊥ ] Λe1 is a GL(n) image of
Λ⊥, and inequalities (40) and (41) yield the desired inequality together with
its equality conditions.

Otherwise, by Lemma 4.4,
(42) P(Λ⊥ ] Λe1) < PΛ⊥.

Hence, combining inequalities (40), (41), and (42), we obtain the asserted
inequality,
(43) PΛ < PΛ⊥.
Now let p = 1. Since all parallelepipeds have the same volume product, and
inequality (40) is also valid for p = 1, we obtain that parallelepipeds are
minimizers of the asymmetric L1 volume product. That they are the only
possible minimizers has already been shown in Lemma 4.5. �
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The proof of Theorem 2 for multisets is very similar. Since the application
of Lemma 4.4 is now replaced by an application of Proposition 4.3, we obtain
different equality conditions.

Theorem 5.3. Suppose p > 1 and Λ is a finite and spanning multiset. Then
V (Z+

p Λ)
V (Z+

1 Λ)
≤
V (Z+

p Λ⊥)
V (Z+

1 Λ⊥)
with equality if and only if Λ is a GL(n) image of an obtuse set.

Proof. By Proposition 4.3, we may assume that Λ is not a GL(n) image
of an obtuse set. For brevity of notation, let R denote the asymmetric Lp
volume ratio;

RΛ =
V (Z+

p Λ)
V (Z+

1 Λ)
.

By Corollary 3.3, R satisfies the hypotheses of Lemma 5.1. Thus
(44) RΛ ≤ R(Λ⊥ ] Λe1),
where Λe1 only contains multiples of e1. Moreover, there is at least one
vector with a positive first component in Λe1 unless inequality (44) is a
strict inequality. Now, by Lemma 4.1,
(45) R(Λ⊥ ] Λe1) ≤ R(Λ⊥ ] Λe1).
Note that the set Λ⊥ ] Λe1 is obtuse. So, by Proposition 4.3, combining
inequalities (44) and (45) yields

RΛ ≤ R(Λ⊥ ] Λe1) ≤ R(Λ⊥ ] Λe1) = RΛ⊥.
We have in fact proved that RΛ < RΛ⊥, as desired, because Lemma
4.1 also implies that equality cannot hold in inequalities (44) and (45)
simultaneously. �

6. Symmetric Lp zonotopes

In this final section we show how our asymmetric extension of the Campi–
Gronchi approach also yields the reverse affine isoperimetric inequalities
for the symmetric Lp zonotopes obtained in [7]—along with new equality
conditions. These zonotopes have been introduced by Schneider and Weil
in [43].

The symmetric Lp zonotope ZpΛ associated with a finite and spanning
multiset Λ = {v1, . . . , vm} is the convex body with support function (u ∈ Rn)

h(ZpΛ, u) = p

√√√√ m∑
i=1
|〈vi, u〉|p.

Again, we denote by Z∗pΛ the polar body of ZpΛ with respect to the
Santaló point. Since every ZpΛ is origin-symmetric, the Santaló point of
these zonotopes in fact always lies at the origin.

Moreover, the symmetric Lp zonotopes are closely related to the asym-
metric Lp zonotopes: the observation

m∑
i=1
|〈vi, u〉|p =

m∑
i=1

(
〈vi, u〉p+ + 〈−vi, u〉p+

)
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implies that ZpΛ = Z+
p (Λ ] −Λ). In particular, the operator Zp is GL(n)

equivariant and the symmetric Lp volume product V (Z∗pΛ)V (Z1Λ) is GL(n)
invariant. Reisner (for p = 1; see [38]) and Campi and Gronchi (for p ≥ 1;
see [7]) have proved that this functional attains its minimum at the canonical
basis. Moreover, Lutwak, Yang, and Zhang have established inequalities
closely related to the case p = 2 [28]. We extend Campi and Gronchi’s
theorem to multisets and settle the missing equality conditions for p > 1.

Theorem 6.1. Suppose p ≥ 1 and Λ is a finite and spanning multiset. Then
V (Z∗pΛ)V (Z1Λ) ≥ V (Z∗pΛ⊥)V (Z1Λ⊥)

with equality for p > 1 if and only if Λ is a GL(n) image of the canonical
basis Λ⊥. If p = 1, then equality holds if and only if Z1Λ is a parallelepiped.

Proof. By (5), the case p = 1 is just the assertion of Theorem 5.2,
so let p > 1. We may assume that Λ is not a GL(n) image of the
canonical basis. If Λt denotes an orthogonalization of Λ defined by (9),
then Λt ] −Λt is a shadow system of multisets. Hence Theorem 3.2 implies
that ZpΛt = Z+

p (Λt]−Λt) is a shadow system of convex bodies. By Theorem
2.3 it follows that the map

Λ 7→ 1
V (Z∗pΛ)V (Z1Λ)

satisfies the assumptions of Lemma 5.1, which, in turn, guarantees the
existence of a multiset Λe1 of multiples of e1 such that

V (Z∗pΛ)V (Z1Λ) ≥ V (Z∗p(Λ⊥ ] Λe1))V (Z1(Λ⊥ ] Λe1)),
with equality only if Λe1 is not the empty set. The right-hand side of this
inequality is equal to

V (Z+,∗
p (Λ⊥ ] −Λ⊥ ] Λe1 ] −Λe1))V (Z+

1 (Λ⊥ ] −Λ⊥ ] Λe1 ] −Λe1)),
and, by Lemma 4.1, dominates V (Z∗pΛ⊥)V (Z1Λ⊥) with equality if and only
if Λe1 is the empty set. Thus we have proved

V (Z∗pΛ)V (Z1Λ) ≥ V (Z∗pΛ⊥)V (Z1Λ⊥)
together with the desired equality conditions. �

Our last result is Campi and Gronchi’s [7] symmetric Lp volume ratio
inequality. Due to the fact that the upper bound of the asymmetric Lp
volume ratio is also attained at the obtuse set Λ⊥ ∪ −Λ⊥, it is a direct
consequence of Theorem 2. We provide the slightly more general version for
multisets, which follows from Theorem 5.3. Note that the equality conditions
of Theorem 6.1, and its dual, Theorem 6.2, are the same in the symmetric
setting. Again, the case p = 2 is closely related to work of Lutwak, Yang,
and Zhang [28].

Theorem 6.2. Suppose p > 1 and Λ is a finite and spanning multiset. Then
V (ZpΛ)
V (Z1Λ) ≤

V (ZpΛ⊥)
V (Z1Λ⊥)

with equality for p > 1 if and only if Λ is a GL(n) image of the canonical
basis Λ⊥.
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Proof. We may assume that Λ contains the canonical basis Λ⊥. Since
ZqΛ = Z+

q (Λ ] −Λ) for all q ≥ 1, we observe that Theorem 5.3 implies

(46) V (ZpΛ)
V (Z1Λ) =

V (Z+
p (Λ ] −Λ))

V (Z+
1 (Λ ] −Λ))

≤
V (Z+

p Λ⊥)
V (Z+

1 Λ⊥)
.

Equality in inequality (46) holds if and only if Λ ] −Λ is a GL(n) image
of an obtuse set, that is, if and only if Λ = Λ⊥. All obtuse sets have the
same associated asymmetric Lp volume ratio, hence the right-hand side of
inequality (46) is equal to

V (Z+
p (Λ⊥ ] −Λ⊥))

V (Z+
1 (Λ⊥ ] −Λ⊥))

= V (ZpΛ⊥)
V (Z1Λ⊥) .

This observation, together with inequality (46), completes the proof. �
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