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ABSTRACT. We consider the g-ary expansion N = Zk bx (N, g)g* of non-
negative integers IV and prove various results on the distribution and the mean
value of the k-th digit bg (N, g) if g varies in an interval of the form 2 < g <
N". As an application we also consider the average value of the sum-of-digits
function s(N,g) = >, bx(N, g).

1. INTRODUCTION

Let ¢ > 2 be an given integer. Then every non-negative integer N can be
uniquely represented in its g-ary expansion

N =Y b(N,g)g" (1.1)
k>0
with digits
bk(Nag) € {0715--- g — 1}

It is an easy exercise to show that

nig) = [of 2 ). (12)

where [z] is the integer value of z, i.e. [x] = max{k € Z : k < z}, and {2} = z — [z]
denotes the fractional part of z. In other words, we have

N b b+1
The g-ary sum-of-digits function s(N,g) is defined by
s(N,9) =Y br(n,9)- (1.4)
£>0
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It is well known that the average value of the k-th digit is given by
—Zbkng —+(9< ) (1.5)
n<N

as N — oo, and similarly for the sum—of—digits function:!

—1llogN
= Z (n,g 2 log +0Q). (1.6)
n<N og9

The purpose of this paper is to study the average value of the k-th digit and
the sum-of-digits function from a different point of view. We want to consider the
average values

1 G

G 2 bk(Ns9) (1.7)
and

1 G

G2 s(N.g), (1.8)

where G = G(N) > N" for some 1 > 0, and the distribution function
1 N
—# {2 <g<G: be(N, 9) ,g) :c} .
G 9

of the normalized digits b; (N, g)/g. The main tools we use are exponential sums
and ¢-sums (where 1)(z) = & — [z] — § denotes the first Bernoulli polynomial).

2. RESULTS

2.1. Distribution of the k-th digit. We first consider the distribution of the
k-th digit b (N, g). For this purpose set

Ap(G,N;a,b) =#{2< g < G:bx(N,g9)/g € [a,)}, (2.1)

where 0 < a < b < 1. Note that bg(N,g) = 0if g > N*. Thus it is sufficient
to consider the case g < N %. Furthermore, it turns out that there is another
threshold, namely if g & N w1 The situation is especially easy if g is smaller than
N1, Here the (normalized) digits are uniformly distributed in [0, 1].

Theorem 1. For every integer k > 0 and for every € > 0 there exists n > 0 such
1
that for G with N* < G < N¥17°

Aw(G,N;a,b) = (b—a)G+ 0O (G'") (2.2)
uniformly for 0 < a <b<1.
Remark 1. It is possible to make 7 explicit in terms of £ and k.

The remaining case is covered by the following theorem.

IThe O (1)-term is in this formula is exactly given by a periodic continuous and nowhere
differentiable function function ®(log N), see [1].
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1 1
Theorem 2. Suppose that N¥+1 < G < N*. Then we have

1 1 1 1 1
Ak(G,N;a,b) = N*1 (C (k—H,a) —C (m,b) —a k1 +b_ﬁ>

+ min {G, (%) k_il} — min {G, (%) kl?} +0 (N#a) 2

where ((s,a) denotes the (analytically continued) Hurwitz ¢-function Furthermore,
forNklﬁ SGSN%H we have

GH+2 1
Ak(G,N;a,b):(b—a)G+(’)< ~ >+0(Nm) (2.4)
2.2. The k-th digit. We now turn to the average value of the k-th digit. The first
theorem is directly implied by Theorem 1.

Theorem 3. For every integer k > 0 and for every € > 0 there exists an n > 0
1
such that for G with N* < G < N¥+1~°

G
3 gbk(N, 9) = % +0(G'7") (2.5)
and
G G2
92::2 be(N,g) = - + 0 (G*™). (2.6)

As above it is possible to make 1 explicit in terms of € and k.
For the region of the threshold we have to be more precise.

1 1
The first range is N¥+2 < G < NF+T1.

Theorem 4. Suppose that k > 0 and Ntz <G<L N+
1 G i1
Z gbk(N7 g) = 2 (Gk+1 ) TR dg (27)
g9=2

+o( )

Theorem 5. Suppose that N2 < G < N. Then

G

2 [os}
Zbo(N, g) = ¢ + Gz/ Y (ﬁx> z3dx (2.8)
= 4 1 G
+0 (N(1ogN)%) .
For N% <G< N?% we have
a .
G?* G? (™ N 9

Zbl(N,g)—T-i-?/l w(aa:)x dz (2.9)
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Finally, if k > 2 and N¥2 < G < N#1
G2 G2 [ee] N e
+0 (NT"‘W) .

The second range is NwT <G< Nx.

Theorem 6. Suppose that G > N. Then

a
Zlbo(N,g):(1—7)N+N10g%+(’)(N%10gN), (2.11)

=

where v denotes FEuler’s constant. Furthermore for k > 1 and N T 1<GLN

91 1 .
g;;bk(N,g) C(k+1) N +(9< : (2.12)

Theorem 7. Suppose that G > N. Then
Zbo = NG - —N2 +0 ( (1ogN)%) . (2.13)

For N3 < G < N we have

< G *© (N
;bl(N,g):Nlogﬁ—G(%—F‘/I w<?m)w_2dw>

(2.14)
+ 10 (V)
Finally, if k> 2 and N¥1 < G < N#*
G
1 2 'y N
Zbk(Nag) - _5 k——f-l> N - m (2.15)
+(9(Nk1_2+ﬁ) +(9(N%). (2.16)

Overall, we get the following picture. If G/N T 00 (and G < N'*) then

G
S be(IV, g) ——g (kH)Nk—il. (2.17)
9=2

whereas if G/N™T — 0 (and G > N¢) then

G G2
;bk(N; 9~ (2.18)
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2.3. The sum-of-digits function. We now turn to the average of the sum-of-

digits function. As usual ¢(z) = z — [z] — 1 denotes the first Bernoulli polymial
and ((s) the Riemann (-function.

Theorem 8. Suppose that Nz <G < N. Then
1 T Nz

L
2
1 /N 1/3
B N+O N logN)

/\

Furthermore, if NT <G<L N% for some L > 2 then there exists n, > 0 such
that

G oo
1 N
Z—s %—F%/w(@m) 1__dar+(’)(G1 )
=29 f (2.20)
Theorem 9. Suppose that Nz < <G < N. Then
G 2 oo
N
ZS(N, g) = ¢ + Gz/ (0 (—:1:) 3 de (2.21)
= 4 1 G

1
- §N10gN+N10gG+(9 (N(logN)%) .

Furthermore, if NT+ <G< Nt for some L > 2 then there exists np > 0 such
that
G

ZS LG—2 + %2/1 Y <ga¢) =% dg (2.22)

9=
N

"C(LH)NL_“‘WW(GQ_“)-

Remark 2. For G = N and G = N2 we especially have
N

ZS(N,Q)=(1——) N? - NlogN+(9(N(1ogN)%)
g9=2
and
N¥ .
s(N,g)z—(v——)Nm Nt ),
5 (1-g) Vo ()

where vy denotes Euler’s constant.

3. EXPONENTIAL SUMS

The proof of Theorem 1 is based on estimates of exponential sums of the form
> e(N/gk*tt) which are collected in this section. (As usual we use the notation
6(1’) — e27r'iz'_)

We have to combine several methods. Lemma 1 relies on Van der Corput’s
method whereas Lemma 2 on exponential pairs. (Alternatively we can also use a
method of Walfisz, see Lemma 3.)
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Lemma 1. Let k > 0 be given. Then we have

N
Ze(ng) & N#5 4+ N73G'%° (3.1)

9<G

Proof. We apply Van der Corput’s theorem [5, p. 31] saying that

If'(6) = f'(a)| +1
a;ﬂébe(f(n)) arSn;-n |f//( )|1/2

for every twice continuously differentiable function f(z). For f(z) = N/z**! we
obtain

N
> e( k+1) KNPGTH 4 NTIGH
G<g<qG’
uniformly for all G’ with G < G' < 2G. Thus, if G > N3 we get
L k+1 k43
N 1 PRI T e Lol T
Ze<gm) < N’“+3+ZZ<N2(2NM) N (AN )
=0

9<@G
k+3

« N3 4 N 2 4 N3 (2LNﬁ) ?
&« N#®3 + N3G,
where L is the maximal such that 2EN &3 < G.
Finally, if G < N¥3 then (3.1) is trivial. |
Lemma 2. Let k > 0 be given, let r > 1 an arbitrary integer. Then we have

N N TG T f k< 2rtl Cp 4,
> e ( k+1> < N logN  ifk=2"+ —r —4, (3.2)
9=G N#72 ifk>2t —p 4
uniformly for

N#=¥2 < G < N7z, (3.3)

Proof. We apply the method of exponential pairs (see [5, p. 52]) again with the
function f(z) = N/z**! and directly obtain (with z = N/G¥*2 > 1 and a = G,
compare also with the proof of Lemma 5.11 [5, p. 223])

Z e ( Ii\il) & 2hgr = NnG)\—n(k+2),
G<g<G’

where (k, ) is any exponential pair and G < G' < 2G. Especially, if we use the
pair (compare with [5, p. 59])

1 r
(Ii,)\) = <2T+1_2,1— 2T+1 _2)

r4k42

N k42
Z e(gk+1> < NFFmgh -2,

G<g<qG’

we obtain
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which is non-trivial if G > N =2 First assume that k < 2"t —r — 4 or equiva-
lently
r+k+2

R

> 0.
Then we have

N . L X . 1 k42
(i) « vty (v vmn) )
g
=0

9<@ =

1 rtk42
or+1_2

< Nr+11c+2 + Nr+11c+2 <2LNr+i+2)
< NW + NmGlf;flti

r4k42

1
1
=51 1
& Neo¥l-2(G 2r¥l-2

where L is maximal such that 2L N 72 <d@.
The cases k = 2" —r —4 and k > 2"t! — r — 4 can be worked out in the same
way. O

The method of exponential pairs is thus quite easy to apply. The disadvantage
is that the constant implied by <« depends on k and r in a non-explicit way. We
therefore also present a result which can be obtained by a method of Walfisz [6]
and provides estimates which are uniform in &k and r.

Lemma 3. There exists a real constant ¢ > O such that for all integers k > 0,7 > 1
with k <1 and (k,r) # (0,1) we have

N 112T—1 1- T-*l—kztal
Z e e < ¢N&+D G~ =+D log N (34)
9<@
uniformly for
8N ™7 < G < N#573 (3.5)
Proof. (Sketch) The major step is to prove that
N LT Al AR
Y el gy ) S NTHTTGE T T log N (3.6)

G<g<G'
uniformly for
SEN™+2 < G < G' < 2G < 2N 7533

Is is clear that (3.4) follows from (3.6) as in the previous two proofs.
In order to prove (3.6) one just has to repeat (and generalize) the proof of Satz 1
[6, p. 22] for k > 0 instead of k = 0. O

4. PROOF OF THEOREM 1
We first consider the case N &3 <G<KN =
Lemma 4. Suppose that N3 <G< N1, Then
Ar(G,N;a,b)

G
uniformly for 0 < a <b<1.

k+3 kt1

=b—a+O(NﬁG*k—+4+N—%GT) (4.1)
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Proof. Let us consider the numbers

~ N

Ap(G,N;a,b) = # {2 <g<G: {W} € [aab)}
By Erdés-Turan’s inequality (see [3] or [2]) and Lemma 1 we obtain for every integer
H>0

Ay(G,N;a,b) (b a)

Choosing

we get

Note that

S

9
Thus, by considering the cases 2 < g < G; and G; < g < G it follows that

AL(G,N;a,b—G7") = 2G1 < Ap(G,N;a,b) < Ai(G,N;a,b+G7h) + 2G,.
(4.3)
Consequently, by using (4.3) with G; = v/G, (4.1) follows from (4.2). O

Similarly we can treat the case N2 <G< Nz,

Lemma 5. Let r > 1 be a given integer and k < r. If N & <G< N=2 then
Ax(G,N;a,b) —
G
uniformly for 0 < a <b<1.

—a+ (@) (N 2r+1 1 G2r+kl+21 ) (44)

Proof. By using Lemma 2 instead of Lemma 1 we get

k42

! +Z (hN B e Tea = )

r+k4+2

«%.}.Hzr-%l 2N2T+1 2(G 2rFl—z,

Choosing
0= [megﬁ]
one directly obtains
1 _ rtk42
AL N2#t-1G 27¥-1,
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Now we can proceed as in the proof of Lemma 4 and complete the proof of Lemma, 5.
d

Obviously, a combination of Lemma 4 and Lemma 5 proves Theorem 1.

5. PROOF OF THEOREM 2

For notational convenience we set (as above)

- N
e Nan=#{rco<o { il enn)
and start with the following observation.

Lemma 6. Suppose that N#2 < G < N%. Then we have uniformly for 0 < a <
b<1

Ar(G,Nsa,b) = N=7 ((a+l)‘k1? - (b+l)—klﬁ)

1>

e e 1
+ min ¢ G, N — min<{ G, N +(9(Nk_+2),
a+l b+l

where ly = [NG_k_l].

Proof. Set G1 = N*+7. Assume first that G; < N/G*+1. Then G = O (G;) and
hence A;(G,N;a,b) = O(G1). On the other hand the right hand side above is
given by

=0 (NUTGI’JT + Gl) = 0(Gy).

Next assume that G; > N/G*+1. Then
Ak (Ga N; a, b)

~#{a<g<a b ewn) o6

N\ U
ZZ#{G1<QSGI<I)—H> <g§<a+l> }+(9(G1).

1>0

If I <y orif I > [G1] + 1 then there is no contribution. Next observe that for
I = [G1] and for | = [G1] + 1 the corresponding summand is bounded by

0 ((%)T> —0(G).



10 MICHAEL DRMOTA AND JOHANNES SCHOISSENGEIER

For | = Iy we have

. NV N \"T
mln{G, (m) } — min {G, <m> } + O (Gy).

Finally, the remaining sum for /g < [ < G is given by

(7))
lo<i<G1 a+l b+i

—NE Y ((a O l)w%) +O(GY),
1>l

which completes the proof of the lemma. |
Now it is easy to complete the proof of Theorem 2.
Proof. (Theorem 2) First suppose that N ™ < G < N*%. Here we have lp = 0
Au(G,N;a,b) = NeT Y ((a FI)TET — (bt 1)—#1)

>1

By using (4.3) with G; = N7+ the first part of Theorem 2, i.e. (2.3), follows.
Finally for N = <G<KN T we observe that

> (@+n - prn =)
I>NG-k-1
= _b-a k2 s
_lzN%;k—l (k + 1)155 +O(N a6 )

= b_“/ o M dr+ O N*Z—ifak“)
kE+1 N/Gr+1

=(b- a)GN_k%l +0 (N—ﬁGkH) )

Hence, we obtain

I>NG-k-1
+0 (Nklﬁ) +0 (G’““N—l)
=b-a)G+0 (Nklﬁ) +0 (Gk+2N71) _

By another application of (4.3) with G, = N 7 we directly get (2.4) and the proof
of Theorem 2 is completed. a
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6. Y-Sums
We now use another representation for the k-digit:
N N
%) = [ie] -o o]

The advantage of this representation is that sums over bg (N, g) can be represented
with help of the y-function ¢(z) = {2} —3 = x—[z]— 5 which are very well studied
in the literature (see for example [5, 6]).

We start with an easy observation.

Lemma 7. Suppose that Nw+T < G < N¥% and that (f(9))1<g<ac is a sequence of
complex numbers. Then we have

G

g;f(g) {gﬁk] = [%] gZif(g) + %<§Nﬁ 15gs%)l/kf(g)

- 2 s (] -b),

1
g<NFFT

Proof. The left hand side is given by

Z(j:f(g) [5] - Y i)

k
g9=1 g dgk<N,g<G
- 3 fe+ Y f),
dg*<N,d<g<@G dg*<N,g<d,g<G

where ¥/ means that terms with d = k are counted with a factor % We further
have

> oo+ Y. flo) Do

dF TSN d<g<G,g<(F)/E ghHIIN g<d<If
-Y S X Y g0+ X s[5 -a+3)
a< 2 4596 N qen T d<o<(BIVE N 7
d d
> (Zf(g)— f()+f(2)>
<X \9<G g=1
d
DS (Z 19 -3 10+ 12
%<dsNﬁ g<(g)M/* 9=1
N 1
x ([]-ee
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=[%]§f(g)+ 3 SNoofe- > Ed:f(g)

N g NFFT 9S()VP d*+ISN g=1

+ ) f@) (G[dﬁk] —d+ 1)

db+H1<N

- | & gf(g) Y 1(9)

+ Y @ [dﬁk]—dﬂ— o1

d*+H1<N

which proves the lemma.

In what follows we will make use of the following abbreviations:

N
gkti<N g
1 N
Ro(k‘,N) = -1 _k)’
iy d \9
N
ROk N) = S gu (—k) ,
gkti<N 9
N\ Lk
SkN.G = 3 w((ﬂ )
Zk <d<NFHT
N\ Mk N\ VE
0 — - _
srna= ¥ (3" (")
le<d§Nﬁ

The next lemma lists some properties which will be needed.
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Lemma 8. Suppose that N1 <G < N¥%. Then

N _ _ l 1-k _ 2—k
Zg[k]_NC(k 1)+ 5NG —C

9<G
- G2 (% + /J}_l_%",b (%) d;[;) (61)
1

— 8°(k,N,G) — R°(k,N) + O (N%) for k> 2,

N 1. L[y (Ve
29[9_2] = N(logG +7) + NG -G (Z+§/x W (E) dx) (6.2)

—8°(2,N,G) — R°(2,N) + O (\/N) :

3] -vo-c (4 oo () o) -sunvarsom

el

N _ vetoa (b feop ()

g;a[g_ N(logG+7)+2NG G(2+l/m ¢( e d:c) .
- S(1,N,G)+0(1),

> 1 [5_ =N¢(k+1) - 11ogG— LG+ —Ro(E,N)+0(1). (6.6)

s<6 9 19" 2 b 7

Proof. We concentrate on the cas k > 2. The remaining cases can be proved by
obvious modifications. We first prove (6.1) and start with the following calculation:

1 N\ Mk N\ Mk 2 1
o= 2 (G (@)))
Nocg<NFFT ISV N N
1 NNk 1
= 1 (E) —S(k,N,G)+0(N+).
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Here the first sum can be replaced by

1 N\Y* 1 N\ 1.5 (1
2 X (a) =aoe(a) - avelr)

%<d§Nﬁ
1 1
NF+1 NF+1
1 1
+ §N2/k / ™k dy — ENQ/’“ / m_l_%w(m) dx.
NG-* NG-*

Note that the appearing integrals are given by

1

k 3
—2/k 3. _ N-2/k = _ 2—k
/ T dx = —k —3 (N + NG )

Hence we get

We further have

> ol 2 e 3w ()

9k+1§N k+1<N g’“‘HSN

ooy

gFHI<N

l\?l»—l

in which the first sum is given by

ZNglk N¢(k Nng.

ghHiI<N gETI>N
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Now consider the sum

oo o0

N Z gtk = N1=iF g (Nﬁ) +N / ' Fdr 4+ (1 -k)N / z =k (x) do

NF+T NFH
— NTy Nkl_l)— N_ ™ +O(kNﬁ)
N E—2 N
:N}f_lw(Nﬁ)+ﬁNfc3_l+0(kal_l),
which implies
N 1 ]. 3
=N(k—-1)-N N#™=T) - —_N*
B R R
- %Nﬁ —R°(k,N) + O (kNﬁ)
Moreover
[ve] 3 o= g [veR] (v )

gHHI<N

-3 (e o)) < 2) (v ) -
-3 e o ) (e () w0 (570
= %N% _ %Nﬁzp (Nﬁ) — iNkZ—l +0 (Nkl—l).

Since G = O (N'/*) we also have

N
GF

Eo-tera(G-o(3)-)

_1 2—k 1 l—k_l 2 E _1 2 1/k
= SNG*™F + NG SGH 10 +(9(N )
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Thus, by using Lemma 7 we get

N1 1 1
dg [—k] = NG>F 4 NG -
e g 2 2

1 N
+ §G2¢ (@) -

k(b _7° Nz
+2(k_2)(Nk+ NG ) @ [a7 Ry (1) de
1

2 1 ]_ 3

+NC(k—1) — NF14) (N_k+1) - N
1 2 1 3 3 2 1

— Z]\Zk+1 _ §Nk+1 + §Nk+1¢(2\]k+1)+

—S%(k, N,G) — R°(k,N) + O (Nl/k)

__ 1 yeroe |l 17 —1-2, (N2 1 voi-k
= k—2NG G<4+k T Y el dz +2NG

1
+ NC(k—1) = S°(k, N,G) — R(k,N) + O (Nl/’“) :

N\ 1
G (—k) -4

1
2 G
NFTy) (Nﬁ)

DN | =

This completes the proof of (6.1).
In the next step we prove (6.4). We first observe that

> 13- = () ()

2 <ASNFHT 25 <ASNFHT

> (%)1/’“_5(k,N,G)_% (Nﬁ ) %>

1
N
J<d§Nk+1

+0(1)
and that
Nk N . .
= =G <_) — N#iy (N#T
(&) e ()
év—k<d§Nk T
1 1
NFEFT NFEFT
1
+ Nk / z VR dg ENl/k / 1w () du,
NG—* NG—*
in which
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and
Nﬁ o)
z () de = 1 RY(z)de + O (N’l/k)
NG-*k NG—Fk
N [ (Nas\ " Nz ok
1
. (N
=GN~V /:c_l__¢ (G—f> dz+0 (N~1/%)
Thus
N 1/k N L
ONRICRANGY
ZE <d<NFFT
k(oo o 1. 41 [Nz
+—k_1(N ~ NG )—EG/:U w(a) dz
1
1o 1,
— N £ ONGTF — 5(k,N,G) + 0 (1),
Furthermore
N N 1
E 5l X (Foa)-mem
g<NTHT g<NTT
Now from
N Y gF=¢kN-N > g*
gSNﬁ g>NFk+1
=((k)N = Nwip(N#=1) = N / " dz + kN / ek y(z) do
N N
= ((k)N — N#1) (Nﬁ) PR UAEEV N O (k)
k-1 o
we get
Zl [gﬁk] = (k)N — NETp(N&T) — %Nﬁl
gSNFHT
1
- ENﬁ — R(k,N) + O (k)
Thus, using

[Nklﬁr — (N —p(N™T) = %)2 — N#1 —aNETy (Nkl_l) ~ N 4+ 0(1)
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and Lemma 7 we obtain

5] oe(3)-2) oo 3) -t

9@

k1 e

_ %N’e+1 + NG 4+ (RN — Ny (e ) - ﬁN_
— %N#l — N¥1 4 2N®1y) (Nkl_l) + NF

— S(k,N,G) — R(k,N) + O (k)

a6 (o oot () o)
1

+ %NG"“ —S(k,N,G) = R(k,N) + O (k).

This completes the proof of (6.4).
Finally, in order to prove (6.6) we have

G

N 1 N N 1 1

- 2:_2 MY LA R N ] il

[Gk]gzlg (Gk w(Gk) 2>(°gG”+O(G>>
—k N 1 —k

=NG "logG — e logG—ilogG+7NG +0(1)

and

%<dSNk T %<d§N}c T
1 N 1
=2 (kv (E) logG—zp(Nk 1)10gN’c+1)
1 e N
+E 10g—dw+7(Nle—a>+O(1)
NG—¥
N
- (E) log G — == (Nk+1) log N
v N
- logudu+'y<Nk;+1—a>+O(l)
G-k
N 1 1
_ (E) log G = =¥ (N ; )logN
+%+1NklﬁlogN—NG’klogG+%Nklﬁ

- %NG"“ +y (NT - NG—k) +O(1).



DIGITAL EXPANSIONS WITH RESPECT TO DIFFERENT BASES 19

Furthermore
1[N 1 (N N\ 1
Z;Q[g_’“]_ Z;Q(g’“ w(a’“) 2)
g<NFH g<NFHT
=N¢k+1)— > l—R(kN)—#l N +0(1)
- e ) ag Ty
g>NFE+T
=((k+1)N — ¢ / sk dg
T
T 1
- —2—k - ———  _logN 1
N@ + k) / 52 Mp(a) da = Ro(k, N) = g log N + 01
NFHT
=((k+1)N E—kw —R(kN)—#lo N+0(1)
- TET | e 2k+1) °
1 1
= —NwT — log N — N 1
and
1 1 1 1 1
1 ;[Nk ]_<Nk —¢(Nk+)— ><k+llogN+’y+(’)(N T ))
gSNFH
=L NelogN— — (N )10 N - ;10 N
Ck+1 & k+1 & 2(k +1) 8

+’yN'°1T +0(1).

Combining all this and using Lemma 7 we finally obtain

Zl N = NG *logN — ¢ N logG—llogG+7NG_k
g Lg* G* 2
9<@
+9 log G — ¢( 1)1ogN+iNﬁlogN
k+1 k+1

— NG *logG + %Nm - %NG_’“ +y(N®T - NG™%) + ((k + 1)N

1 1 1
— N — ——_logN — Ro(k,N) — —— N¥Tlog N
k b+ 2(k+1) og RO( ) ) k+1 og

1 1
—~ (NP )logN + = log N — 4N 1
+k+1¢( ) log T gy 8N T NETHO()

- —ilogG - %NG_’“ +C(k+1)N = Ro(k, N) + O (1)

as proposed. a

Our next aim it to prove Lemma 12 which is a generalization of a deep result
of Walfisz [6] (where the case T = y/x was considered). Fortunately the proof of
this generalization runs along the same ideas as in [6]. For the sake of the reader’s
convenience we give a detailed proof.
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Lemma 9. Let r > 1 be an integer and set R := 2"~!. Then we have, as x — oo,

S e(@)-olwma) e
7+t <m<T

uniformly for T < x~ =3 Furthermore, the O-constant is independent of r.

Proof. If x < 2713, i.e. T < 2, then T' < 4 and there is nothing to show since

(log )*a~ mi= > 2~ Fkr > 275 >

Now suppose that 27+3 < z. If 2743 < M < M' < 2M < 2273 then we can use
(18) of [6, p- 92] (with Ry = R(r + 1))

M’
Y. 50 () < (Gl el ) o
m=M

Set X = [wrgﬂ] and choose an integer h with X2" < T < X2"*!. Further, for
0<j<hset M; =X2" und M4, = T. Since

logT/X
— | =2 1
[ log 2 ]<< 8%
we obtain
h M4
1 T 1 z
Y o) Y e(E)
2 m m '—Om—M'+1m m
o™ <m<T e
<« (mq%(%hﬁHﬁ b R +x_1/10) (log z)?
Since

21+1+11_1 7‘+1<1 1+1_1
r+4\R Ry 10R; Ry r+4 10/ “2Rr\ 5 10/ 20Rr

and

2(7‘—|—2)+11_ r +1< 1+1_ 1 1
r+4 10 r+4 10— 5 10 10— 20Rr
we immediately obtain (6.7). O

Lemma 10. Suppose that X =4 [% loglog x] > 4. Then we have, as T — o,

Y () =0 63

2
2 X+4 <m<T

uniformly for T X¥ <T <z
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_2 _2

Proof. There exists an r9 > 1, such that z7o+* < T < z7o and r¢ < X. For
2

ro <1 <X we set M, = z7% and M,, = T. Hence, with R, = 2"~! we obtain

x—m}m — o log@/(20R,r) eflogz/(20-2x_1X)

< e log z/(10-2'°81°8 2 o5 Jog )

— e—(log z)171°82 /(10 1og log )

1
=0 +———.
( (log z)3 loglog :1:)
Consequently, by using Lemma 7 we get

S L(2)-¥ ¥ L)

2 r=ro M,41<m<M,

z X+4 <m<T
X-1
1 3
=0 E x~ 2R log® x

T=TQ

=0 (X/loglogz)) =0O(1).
O

Lemma 11. Suppose that 95 < r < 10~2(logz)'/? and set R = 10~%r=3. Then we
have, as x — 00,

> 2u(E) =06 "osey). (69
z2r <m<T

3
uniformly for zor < T < z220-1) . Furthermore, the O-constant is independent of
r.

Proof. Let z3r < M < M' < 2M < #7017 . Then by (39) of [6, p. 97] we get
1
Z —p (2) =0 (r 3z Flogz).
Mty ™ M
We set X = [a:%] + 1 and choose an integer h > 0 such that 2" X < T < 2/+1X,

ie. h= [%] . Furthermore, for 1 < j < h set M; = 2271X and My = T.

Then we obtain

1 h 1
DI C)ED DD ST )
w% <m<T J=1 M;<m<M;41

h
=0 Z r3z Rlogx
j=1

=0 (r %z FlogzlogT/X)

=0 (r 5z R(logz)?) .
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Lemma 12. We have
Z %zp (%) =0 ((logm)2/3) (6.10)

uniformly for T < \/x.

/3] (where we assume that z is

Proof. Set h := 3[loglogz] + 4, k := |10 (log z) /3
:= 4[+loglogz]. We consider three

sufficiently large that 95 < h < k) and X
cases.
First suppose that T' < z3% . Then

Z ¢ ( ) O(logT)=0 (%logw) =0 ((logm)2/3) .

m<T

(6.11)

_3 .
Second, we consider the case z3% < T < x2-0 | There exists an rg such that
3 _3 . .
2?0 < T < z20-D and h < rg < k. It is now an easy exercise to show that that
. 5 —10"%4~3 . . . . .
mapping f: [h,k] > R y =y °z Y ~ is monotonically increasing: Since

oy J ) [(3logz
ro=-52 (55 -9)

and %.%g% > 5k 2logx > Es‘ > 5 it is clear that f'(y) > 0.

Next, for ro <7 < k set M, = 3 and M, =T. Then, by Lemma 10 we obtain

> L@-Y ¥ ()

2i<m<T r=r0 Myr11<m<M,
< Z f(r)(log z)?
T=T0o

< kf(k)(log z)*
< k™*(log z)?
< (log z)2/3.
Combining this with (6.11) completes the proof of the second case.

Finally suppose that x2(h3—1) < T < +/z. Since XL+4 = Z(h Ty we just have to
combine Lemma 9 and the second case. O

Lemma 13. Suppose that k > 1. Then we have uniformly for 1 < x < N

S ((%)1/k> -0 (N%kx%(l—%)) =0 (Nﬁ) (6.12)

d<z

and

3
1/k 1/k N zR+T for k=2 and k =3,
Z(%) v,b((%) > =< N'Y3logN fork =4,
i<z NS for k> 4, (6.13)



DIGITAL EXPANSIONS WITH RESPECT TO DIFFERENT BASES

Proof. We will use Van der Corput’s estimate (see [5, p. 32])

b
> W) <</If"(t)|1/3dt+If"(a)|’1/2+If"(b)l’l/z-

a<n<b

with f(z) = (X)V/*, (z € [1,2]). Since f"(z) = +(1 + %)N%Z_2_%, we have

T

/|f”(2)|1/3 dz=0 (NSL’c/z_%_%’c dz) =0 (Nﬁx%(l_%))
1

1
and
@) 2 = 0 (N Fat )

which proves (6.12).
Now suppose that k > 4. Then

S (@)7)-6) 2

in which the last factor has to be replaced by log N if k = 4. Since

4 1 4 5

3% T3E+D)  3k(k+1) 3(k+1D)

this proves (6.13) for k£ > 4.

23

Finally suppose that k € {2,3}. fz < N ﬁ, the above sum can be estimated

by
<< Nl/kml_% << Nﬁ

Thus, we may assume that y := N 2T < z. Here we have

N)l/k <<N)l/k> e
_ w - &K Nze+1
() o
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= ()7 (7)) e (1))

y<d<z

and

which completes the proof of (6.13). O

Lemma 14. For 1 <z < N1 we have

g§¢ (%) =0 (N—) . (6.14)

Proof. First supposethatk > 1. Ifz < N 72 there is nothing to show. If x > N ==

set w = N#7 < x, which is greater than 1. We (again) use Van der Corput’s
estimate [5, p. 32] with f : [w,z] = R, f(2) = N2~*. Since f"(2) = Nk(k+1)z—F~2
we get

Z'lﬁ(f(n)) < w+/N1/3z_ij dz + \/Lﬁmkzi

& w+ NBy= "5 4 N +atisn

9z

& Nw3,

For k = 1 much more is known. The above sum can be estimated by O (N?),

where 6 is best exponent of the divisor problem, which is surely < % (e.g. see

Kolesnik [4]). O
7. PROOF OF THEOREMS 3-7
We start with the proof of Theorem 3

Proof. (Theorem 8) By using Theorem 1 we first obtain

1
> ShV.9) = [ A6, N,z 1) do
0

s<c 9

G/l(l —z)dz+ O (G'"")

%G +0(G').
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Consequently

> bk(N,g) = Zgébk(N:g)

9<G 9<G

=G2$bk(N,g)—ZZ%bk(NJh)

9<G 9<G h<g

~6(§+0@)-X (§+o6)

= EGQ +0(G*"),

which completes the proof of Theorem 3.

We now turn to the proof of Theorem 4

Proof. (Theorem 4) We start with the representation

G G G
1 1[N N
> =30 5| -3 | ]
=9 Hold'] Zlgt
¢ 1
=N g _(k+1)N - §NG"“‘1
g=1

+S(k+1,N,G)+R(k+1,N)+ O (logQG) .
By Lemma 13 we have
Sk +1,N,G) :0(1\73#»)

and by Lemma 14

1

R(k+1,N)=0 (Nrs) .
Furthermore, since

G
NY g*'=N (C(k EDY g—’“*)
g=1

G<yg

=N (g(k +1) —(G)G7F 1 - /;c_k_l d:c)
G

o0

+N(k+1)/z’*k*2¢(w) dx
G

1 N
=((k+1)N + §NG*’“*1 - EG*’“ +0(NG*72),

we thus get (2.7). The proof is similar in the case k = 0.

25
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Proof. (Theorem 5) By Lemma 14 we have for k > 0

RO(k+1,N)= > gy (%)

By Lemma 8 we obtain for k > 1

#l -5 [3%])

G
— —k _ _ 1 —k 1—k
= Ng;g (RN = SNG™F+ —G

G G
Zbk(Nag) :Z(

g=

k-1

1 1 [ , » [Nz
+G° (z*m/w 1 ’““‘b(am) dm)

1

+ 8%k +1,N,G) + Rk +1,N) + O (Nﬁ) .

The first sum equals

G
NY gk =(kRN-NY g7*
g=1

9>G

=((k)YN-N <¢(G)G’“ + /m*’“ dx — k/x*kflw(x) d:c)
G

G
1 N oo ke
= ((k)N + 5NG—’c - mxl—’ﬂg +0 (NG™F1)
1 N

_ + -k _ 1—k =T
= (BN +5NG™* - =G +(9(N+).

Since % < 43 + 743 and £ < } + § we obtain by Lemma 13

G oo
2 1 1 12 Nz
> bi(N.g) =G (Z+k—+1 v Y G ) 4

9=2 1

+8°(k+1,N,G) + R°(k +1,N) + O (N#7)
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The proof is similar in the cases £ =1 and k = 0.

Before starting with the next two proofs we recall the following formula:

o
1 1 2 -2 —1c(2) fork>1.
- % — 1 25\ BT
4+k+1/m (o) do { 1y () for k = 1.
1
Proof. (Theorem 6) By Theorem 4 we know that
€]
1[N
9=2 1<g<NTHT N <g<@

Observe that

k+1
and that
N ; 7
> N / o de — (k+ )N / &+ 2P(z) do + O (1)
NFH <g<@ N N
Iy _Ingriom = Ind poq)
Tk k ok ’

hence, we arrive at (2.9).
For k = 0 we proceed in a similar way.

Proof. (Theorem 7) We first observe that for all k > 0
N
dDb(N,g) = Y b(N,g)+ H :

_1 1
1<g<NF+I

By Theorem 5 the first sum is given by
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The second sum can be represented as

3 {E] = —(G)NG=F + N71y) (Nk—ll)

e 9"
NFH <g<@
G a
+N / z *dx — kN / z * 1y (z) d
1 1
NF+T NF+T
G
_N N _ ik =T
=3 +1_k{E Nﬁ-FO(Nkl)
2
NF&+T NG'—* 1
= — N
k-1 k-1 +0(n¥)
Consequently
a
1 2 > NG'* 11 1
g;bk(N’g)__iak—-l-l)Nkl_ 1 +O(N’“2 ’“3+N’“),

which proves (2.15).
For the proof of (2.14) we again apply Theorem 5 and get

> b(N,g)=N ( + 7x—2¢(x) d:c) +0 (N3/5)

1<g<VvN 1

e
N | =

- Nl_T7 +0 <N3/5) .

Next, by Lemma 7

> F-E s 2 ¥
VN<g<G :\/N<ggc X <d<VN VN<g<h
eI+ ¥ ([3]-)
- 3] (6~ [v@) - V&1 + [v] [5] + 4 ()
— VN («/N) + Nlog VN — Nlogg _N fx%p(z) dz
N/G

- (g_¢(g>_%>G—N+O(\/ﬁ)

N G r
+ Gy (—) + Nlog— — N z 2)(z) dz
G v
v

=—%+Nlog%—G/u2¢ (%) dw—i—(’)(\/ﬁ)
1

which proves (2.14). The proof of (2.13) is similar and even simpler.
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8. PROOF OF THEOREMS 8 AND 9

Proof. (Theorem 8) For VN < G < N we have

G 1 1 [ _, (Nz s
3 cbo(N,g) =G | 5+ [a2 () de +0(N logN)
=9 2 / G
and
g 1
> —bi(N,g) = ¢ (5> VN +0 (N1/4)
9=2
whereas for k£ > 1
91 1
Yo -bh(Ng)= > —b(N,9)
9=2 g 1<g<N1/k

== (ﬁ) N®T +0 (N%) -0 (N1/3) ,

which proves (2.19).
If N+ <G<N T for some integer L > 2 we proceed in a similiar way. By
using Theorems 3, 4 and 6 we get

S hm=1 T nwyg
N

g<c 9 <G 7 k<iog,

> ¥ onvg

k<log, N g<G

Z Z ;bk(Nag) + Z ébLfl(Nag)

k<L—2g<G 9<G
1 1
+Z_bL(Nag)+ Z Z_bk(Nag)
9<G 9 L+1<k<log, N g<G g
G G

=(L-1)-+0(G""+ =

as proposed. a
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Proof. (Theorem 9) Since N < G < N we have

¢ 1 i Nz
Zbo(N,g):G2 Z—}—/w*?’@b (?) dz +(9(N(logN)1/3)
9=2 1

and
G oo
1- G 1 Nz
Y bi(N,g :<—+10 —)N—G —+/w_2¢<—> dr | + 0O (N3/®
s {(9) 2 ¢ VN 2 ) g ( )

N10g£+(’)(N)

VN
whereas for k£ > 1
G
YuwNg=0( 3 g]=0 (NW) .
9=2 g<N/k

This proves (2.19).

For the case NI+ <G< Nt (where L > 2) we can proceed similarly to the
proof of Theorem 8. O
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cussions (and their advice) concerning estimates of exponential sums and -sums.
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