MEASURING CORTICAL THICKNESS FROM VOLUMETRIC MRI DATA
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ABSTRACT

Cortical thickness is one of the most fundamental measure-
ments for population and longitudinal studies in brain imag-
ing. Therefore, measuring cortical thickness from MRI data
is an important topic in computational brain imaging. In this
work we present a new approach for measuring cortical thick-
ness that is based on fitting balls into the gray matter mantle of
the brain by maximizing the amount of probability-weighted
gray matter that is contained in each ball. Previous methods
often solely measure the distance between the extracted inner
and outer boundary surfaces of the gray matter, and ignore
the underlying probabilities that are assigned to each voxel
in the MRI volume, a natural consequence of noise and par-
tial volume effects present in MRI. Moreover, our proposed
framework works directly on the volumetric data, without re-
lying on an accurate segmentation, which is only used as an
initial condition for the optimization step. We present the un-
derlying concepts of the proposed framework and examples.

Index Terms— Magnetic resonance imaging, thickness
measurement, computational anatomy.

1. INTRODUCTION

Neuroscience has shown a long term interest in measuring
cortical thickness, beginning with the manual measurements
of [1, 3]. In recent years automatic approaches have been
proposed that estimate cortical thickness from Magnetic Res-
onance Imaging (MRI), e.g., [4, 8, 9, 10, 19]. Measurements
of the cortical thickness support neuroscientists in their in-
vestigations of normal and abnormal change in the cerebral
cortex and are therefore of great current interest (see [17] and
the references therein). Studies have suggested that various
diseases such as AIDS or Alzheimer may affect the cortical
thickness [18]. Thus, by measuring the change of the corti-
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cal thickness one hopes to earlier detect certain diseases and
provide better cures for the patients.

Cortical thickness varies over different regions of the brain
in the range of 2 — 5mm. Ideally, one would like to measure
cortical thickness in-vivo as the length of the axonal connec-
tions along the columnar organization of the cortex [9, 10].
However, due to the current limited resolution of MRI (usu-
ally 1 mm3, improving at high magnetic fields), the axonal
connections are not distinguishable and thus such a measure-
ment is not currently possible. Therefore, alternative mea-
surements for cortical thickness based on MRI data have been
proposed. These approaches can be categorized into surface
and volume based methods. Most of the existing methods
work with the boundary surfaces of white matter and gray
matter (WM/GM surface, inner surface) and gray matter and
cerebro-spinal fluids (GM/CSF surface, outer surface). Once
these surfaces are extracted from the MRI data, surface based
methods either compute the minimum Euclidean distance be-
tween points on the inner surface to points on the outer surface
[4, 8,9, 11], or solve the Laplace equation, [6, 7], and measure
cortical thickness along the characteristics of the heat flow
from inner to outer surface (see Fig. 1 for an illustration). A
Bayesian construction of cortical thickness based on the ex-
tracted surfaces was proposed by [12]. The volume based
method of [10] is purely voxel-based and avoids the extrac-
tion of the said boundary surfaces as meshes. The voxels are
(hard) classified into belonging to WM, GM, CSF and then
cortical thickness is estimated using a 3D Euclidean distance
transform w.r.t. the voxels of the WM boundary.

With the approach proposed in the present paper we aim at
improving currently available methods in the following main
directions. So far, once the segmentation of the MRI vol-
ume data into WM, GM and CSF voxels is performed, it is
ignored that each voxel actually has a certain probability of
belonging to either WM, GM or CSF. This is a natural con-
sequence of partial volume effects and noise in the MRI, and
ignoring these probabilities translates into throwing away im-
portant available information. To bring these probabilities
back into cortical thickness estimation, we employ a set of
balls that we center in the gray matter mantle by optimizing
their position and radius via minimizing an appropriate en-
ergy function. The cortical thickness is then estimated from



the optimized set of balls. We thereby avoid accurate hard
segmentation, which is often problematic and not achievable,
and use the whole MRI data and not just the results of hard
labelling processes. Our underlying approach is presented in
Section 2 and initial results are discussed in Section 3. Before
this, we briefly review some previous work in the subject.

1.1. Previous Work

There are various ways of measuring cortical thickness in the
literature and the research community has not yet agreed on
a precise definition of a thickness measure that can be com-
puted from MRI brain data. Here we discuss previous work
that uses the extracted inner and outer surfaces for distance
computations. These methods suffer from inaccuracy in the
segmentation process and discard in the way important avail-
able information at the moment they make hard labelling de-
cisions. The connections of these works with ours will be
clear after their presentation.

So-called coupled surface methods [4, 11] define the cor-
tical thickness as the Euclidean distance between correspond-
ing points on the inner and outer surface. This thickness mea-
sure has the disadvantage that if the surfaces are shifted then
the correspondence does not yield a meaningful distance mea-
sure (Fig. 1(a)).

The closest point methods such as [12] compute for each
point on one surface the closest point on the other surface.
The main problem here is that this thickness definition is not
symmetric, which means that we do not get the same measure
if we interchange inner and outer surface (Fig. 1(b)). Further-
more, this definition significantly underestimates the cortical
thickness in areas of high curvature (Fig. 1(b)).

Laplace methods [6, 7, 19] solve Laplace’s equation for
the potential between the inner and outer surface, thereby
providing a more elaborated point correspondence between
both surfaces. Then the length of the flow lines — which
are orthogonal to both surfaces — defines the cortical thick-
ness (Fig. 1(c)). This mathematical model has been argued to
give an anatomically plausible thickness measure, it assigns
to each voxel in the gray matter mantle a unique curve (flow
line) that measures the thickness. Still, the method solely
works with the extracted surfaces and does not take into ac-
count the probabilities with which each voxel belongs to ei-
ther GM, WM, or CSF.

2. METHODS

Computing cortical thickness from MRI brain images is fun-
damentally based on the classification of brain matter into the
major tissue classes: gray-matter (GM), white-matter (WM)
and cerebro-spinal fluid (CSF). In previous work this classifi-
cation is used to extract the WM/GM and GM/CSF boundary
surfaces. Then the cortical thickness (i.e., the thickness of the
gray matter mantle) is computed using these two boundary
surfaces of the gray matter. In our work we follow these tradi-
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Fig. 1. lllustrating various ways of measuring cortical thick-
ness based on the inner and outer surface: (a) coupled-
surface methods, (b) closest point methods, (c) Laplace meth-
ods, (d) our method.

tional steps just to get a first estimate for the cortical thickness
and to generate initial positions and radii for the balls we use
in our optimization procedure. These initial ball positions and
radii are then subject to optimization using the original MR
image information. We are thereby not so strongly affected
by inaccuracies in the segmentation and we use the whole
available MRI information and not just the (often wrongly) la-
belled one. In addition, in contrast with the above mentioned
approaches, the proposed technique is not based on explicit
point correspondences between the gray matter boundaries.

2.1. Initial Positions and Radii of Balls

The T1-weighted MRI brain volumes we used (1 mm? iso-

tropic voxels) were acquired at the Montreal Neurologic Insti-
tute and provided to us by Dr. Alan C. Evans. Using the Brain
Extraction Tool' [16], skull stripping was performed and af-
terwards the inner and outer surfaces were extracted using
FreeSurfer? [5]. Using topologically correct triangle meshes
of the inner and outer surface we compute pairs (a;, b;) of
corresponding closest points on both surfaces as in [4]. Then
the midpoint ¢; = 1/2(a;+b;) gives the initial center position
for the ball B; and r; = ||a; — b;|| is the initial radius. While
most prior techniques will end up here (with variations in the
computation of the correspondences and distances, which we

1 Brain Extraction Tool (BET), see http://www.fmrib.ox.ac.uk/fsl/bet/
2 FreeSurfer, see http://surfernmr.mgh.harvard.edu/



Fig. 2. Balls used for cortical thickness estimation: (left) the
initial position, (middle) radius optimization, (right) simulta-
neous radius and center position optimization.

could incorporate as well), this is just the initialization for our
proposed approach, further optimizing for the position and
radius of these balls.

2.2. Partial Volume Estimation

Due in part to the limited spatial resolution of the scanning
devices and the strongly folded structure of the brain, noise is
introduced in medical images, including that which is known
as the partial volume effect (PVE). In addition to being noisy,
a single voxel in an MR image may be composed as a mix-
ture of tissue types and hence a so-called soft segmentation
method is advantageous over a strict classification into ex-
actly one class. The partial volume effect may lead to er-
roneous surface segmentation, [15], and thus wrong cortical
thickness estimates if the measure is solely based on the ex-
tracted inner and outer surface. Note that considering the av-
erage gray matter thickness and the MRI resolution, an error
in one voxel classification could lead to thickness estimations
biased by 25-50%.

Partial volume estimation, i.e. the estimation of the amount
of each tissue type within each voxel, has received consid-
erable interest in the literature (see [14] and the references
therein). Since partial volume estimation is not the topic of
the present paper, for illustration of our proposed framework
we use a naive Bayes classifier, [2], and obtain a posterior
probability Pg s, Pw s, and Pogp of each voxel belonging
to GM, WM, and CSF. However, we are aware that a more so-
phisticated approach such as the one presented in [14] would
likely improve our results. In order to achieve sub-voxel accu-
racy and better control over the PVE problem, we sub-sample
the voxel data. Using trilinear interpolation we divide each
voxel into first 8 smaller congruent cubes and then by repeat-
ing the procedure into a total of 64 sub-voxels.

Fig. 3. Computed thickness color coded onto the outer sur-
face of two different hemispheres (blue thinner, red thicker).

2.3. The Optimization Function

Given a ball B with center ¢ = (x,y, z) and radius r, we
formulate the following objective function,

F(z,y,2,7) =Y Pan(v)—aPwuy(v)—BPosr(v), (1)
vEB

where we sum the posterior probabilities over all sub-voxels
v contained in the ball B. The goal is to maximize the objec-
tive function to get a ball that contains as much gray matter as
possible and as little white matter and cerebro-spinal fluids,
weighted by their actual probability (in contrast with classi-
cal approaches where voxels are pre-classified and then those
in the gray matter count as “one” and outside of it count as
“zero”). The parameters « and 3 control how strong the ob-
jective function penalizes the posterior probabilities of non-
gray matter tissues.

Our optimization framework now proceeds in the follow-
ing way. To correct for possible over- and underestimates
in the initial thickness we first solely optimize the radius of
each ball by minimizing the modified objective function F'(r)
where the only variable is the radius r. Then we build a prior-
ity queue such that those balls that need further optimization
are processed first. To quickly assess the current quality of a
ball we use the ball B and an offset ball B, with radius r + d.
Then we classify the sub-voxels inside the mantle B4\B. A
ball is in good position if B only contains gray matter voxels
with a probability greater than 1/2 and if B,\ B contains for
all three matters (GM, WM, CSF) voxels with a probability
greater than 1/2. According to the priority queue build with
the ball and offset ball (“bad” balls are dealt with first), we
now optimize the center position and the radius with a trust
region optimization [13] maximizing F'(z,y, z, r) of Equ. (1).

3. EXAMPLES AND DISCUSSION

We present results of our algorithm on two different MRI
brain volumes. Fig. 2 shows the set of balls in their initial po-
sition, after radius optimization, and in their final optimized
position. Fig. 2 (top row) illustrates the complete set of balls.
Fig. 2 (bottom row) shows one slice of the MRI data over-
laid with the intersection curves of the inner and outer surface
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Fig. 4. Initial and final thickness distribution for one brain.

and the circular intersections of the set of balls. Figure 3 illus-
trates the computed thickness color coded on the outer surface
for two different hemispheres. Figure 4 illustrates the initial
and final thickness distribution. The shift towards a slightly
larger thickness is expected since we start with a conservative
estimation.

There are a number of issues we would like to further
improve in future work. The current black box trust region
optimizer we are using lets some balls blow up. On aver-
age roughly 3% of all balls suffer from these numerical insta-
bilities and these balls are clearly seen in Fig. 2 as the ones
that are obviously too large and out of place. Since currently
each ball is optimized independently from the other balls the
overall set of balls is not distributed optimally. We plan to
address this issue by means of a relaxation that shall dis-
tribute the balls more regularly throughout the gray matter. By
means of decimation we would like to optimize the number
of balls necessary to give a sufficiently detailed cortical thick-
ness measure. To validate our results we need to compare
them to thickness estimates computed with other approaches.

To avoid using the extracted inner and outer surfaces we
could employ the following user interaction. A human expert
clicks one point as the center for the first ball inside the gray
matter mantle. This seed ball is then optimized automatically
and we could propagate balls further throughout the whole
gray matter mantle.

Results in these directions will be reported elsewhere.
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