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Abstract. We consider the number of nodes in the levels of unlabeled rooted random trees
and show that the stochastic process given by the properly scaled level sizes weakly converges
to the local time of a standard Brownian excursion. Furthermore we compute the average and
the distribution of the height of such trees. These results extend existing results for conditioned
Galton-Watson trees and forests to the case of unlabeled rooted trees and show that they behave
in this respect essentially like a conditioned Galton-Watson process.

1. Introduction

We consider the profile and height of unlabeled rooted random trees. This kind of trees is

also called Pólya trees, because the enumeration theory developed by Pĺya allows an analytical
treatment of this class of trees by means of generating functions (see [40]). The profile of a rooted
tree T is defined as follows. First we define the k-th level of T to be the set of all nodes having
distance k from the root (where we use the usual shortest path graph metric). Let Lk(T ) denote
the number of nodes of the k-th level. The profile of T is the sequence (Lk(T ))k≥0. For a random
tree this sequence becomes a stochastic process.

The first investigations of the profile of random trees seem to go back to Stepanov [42] who
derived explicit formulas for the distribution of the size of one level. Further papers deal mainly
with simply generated trees as defined by Meir and Moon [34]. Note that simply generated trees
are defined by a functional equation for their generating function but can also viewed as family
trees of a Galton-Watson process conditioned on the total progeny. Kolchin (see [31, 32]) related
the level size distributions to distributions occurring in particle allocation schemes. Later Takács
[43] derived another expression for the level sizes by means of generating functions. Aldous [1]
conjectured two functional limit theorems for the profile in two different ranges which were proved
in [12, 22]. The first author [10] studied restrictions of the profile to nodes of fixed degree. An
extension to random forests of simply generated trees is given by the second author [23].

Later other tree classes have been considered as well. The profile of random binary search
trees has been first studied by [4] and later by [11] and [15]. Random recursive trees have been
investigated recently by [16] and [45]. See also [5, 21, 28, 29, 33, 37] for related research. Extremal
studies of the profile (called the width of trees) of simply generated trees have been started in [38].
The distribution including moment convergence has been presented independently in [3] and [14].
For other tree classes see [9, 16].

Whereas simply generated trees have an average height of order
√

n, the other tree classes
mentioned above have height of order log n. Pólya trees do not belong to the class of simply
generated trees which can be seen as follows. The generating functions enumerating the number
of Pólya tree and simply generated trees, respectively, have a fundamentally different singularity
structure. Whereas the first one has one or a finite number of singularities (the latter occurs in
the periodic case) on the circle of convergence and allows analytic continuation to a slit plane (or
at least a slit disk), the generating function associated to Pólya trees is much more complicated.
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In fact, for the latter function the unit circle is a natural boundary (i.e., no analytic continuation
beyond it is possible). There is exactly one singularity on the circle of convergence of the power
series expansion at 0, but the analytic continuation has an infinite number of singularities inside
the unit circle. Each point on the unit circle is an accumulation point of the set of singularities.
These facts follow from the functional equation defining this generating function and the fact that
the power series expansion around zero has radius of convergence strictly smaller than one (see
next section). It also involves an analytically complicated structure like the cycle index of the
symmetric group. Due to this difference with respect to the analytic behaviour of the generating
function, Pólya trees are certainly not simply generated. Therefore they cannot be represented as
branching processes.

Nevertheless Pólya trees behave in many respects similar to simply generated trees (compare
with [41, 26, 35, 36, 13, 24]). Hence it is expected that the order of the height is

√
n as well. In

this paper we will give an affirmative answer to this question. This justifies the choice of
√

n for
the scaling of the level sizes in the subsequent theorems.

The plan of the paper is as follows. In the next section we present our main results. Then we
will set up the generating functions for our counting problem of trees with nodes in certain levels
marked. This function is given as solution of a recurrence relation which has to be analyzed in
detail. Knowing the singular behaviour of the considered generating functions allows us to show
that the finite dimensional distributions (fdd’s) of the profile, i.e., the distributions of the sizes of
several levels considered simultaneously, converge to the fdd’s of Brownian excursion local time.
The singularity analysis is carried out in Section 4. There we first prove that the limiting profile
has the proposed shape and in a second step we show the proposed normalization. In order to
complete the functional limit theorem we need to prove tightness. This means, roughly speaking,
that the sample paths of the process do not have too strong fluctuations (see [2] for the general
theory).

In the final section we turn to the height. Most of the work has already been done by Flajolet
and Odlyzko [20] and Flajolet et al. [19] in their studies of simply generated trees where they
completed the program started in [8]. In fact, what we have to do is to show that the generating
function appearing in the analysis of the height has a local structure which is amenable to the steps
carried out in [20] and [19]. This is done in the last section and leads to average and distribution
of the height.

2. Preliminaries and Results

First we collect some results for unlabeled unrooted trees. Let Yn denote the set of unlabeled
rooted trees consisting of n vertices and yn be the cardinality of this set. Pólya [40] already
discussed the generating function

y(x) =
∑

n≥1

ynxn

and showed that the radius of convergence ρ satisfies 0 < ρ < 1 and that x = ρ is the only
singularity on the circle of convergence |z| = ρ. He also showed that y(x) satisfies the functional
equation

y(x) = x exp





∑

i≥1

y(xi)

i



 .

Later [39] showed that y(ρ) = 1 as well as the asymptotic expansion

(1) y(x) = 1 − b(ρ − x)1/2 + c(ρ − x) + d(ρ − x)3/2 + · · ·
which he used to deduce that

(2) yn ∼ b
√

ρ

2
√

π
n−3/2ρ−n.

Furthermore he calculated the first constants appearing in this expansion: ρ ≈ 0.3383219, b ≈
2.6811266, and c = b2/3 ≈ 2.3961466.
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The height of a tree is the maximal number of edges on a path from the root to another vertex
of the tree. It turns out that the average height is of order

√
n.

Theorem 1. Let Hn denote the height of an unlabeled rooted random tree with n vertices. Then
we have

(3) EHn ∼ 2
√

π

b
√

ρ

√
n.

Moreover, let y
(h)
n denote the number of unlabeled rooted trees with n vertices and height equal to

h and let δ > 0 arbitrary but fixed. If we set β = 2
√

n/hb
√

ρ, then, as n → ∞, we have

(4) P {Hn = h} =
y
(h)
n

yn
∼ 4b

√

ρπ5

n
β4
∑

m≥1

m2(2(m2π2β2 − 3)e−m2π2β2

uniformly for 1
δ
√

log n
≤ h√

n
≤ δ

√
log n.

The proof of this theorem is deferred to the last section, since the proofs of the auxiliary lemmas
which will eventually establish the assertion will build upon the results needed to prove the next
three theorems.

Let Ln(t) denote the number of nodes at distance t from the root of a randomly chosen unlabeled
rooted tree of size n. If t is not an integer, then define Ln(t) by linear interpolation:

Ln(t) = (btc + 1 − t)Ln(btc) + (t − btc)Ln(btc + 1), t ≥ 0.

We will show the following theorem.

Theorem 2. Let b be the constant of Equation (1),

ln(t) =
1√
n

Ln

(

t
√

n
)

,

and l(t) denote the local time of a standard scaled Brownian excursion. Then ln(t) converges weakly
to the local time of a Brownian excursion, i.e., we have

(ln(t))t≥0
w−→
(

b
√

ρ

2
√

2
· l
(

b
√

ρ

2
√

2
· t
))

t≥0

in C[0,∞), as n → ∞.

In order to prove this result we have to show the following two theorems

Theorem 3. Let b and ln(t) be as in Theorem 2, then for any d and any choice of fixed numbers
t1, . . . , td the following limit theorem holds:

(ln(t1), . . . , ln(td))
w−→ b

√
ρ

2
√

2

(

l

(

b
√

ρ

2
√

2
· t1
)

, . . . , l

(

b
√

ρ

2
√

2
· td
))

,

as n → ∞.

Theorem 4. With the notation of Theorem 2 we have

(5) E (Ln(r) − Ln(r + h))
4 ≤ C h2n

for all non-negative integers n, r, h and some fixed constant C > 0. Consequently, the process ln(t)
is tight.

3. Combinatorial Setup

In order to compute the distribution of the number of nodes in some given levels in a tree of
size n we have to calculate the number yk1m1k2m2···kdmdn of trees of size n with mi nodes in level
ki, i = 1, . . . , d and normalize by yn.
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Therefore we introduce the generating functions yk(x, u) defined by the recurrence relation

y0(x, u) = uy(x)

yk+1(x, u) = x exp





∑

i≥1

yk(xi, ui)

i



 , k ≥ 0.(6)

The function yk(x, u) represents trees where the nodes in level k are marked (and counted by
u). If we want to look at two levels at once, say k and `, then we have to take trees with height at
most k and substitute the leaves in level k by trees with all nodes at level `− k marked (counted
by v) and marking their roots as well (counted by u). This leads to the generating function
yk,`(x, u, v) = ỹk,`−k(x, u, v) satisfying the recurrence relation

ỹ0,m(x, u, v) = uym(x, v)

ỹk+1,m(x, u, v) = x exp





∑

i≥1

ỹk,m(xi, ui, vi)

i



 , k ≥ 0.(7)

In general we get therefore

yk1,...,kd
(x, u1, . . . , ud) =

∑

m1,...,md,n≥0

yk1m1k2m2···kdmdnum1

1 · · ·umd

d xn

= ỹk1,k2−k1,k3−k2,...,kd−kd−1
(x, u1, . . . , ud)

where

ỹ0,m2,...,md
(x, u1, . . . , ud) = u1ỹm2,...,md

(x, u2, . . . , ud)

ỹ0,m2,...,md
(x, u1, . . . , ud) = x exp





∑

i≥1

ỹm2,...,md
(xi, ui

2, . . . , u
i
d)

i



 , k ≥ 0.

As claimed in Theorem 2, the process ln(t) = 1√
n
Ln(t) converges weakly to Brownian excursion

local time. From [27] (cf. [6, 12] as well) we know that the characteristic function φ(t) of the total
local time of a standard Brownian excursion at level κ is

(8) φ(t) = 1 +

√
2√
π

∫

γ

t
√
−s exp(−κ

√
−2s )√

−s exp(κ
√
−2s ) − it

√
2 sinh

(

κ
√
−2s

)e−s ds

where γ = (c − i∞, c + i∞) with some arbitrary c > 0. The characteristic function of the joint
distribution of the local time at several levels κ1, . . . , κd was computed in [12] (for d = 2 already
in [6] albeit written down in a form which does not exhibit the recursive structure) and is given
by

(9) φκ1...κd
(t1, . . . , td) = 1 +

√
2

i
√

π

∫

γ

fκ1,...,κd
(x, t1, . . . , td)e

−x dx,

where

fκ1,...,κp
(x, t1, . . . , td) = Ψκ1

(x, t1 + Ψκ2−κ1
(. . . Ψκd−1−κd−2

(x, td−1 + Ψκd−κd−1
(x, td)) · · · ))

with

Ψκ(x, t) =
it
√−x exp(−κ

√
−2x )√

−x exp(κ
√
−2x ) − it

√
2 sinh

(

κ
√
−2x

) .

In order to show the weak limit theorem we have to show pointwise convergence of the char-
acteristic function φk1···kdn(t1, . . . , td) of the joint distribution of 1√

n
Ln(k1), . . . ,

1√
n
Ln(kd) to the

corresponding characteristic function of the local time in some interval containing zero. We have

φk1 ···kdn(t1, . . . , td) =
1

yn
[xn]yk1,...,kd

(

x, eit1/
√

n, . . . eitd/
√

n
)

.
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This coefficient will be calculated asymptotically by singularity analysis (see [18]). Thus know-
ing the local behaviour of yk(x, u) near its dominant singularity is the crucial step in proving
Theorem 2. Hence the following theorem will be the crucial step of the proof.

Theorem 5. Set wk(x, u) = yk(x, u) − y(x). Let x = ρ
(

1 + s
n

)

, u = eit/
√

n, and k = κ
√

n.

Moreover, assume that | arg s| ≥ θ > 0 and, as n → ∞, we have s = O
(

log2 n
)

whereas t and κ
are fixed. Then wk(x, u) admits the local representation

wk(x, u) ∼ b2ρ

2
√

n
· it

√−s exp (−κb
√−ρs )

√
−s − itb

√
ρ

4 (1 − exp (−κb
√−ρs ))

(10)

uniformly for k = O (
√

n).

The proof is deferred to the next section.

Proof of Theorem 3: For d = 1 we have

φk,n(t) =
1

yn
[xn]yk

(

x, eit/
√

n
)

=
1

2πiyn

∫

Γ

yk

(

x, eis/
√

n
) dz

xn+1
(11)

where the contour Γ = γ ∪ Γ′ consists of a line

γ = {x = ρ

(

1 − 1 + it

n

)

| −C log2 n ≤ t ≤ C log2 n}

with an arbitrarily chosen fixed constant C > 0 and Γ′ is a circular arc centered at the origin and
making Γ a closed curve.

The contribution of Γ4 is exponentially small since for x ∈ Γ′ we have |x−n−1| ∼ e− log2 n

whereas
∣

∣

∣yk

(

x, eis/
√

n
)∣

∣

∣ is bounded.

If x ∈ γ, then the local expansion (10) is valid. Insertion into (11), using (2), and taking the

limit for n → ∞ yields the characteristic function of the distribution of l(bκ/2
√

2 )/b
√

ρ as desired.
Now we can proceed by induction. For instance, for d = 2 we have

φk,k+h,n(t1, t2) =
1

yn
[xn]ỹk,h

(

x, eit1/
√

n, eit2/
√

n
)

and

ỹk,h

(

x, eit1/
√

n, eit2/
√

n
)

= y(x) + w̃k

where w̃k can be estimated similarly by application of Theorem 5. This step can be repeated easily
for d > 2 and in this way we get the characteristic functions of the fdd’s of l((b/2

√
2) · t)/b

√
ρ as

desired. �

4. The Local Behaviour of yk – Proof of Theorem 5

4.1. The shape of the limiting process. We will study the local behaviour of yk by analyzing
the quantity

wk(x, u) = yk(x, u) − y(x).

Obviously, wk(x, 1) ≡ 0. Since yk(x, u) represents the set of trees where the vertices of level k
are marked, we expect that limk→∞ yk(x, u) = y(x) inside the domain of convergence. This is not
obvious, but follows from what we derive in the sequel. We start with an a priori estimate for a
smaller domain.

Lemma 1. Let |x| ≤ ρ2 + ε for sufficiently small ε and |u| ≤ 1. Then there exist a constant L
with 0 < L < 1 and a positive constant C such that

|wk(x, u)| ≤ C|u − 1| · |x| · Lk

for all non-negative integers k.



6 MICHAEL DRMOTA AND BERNHARD GITTENBERGER

Proof: We first note that by using the recurrence relation (6) we obtain

wk+1(x, u) = yk+1(x, u) − y(x)

= x exp





∑

i≥1

1

i
yk(xi, ui)



− y(x)

= y(x)



exp



wk(x, u) +
∑

i≥2

wk(xi, ui)

i



− 1



(12)

For k = 0 we have |w0(x, u)| = |u − 1| · |y(x)| ≤ C|u − 1||x| since y(x) = O (x) as x → 0. We will
then use the trivial inequality

(13) |ex − 1| ≤ |x|
1 − |x|

2

for the induction steps. However, in order to apply this tool we need some a-priori estimates.
Obviously we have for |x| ≤ ρ and |u| ≤ 1

|wk(x, u)| ≤ 2y(|x|)
and consequently

∣

∣

∣

∣

∣

∣

∑

i≥1

wk(xi, ui)

i

∣

∣

∣

∣

∣

∣

≤ 2
∑

i≥1

y(|x|i)
i

= 2 log
y(|x|)
|x| .

Since the function y(x)
x convex for 0 ≤ x ≤ ρ and y(ρ) = 1 we get y(|x|)

|x| ≤ 1+ |x|
ρ and consequently

log
y(|x|)
|x| ≤ log

(

1 +
|x|
ρ

)

≤ |x|
ρ

.

Thus, if |x| ≤ ρ2 + ε (for a sufficienly small ε > 0 we have
∣

∣

∣

∣

∣

∣

∑

i≥1

wk(xi, ui)

i

∣

∣

∣

∣

∣

∣

≤ 2ρ + 2
ε

ρ
.

By using (13) we thus obtain
∣

∣

∣

∣

∣

∣

exp





∑

i≥1

wk(xi, ui)

i



− 1

∣

∣

∣

∣

∣

∣

≤ 1

1 − ρ − ε
ρ

∣

∣

∣

∣

∣

∣

∑

i≥1

wk(xi, ui)

i

∣

∣

∣

∣

∣

∣

.

Consequently, if we assume that we already know |wk(x, u)| ≤ C|u − 1||x|Lk (for |x| ≤ ρ, |u| ≤ 1
and some L with 0 < L < 1) then we also get

|wk+1(x, u)| ≤ |y(x)| ·

∣

∣

∣

∣

∣

∣

exp





∑

i≥1

wk(xi, ui)

i



− 1

∣

∣

∣

∣

∣

∣

≤ |y(x)|
1 − ρ − ε

ρ

∣

∣

∣

∣

∣

∣

∑

i≥1

wk(xi, ui)

i

∣

∣

∣

∣

∣

∣

≤ |y(x)|
1 − ρ − ε

ρ

CLk
∑

i≥1

|ui − 1|
i

|x|i

≤ |y(x)|
1 − ρ − ε

ρ

CLk|u − 1| |x|
1− |x| .

By convexity we have y(x) < x/ρ for 0 < x < ρ and, thus, ther exists ε > 0 with y(ρ2 + ε) ≤ ρ.
Consequently we get for |x| ≤ ρ2 + ε the estimate

|wk+1(x, u)| ≤ CL′Lk|x||u − 1|
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with

L′ =
ρ

(

1 − ρ − ε
ρ

)

(1 − ρ2 − ε)

that is smaller than 1 if ε > 0 is sufficiently small. Thus, an induction proof works for L = L′. �

For the following calculation let us use the abbreviation

Σk(x, u) :=
∑

i≥2

wk(xi, ui)

i

Corollary 1. For |u| ≤ 1 and |x| ≤ ρ + ε (ε > 0 small enough) there is a positive constant C̃
such that (for all k ≥ 0)

|Σk(x, u)| ≤ C̃|u − 1|Lk

with the constant L from the previous lemma.

Proof: We have

|Σk(x, u)| ≤
∑

i≥2

1

i
|wk(xi, ui)| ≤ C

∑

i≥2

1

i
|ui − 1| · |x|iLk

≤ C|u − 1|Lk |x|2
1 − |x| ≤ C|u − 1|Lk 1

1 − (ρ + ε)
= C̃ |u − 1|Lk

�

The asymptotic analysis of wk resp. yk enables us to apply Cauchy’s integral formula and get
the coefficients of yk(x, u) asymptotically (see the proof of Theorem 3 at the end of the previous
section) which eventually leads to an integral of the form (8). Therefore estimates for y(x), provided
in the next lemma, and the other functions appearing appearing in our analysis are needed. Most
of the estimates will refer to the domain

(14) ∆ = {x ∈ C : |x| < ρ + η, | arg(x − ρ)| > θ},
with η > 0 and 0 < θ < π

2 .

Lemma 2. Provided that η in (14) is sufficiently small, the generating function y(x) has the
following properties:

a) For x ∈ ∆ we have |y(x)| ≤ 1. Equality holds only for x = ρ.

b) Let x = ρ
(

1 − 1+it
n

)

and |t| ≤ C log2 n for some fixed C > 0. Then there is a c > 0 such
that

|y(x)| ≤ 1− c

√

max(1, |t|)
n

.

Proof: The first statement, when restricted to |x| ≤ ρ, follows from the facts that y(x) has only
positive coefficients (except y0 = 0), y(ρ) = 1 and there are no periodicities. Extension to ∆ is
easily established by using (1) and continuity arguments.

The second statement is an immediate consequence of the singular expansion (1) of y(x). �

The next step is an extension of the bound of Lemma 1 to the region near the singularity. We
will derive a lower bound as well.

Lemma 3. Assume |u| ≤ 1, |u − 1| ≤ ε and x ∈ ∆ with sufficiently small ε > 0. Then there are
positive constants C1, C2, C3, and C4 such that

|wk(x, u)| ≤ C1|w0(x, u)| · |y(x)|k = C1|u − 1| · |y(x)|k+1

and

|wk(x, u)| ≥ C2|w0(x, u)| · |y(x)|k(1 − C3ε)
k = C2|u − 1| · |y(x)|k+1(1 − C3ε)

k

uniformly for k ≤ C4

|u−1| .
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Proof: We prove both statements at once by induction. The start is trivial since we can choose
C1 = C2 = 1. Now introduce auxiliary bounds which depend on k and let c0 := 1, c̃0 := 1. In fact
we work with the assumption

(15) ck|w0| · |y(x)|k(1 − C3ε)
k ≤ |wk| ≤ c̃k|w0| · |y(x)|k ≤ C1|w0| · |y(x)|k

and when referring to the induction hypothesis in the following we always mean (15). It will turn
out that the sequence (ck)k≥0 can be chosen monotonically decreasing and convergent such that
the limit serves as the constant C2 in the lower bound of the assertion. Throughout the proof
C5, C6, . . . denote suitable positive constants and L a suitable constant lying strictly between 0
and 1.

We start with the upper bound. From

wk+1(x, u) = y(x)
(

ewk(x,u)+Σk(x,u) − 1
)

we infer

|wk+1| = |y(x)| · |wk |
∣

∣

∣

∣

1 +
Σk

wk

∣

∣

∣

∣

(

1 +
wk + Σk

2
+ O ((wk + Σk))

2

)

≤ c̃k|w0| · |y(x)|k+1

∣

∣

∣

∣

1 +
Σk

wk

∣

∣

∣

∣

(

1 +
wk + Σk

2
+ O ((wk + Σk))

2

)

(16)

where we used the induction hypothesis on the upper bound in the last step. By Corollary 1 and
the induction hypothesis on the lower bound we deduce

(17)

∣

∣

∣

∣

1 +
Σk

wk

∣

∣

∣

∣

≤ 1 + C5L
k.

In order to estimate the factor containing the error term in (16), we remark that due to the
induction hypothesis, Corollary 1, Lemma 2a, and the choice of ε we can guarantee that the error
term is small enough. Furthermore, the induction hypothesis and Lemma 2a imply

∣

∣

∣

∣

1 +
wk + Σk

2
+ O ((wk + Σk))

2

∣

∣

∣

∣

≤ 1 + C6|u − 1|

and thus the upper bound holds with C1 = (1+C6|u−1|)k
∏

i≥1

(

1 + C4L
i
)

. Note that (1+C6|u−
1|)k is bounded for the allowed range of k.

Let us turn to the lower bound now. Similarly as above, we use the recurrence relation for wk

to deduce

|wk+1| ≥ |wk | · |y(x)|
(

1 −
∣

∣

∣

∣

Σk

wk

∣

∣

∣

∣

)(

1 +
wk + Σk

2
+ O ((wk + Σk))

2

)

≥ ck|w0| · |y(x)|k+1(1 − C3ε)
k(1 − C5L

k)

(

1 +
wk + Σk

2
+ O ((wk + Σk))2

)

where the last step follows from Corollary 1 and the induction hypothesis on the lower bound. As
above, the error term can be made negligibly small. Corollary 1 again, this time in conjunction
with the induction hypothesis on the upper bound yield

(18) 1 +
wk + Σk

2
+ O

(

(wk + Σk)
2
)

≥ 1 − C7|w0(x, u)||y(x)|k

Since |w0(x, u)||y(x)|k < ε, the expression in (18) is bounded from below by 1−C3ε for C3 ≥ C7.
Setting C2 =

∏

i≥1

(

1 − C5L
kρk
)

we obtain the lower bound after all. �

Lemma 4. Let x ∈ ∆, |u| ≤ 1. Then there are a C > 0 and a constant 0 < L̃ < 1 such that
∣

∣

∣

∣

Σk(x, u)

wk(x, u)

∣

∣

∣

∣

< CL̃k.
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Proof: First, let |x − ρ| < ε and |u − 1| < ε. Using Corollary 1 and the lower bound in Lemma 3
we get

∣

∣

∣

∣

Σk(x, u)

wk(x, u)

∣

∣

∣

∣

≤ C̃

C2

(

L

1 − C4ε

)k
1

|y(x)|k+1
.

By the local expansion 1 |y(x)| is bounded from below which implies the assertion.
Notice that Σk(x, u) is an analytic function the power series of which has x2k+2 as its lowest

power of x. The lowest power of x in the power series of wk(x, u) is xk+1. At u = 1 both functions
have a first order zero. Thus the quotient is an analytic function as well with a power series starting
with xk+1. This implies the assertion for the whole domain. �

With these auxiliary results we are able get the first more precise result for wk(x, u)

Proposition 1. Let |u − 1| < ε and |x − ρ| < ε (with ε > 0 sufficiently small) such that x ∈ ∆.
Then we have
(19)

wk(x, u) =
y(x)kw0

1− w0

(

1
2

1−y(x)k

(1−y(x)) +
∑k−1

`=0

exp(
P

i≥2
w`(xi,ui)/i)−1

w`(x,u)2 y`

)

+ O
(∣

∣

∣
w2

0
1−y2k

1−y2

∣

∣

∣

)

+ O (|w0|)

Proof: Observe that wk(x, u) satisfies the recurrence relation (we omit the arguments now)

wk+1 = ywk

(

1 +
wk

2
+ O

(

w2
k

)

+
eΣk − 1

wk

(

1 + wk + O
(

w2
k

))

)

.

We know already from Lemma 4 that

eΣk − 1

wk
∼ Σk

wk
= O

(

L̃k
)

.

Using this information and substituting qk = yk/wk (cf. [7, p. 156]) this recurrence is transformed
into

qk+1 = qk

(

1 − wk

2
+ O

(

w2
k

)

− eΣk − 1

wk

(

1 + wk + O
(

w2
k

))

)

= qk − yk

2
− eΣk − 1

w2
k

yk + O
(

w0y
2k
)

+ O
(

L̃k
)

Thus we have

qk =
1

w0
− 1

2

1 − yk

1 − y
−

k−1
∑

`=0

eΣ` − 1

w2
`

y` + O
(

1 − L̃k

1 − L̃

)

+ O
(

w0
1 − y2k

1 − y2

)

which immediately implies the assertion. �

Looking at (19) more closely (i.e., near the singularity (x, u) = (ρ, 1) it will turn out that the

term w0
1−y(x)k

1−y(x) appearing in the denominator behaves like a constant. The sum w0

∑k
`=0(e

Σ` −
1)y`w−2

` is the term where the shape of wk(x, u) for Pólya trees differs from the analogue for simply
generated trees. Since Pólya trees behave similar to simply generated trees, we might be tempted
to expect that this term is asymptotically negligible. In that case, we would get an expression
similar to (10) for wk. A consequence of this would be that the limit of the profile process is of the
form Al(Bt) with different normalizing constants A and B. This implies that the sequence ln(t)
cannot be tight, since the limiting process has points where mass is concentrated. Of course, such
a strange behaviour would be a big surprise since we are not aware of any tree class exhibiting
such a phenomenon. Therefore we expect the sum to be relevant. In fact, in order to get the nice
weak limit theorem which we expect it should even behave like a constant. As we will show now,
this is indeed the case.
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Proposition 2. Under the assumptions of Theorem 5, i.e., x = ρ
(

1 + s
n

)

with | arg s| ≥ θ > 0,

u = eit/
√

n, k = κ
√

n, s = O
(

log2 n
)

, and t bound, we have

fk(x, u) := w0(x, u)
k
∑

`=0

eΣ`(x,u) − 1

w`(x, u)2
y(x)` → c0

as n → ∞.

Notice that continuity of fk is not sufficient to prove Proposition 2, because the index k depends
on n, too. Thus we need several auxiliary results first.

Lemma 5. Let |u−1| < ε and |x−ρ| < ε (with ε sufficiently small) such that x ∈ ∆. Furthermore
set Ξk := wk(x, u) − wk(ρ, u). Then, as n → ∞ and k → ∞ such that k = o (

√
n), we have

Ξk = O (k|u − 1|√ρ − x ).

Proof: For proving the assertion we will derive a recurrence relation for Ξk. First observe that

(20) Ξ0 = (u − 1)(y(x) − y(ρ)) = O
(

|u − 1|√ρ − x
)

.

Furthermore we have

Ξk+1 = wk+1(x, u) − wk+1(ρ, u)

= y(x)ewk(x,u)+Σk(x,u) − y(x) − ewk(ρ,u)+Σk(ρ,u) + 1

= ewk(x,u)+Σk(x,u) − ewk(ρ,u)+Σk(ρ,u) − (1 − y(x))
(

ewk(x,u)+Σk(x,u) − 1
)

By Lemma 3 and Corollary 1 we know that wk(x, u) = O (|u − 1|) and Σk(x, u) = O
(

|u − 1|Lk
)

with 0 < L < 1. Hence expanding the exponentials gives

Ξk+1 = wk(x, u) − wk(ρ, u) + Σk(x, u) − Σk(ρ, u)

− (1 − y(x))
(

ewk(x,u)+Σk(x,u) − 1
)

+ O
(

|u − 1|2
)

= Ξk + (1 − y(x))O
(

|u − 1| · |y|k
)

Solving this recurrence relation and using the expansion (1) for y(x) gives

Ξk = Ξ0 + O
(√

ρ − x · |u − 1| ·
∣

∣

∣

∣

1 − yk(x)

1 − y(x)

∣

∣

∣

∣

)

.

But 1−yk(x)
1−y(x) = O (k) for k = o (

√
n) and so using (20) completes the proof. �

Lemma 6. There exist functions C(x, u) and D(x, u) which are analytic in a neighbourhood of
(x, u) = (ρ, 1) such that f∞(x, u) := limk→∞ fk(x, u) admits the singular expansion

f∞(x, u) = C(x, u) − D(x, u)

√

1 − x

ρ
.

Proof: First observe that wk(x, u) admit similar expansions, i.e., there are analytic functions
gk(x, u) and hk(x, u) such that

(21) wk(x, u) = gk(x, u) − hk(x, u)

√

1 − x

ρ
.

This can be shown inductively by starting with w0(x, u) = (u − 1)y(x) which obviously has the
singular behaviour claimed above. Then use the recurrence relation (12) for wk(x, u) while keeping
in mind that Σk(x, u) is analytic. A consequence of (21) is that the terms in the sum defining
fk(x, u), namely

(

eΣ`(x,u) − 1
)

w0(x, u)/w`(x, u)2 have a singular expansion of the same type at
(x, u) = (ρ, 1) and are analytic for |u| ≤ 1 and |x| < ρ.

By Corollary 1 and Lemmas 4 and 3, respectively, we infer that there are constants C > 0 and
0 < L < 1 such that

(22) eΣ`(x,u) − 1 ∼ Σ`(x, u) and

∣

∣

∣

∣

Σ`(x, u)y(x)`

w`(x, u)2

∣

∣

∣

∣

≤ CL`

|u − 1| .
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This implies that the series

w0(x, u)

∞
∑

`=0

eΣ`(x,u)−1

w`(x, u)2

is uniformly convergent in the domain |u| ≤ 1, |x| ≤ ρ. Since the terms summed up are analytic
functions in this domain except at (ρ, 1), by Weierstraß’ double series theorem this series represents
an analytic function there. However, the nature of the singularity could change by the infinite
summation which requires further analysis.

Observe that by (22) again we have

fk(x, u) ∼ w0(x, u)

k
∑

`=0

Σ`(x, u)

w`(x, u)2
y(x)` ∼ w0(x, u)

∑

`<log2 n

Σ`(x, u)

w`(x, u)2
y(x)`,

uniformly in x and u, i.e., we can restrict the sum to a range where Lemma 5 will be applicable.
Now let us inspect what happens near the singularity. We have

|fk(x, u) − fk(ρ, u)| ≤ C|w0(x, u)|
∑

`<log2 n

∣

∣

∣

∣

1

w`(x, u)2
− 1

w`(ρ, u)2

∣

∣

∣

∣

· L`|u − 1|

= C|u − 1|2|y(x)|L`
∑

`<log2 n

∣

∣

∣

∣

1

w`(x, u)2
− 1

w`(ρ, u)2

∣

∣

∣

∣

(23)

where C > 0 and 0 < L < 1. Moreover, by Lemma 3 and Lemma 5

1

w`(x, u)2
− 1

w`(ρ, u)2
=

(

1

w`(x, u)w`(ρ, u)2
+

1

w`(x, u)2w`(ρ, u)

)

Ξ` = O
(

`
√

ρ − x
1

|u − 1|2
)

and combining this with (23) yields the assertion after all. �

Proof of Proposition 2: The previous lemma shows that |fk(x, u) − fk(ρ, u)| = O (
√

ρ − x ) holds
uniformly w.r.t. u and all nonnegative integers k. This immediately implies the statement of the
proposition. �

What we know so far is the following: The characteristic function of the limiting distribution
of the number of nodes in a certain level can be computed by taking the limit for n → ∞ in (11)
after inserting the local expansion given essentially by Proposition 1. In (11) only the contribution
of the part γ of the integration is eventually relevant and there – setting x = ρ

(

1 + s
n

)

– we have
the following expansions:

(u − 1)y(x) =
(

eit/
√

n − 1
)

y(x) ∼ it√
n

1 − y(x) ∼ b

√

−ρs

n

y(x)k ∼ exp
(

−κb
√
−ρs

)

By Lemma 5 this implies

(24) wk(x, u) ∼ 1√
n
·

it
1−c0

√
−s exp (−κb

√−ρs )
√
−s − it

2(1−c0)b
√

ρ (1 − exp (−κb
√−ρs ))

and hence

(25) ln(t) → 1

(1 − c0)b
√

2ρ
l

(

b
√

ρ

2
√

2

)

for any fixed t. Of course, the generalization to several dimensions can be proved in a similar
fashion as Theorem 3. So, our next task is to determine the constant c0 in Proposition 2 which
amounts to computing the normalization constant of the limiting process in (25).
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4.2. The normalization of the limiting process. In order to get the correct normalization we
will compute the limit of expected values Eln(κ). Thus let

γk(x) =

[

∂

∂u
yk(x, u)

]

u=1

.

Then these expectations can be computed by evaluating the coefficient [xn]γk(x) with k = κ
√

n
which will be done by Cauchy’s integral formula again. Using the shape (24) of wk(x, u) it is easy to
show that Eln(κ)2 is bounded. This amounts to estimating a Cauchy integral involving the second

partial derivative ∂2

∂u2 yk(x, u). We leave this to the reader since Cauchy integrals of that kind will
be analyzed in more detail in the next section. By [17, p.251, Example (e)] the boundedness of
Eln(κ)2 implies limn→∞ Eln(κ) = E limn→∞ ln(κ) where the limit on the right-hand side means
the weak limit. Therefore computing this will exhibit the correct normalizing constant.

Lemma 7. For |x| < ρ + η and arg(x − ρ) 6= 0 (where η > 0 is sufficiently small) the functions
γk(x) can be represented as

(26) γk(x) = Ck(x)y(x)k ,

where Ck(x) are analytic and converge uniformly to an analytic limit function C(x) (for |x| < ρ+η
and arg(x − ρ) 6= 0) with convergence rate

Ck(x) = C(x) + O(Lk),

for some L with 0 < L < 1

Proof: A tree that has nodes at level k must have size larger than k. Thus [xr]yk(x, u) does not
depend on u for r ≤ k. Consequently, the lowest order non-vanishing term in the power series
expansion of γk(x) is of order k + 1. The power series expansion of y(x) starts with x. Hence

Ck(x) = γk(x)
y(x)k is analytic for |x| < ρ + η and arg(x − ρ) 6= 0. We will show that the sequence

(Ck(x))k≥0 has a uniform limit C(x) which has the desired properties.
Using the recurrence relation of yk(x, u) we get

γk+1(x) =

[

∂

∂u
xeyk(x,u)+Σk(x,u)

]

u=1

=
[

xeyk(x,u)+Σk(x,u)
]

u=1

∑

i≥1

[

∂

∂u
yk(xi, ui)ui−1

]

u=1

= y(x)
∑

i≥1

γk(xi)

which can be written as

(27) Ck+1(x)y(x)k+1 = Ck(x)y(x)k+1 + y(x)
(

Ck(x2)y(x2)k + Ck(x3)y(x3)k + . . .
)

.

resp. to

(28) Ck+1(x) =
∑

i≥1

Ck(xi)
y(xi)k

y(x)k
.

Set

Lk := sup
|x|<ρ+η, arg(x−ρ)6=0

∑

i≥2

|y(xi)|k
|y(x)|k .

If η > 0 is sufficiently small then

sup
|x|<ρ+η, arg(x−ρ)6=0

|y(xi)|
|y(x)| < 1 for all i ≥ 2 and sup

|x|<ρ+η, arg(x−ρ)6=0

|y(xi)|
|y(x)| = O(L

i
)

for some L with 0 < L < 1. Consequently we also get

Lk = O(Lk)
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for some L with 0 < L < 1. Thus, if we use the notation ‖f‖ := sup
|x|<ρ+η, arg(x−ρ) 6=0

|f(x)| then (28)

implies

(29) ‖Ck+1‖ ≤ ‖Ck‖(1 + Lk)

and also

(30) ‖Ck+1 − Ck‖ ≤ ‖Ck‖Lk

Now (29) directly implies that the functions Ck(x) are uniformly bounded in the given domain by

‖Ck‖ ≤ c0 :=
∏

`≥1

(1 + L`)

Further (30) implies that there exists a limit limk→∞ Ck(x) = C(x) that is analytic in the given
domain and we have uniform exponential convergence rate

‖Ck − C‖ ≤ c0

∑

`≥k

L` = O(Lk)

Hence, we finally get (26) as desired. �

If we sum up all the level sizes of a tree, we obviously get the total number of nodes, i.e., the
size of the tree. Hence the equations

1

yn
[xn]

∑

k≥0

γk(x) = E
∑

k≥0

Ln(k) = n =
1

yn
[xn]xy′(x)

hold. Equation (26) tells us that, as x → ρ, we have

∑

k≥0

γk(x) =
C(x)

1 − y(x)
+ O (1)

and from this we infer

C(ρ) = lim
x→ρ

xy′(x)(1 − y(x)) =
b2ρ

2

where we used (1). Therefore γk(x) is an analytic function with γk(x) ∼ Ck(ρ)y(x)k , as x → ρ,
allowing also an analytic continuation outside its disk of convergence. Standard transfer methods
à la Flajolet and Odlyzko [18] apply now, where we use Cauchy’s formula again with a Hankel-like
contour complemented by a circular arc. This yields (for k = κ

√
n)

1

yn
[xn]γk(x) ∼ b2ρ

4πiyn

∫

H
e−κb

√−ρs−s ds =
b2ρκ

2
exp

(

−b2ρκ2

4

)√
n

where H is the Hankel-like contour around the singularity (see [18]). This integral can be trans-
formed into the integral appearing in Hankel’s representation of Γ(x) (cf. [46, p.244]). The above
given expression coincides with the first moment (see [44] for the computation of the moments and
[25] for a study of the density) of the local time of the Brownian excursion, normalized as claimed
in Theorem 3, and completes the proof of Theorem 5.

5. Tightness – Proof of Theorem 4

In this section we will show that the sequence of random variables ln(t) = n−1/2Ln(t
√

n), t ≥ 0,
is tight in C[0,∞). By [30, p. 63] it suffices to prove tightness for C[0, T ]. Hence we consider Ln(t)
for 0 ≤ t ≤ A

√
n, where A > 0 is an arbitrary real constant.

By [2, Theorem 12.3] tightness of ln(t) = n−1/2Ln(t
√

n), 0 ≤ t ≤ A, follows from tightness of
Ln(0) (which is trivial) and from the existence of a constant C > 0 such that (5) holds for all
non-negative integers n, r, h.

The fourth moment in the above equation can be expressed as the coefficient of a suitable
generating function. We have

E (Ln(r) − Ln(r + h))
4

=
1

yn
[xn]

[(

∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+

∂4

∂u4

)

ỹr,h

(

x, u,
1

u

)]

u=1
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where ỹr,h(x, u, v) is defined by (7). Thus, (5) is equivalent to

(31) [xn]

[(

∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+

∂4

∂u4

)

ỹr,h

(

x, u,
1

u

)]

u=1

≤ C
h2

√
n

ρ−n

In order to prove (31) we use a result from [18] saying that

F (x) = O
(

(1 − x/ρ)−β
)

(x ∈ ∆)

implies
[xn]F (x) = O

(

ρ−nnβ−1
)

,

where ∆ is a region of i(14)
Hence, it is sufficient to show that

(32)

[(

∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+

∂4

∂u4

)

ỹr,h

(

x, u,
1

u

)]

u=1

= O
(

h2

1 − |y(x)|

)

= O
(

h2

√

|1 − x/ρ|

)

for x ∈ ∆ and h ≥ 1. (Note that θ < π
2 implies that 1 − |y(x)| ≥ c

√

|1 − x/ρ| for some constant
c > 0.)

We now define

γ
[j]
k (x) =

[

∂jyk(x, u)

∂uj

]

u=1

and γ
[j]
r,h(x) =

[

∂j ỹr,h

(

x, u, 1
u

)

∂uj

]

u=1

and derive the following upper bounds.

Lemma 8. We have

(33) γ
[1]
k (x) =

{

O (1) uniformly for x ∈ ∆,
O
(

|x/ρ|k
)

uniformly for |x| ≤ ρ

and

(34) γ
[1]
r,h(x) =

{

O
(

h
r+h

)

uniformly for x ∈ ∆,

O (|x/ρ|r) uniformly for |x| ≤ ρ,

where L is constant with 0 < L < 1.

Proof: We already know that γ
[1]
k (x) = Ck(x)y(x)k , where Ck(x) = O (1) and |y(x)| ≤ 1 for

x ∈ ∆. Furthermore, by convexity we also have |y(x)| ≤ |x/ρ| for |x| ≤ ρ. Hence, we obtain

γ
[1]
k (x) = O

(

|x/ρ|k
)

for |x| ≤ ρ.

The functions γ
[j]
r,h(x) are given by the recurrence

γ
[j]
r+1,h(x) = y(x)

∑

i≥1

γ
[j]
r,h(xi)

with initial value γ
[j]
0,h(x) = y(x) − γh(x). Hence, the representation γ

[1]
r,h(x) = γ

[1]
r (x) − γ

[1]
h+r(x)

follows by induction. Since, γ
[1]
r (x) = (C(x) + O(Lr))y(x)r we thus get that

γ
[1]
r,h(x) = O

(

sup
x∈∆

|y(x)r(1 − y(x)h)| + Lr

)

However, it is an easy exercise to show that

(35) sup
x∈∆

|y(x)r(1 − y(x)h)| = O
(

h

r + h

)

.

For this purpose observe that if x ∈ ∆ then we either have |y(x) − 1| ≤ 1 and |y(x)| ≤ 1, or
|y(x)| ≤ 1− η for some η > 0. In the second case we surely have

|y(x)r(1 − y(x)h)| ≤ 2(1 − η)r = O (Lr) .

For the first case we set y = 1 − ρeiϕ and observe that
∣

∣1 − (1 − ρeiϕ)h
∣

∣ ≤ (1 + ρ)h − 1.
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Hence, if r ≥ 3h we thus obtain that

|y(x)r(1 − y(x)h)| ≤ max
0≤ρ≤1

(1 − ρ)r
(

(1 + ρ)h − 1
)

≤ h

r − h
≤ 2h

r + h
.

If r < 3h we obviously have

|y(x)r(1 − y(x)h)| ≤ 2 ≤ 4h

r + h

which completes the proof of (35). Of course, we also have Lr = O
(

h
h+r

)

. This completes the

proof of the upper bound of γ
[1]
r,h(x) for x ∈ ∆.

Finally, the upper bound γ
[1]
r,h(x) = O (|x/ρ|r) follows from (33). �

Lemma 9. We have

(36) γ
[2]
k (x) =

{

O
(

min
{

k, 1
1−|y(x)|

})

uniformly for x ∈ ∆,

O
(

|x/ρ|k
)

uniformly for |x| ≤ ρ − η

and

(37) γ
[2]
r,h(x) =

{

O
(

min
{

h, 1
1−|y(x)|

})

uniformly for x ∈ ∆,

O (|x/ρ|r) uniformly for |x| ≤ ρ − η

for every η > 0.

Remark. By doing a more precise analysis similarly to Lemma 7 we can, for example show that

γ
[2]
k (x) can be represented as

(38) γ
[2]
k (x) = y(x)k

k
∑

`=1

Dk,`(x)y(x)`−1,

where the functions Dk,`(x) are analytic in ∆. For every ` there is a limit D`(x) = limk→∞ Dk,`(x)
with

Dk,`(x) = D`(x) + O(L̃k+`),

where 0 < L̃ < 1. Furthermore these limit functions D`(x) satisfy

D`(x) = C(x)2 + O(L̃`).

Since we will not make use of this precise representation we leave the details to the reader.

Proof: We start with the analysis of γ
[2]
k (x). We proceed by induction with help of the recurrenc

(39) γ
[2]
k+1(x) = y(x)

∑

i≥1

iγ
[2]
k (xi) + y(x)





∑

i≥1

γ
[1]
k (xi)





2

+ y(x)
∑

i≥2

(i − 1)γ
[1]
k (xi)

Since γ
[2]
0 (x) = 0 it follows that (36) is satisfied for k = 0.

Now assume that |γ[2]
k (x)| ≤ Dk|x/ρ|k for |x| ≤ ρ − η. Since γ

[2]
0 (x) = 0 we can set D0 = 0.

Furthermore, we use the bound from Lemma 8: |γ [1]
k (x)| ≤ C|x/ρ|k for |x| ≤ ρ − η. By using the
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recurrence (39) we thus obtain

|γ[2]
k+1(x)| ≤ Dk|x/ρ|k+1 + Dk|x/ρ|

∑

i≥2

i|xi/ρ|k

+ C2|x/ρ|





∑

i≥1

|xi/ρ|k




2

+ C
∑

i≥2

(i − 1)|xi/ρ|k

≤ Dk|x/ρ|k+1 + Dk
2|x|2k+1/ρk+1

(1 − |x|k)2

+ C2|x/ρ|
( |x/ρ|k

1 − |x|k
)2

+ C|x/ρ| 2|x|2k/ρk

(1 − |x|k)2
.

Consequently we can set

Dk+1 = Dk

(

1 +
2(ρ − η)k

(1 − ρk)2

)

+ C2 (ρ − η)k/ρk

(1 − |ρ|k)2
+ C

2(ρ − η)k

(1 − |ρ|k)2

and obtain that Dk = O (1) as k → ∞.

Now assume that |γ[2]
k (x)| ≤ D̄k for x ∈ ∆. We also use the bound |γ [1]

k (x)| ≤ C for x ∈ ∆.

Without loss of generality we can also assume that ρ + η < 1
2 and that |x|i ≤ ρ− η for x ∈ ∆ and

i ≥ 2. Then we get inductively for x ∈ ∆

|γ[2]
k+1(x)| ≤ D̄k + Dk

∑

i≥2

i((ρ + η)i/ρ)k

+ C2



1 +
∑

i≥2

((ρ + η)i/ρ)k





2

+ C
∑

i≥2

(i − 1)((ρ + η)i/ρ)k

≤ D̄k + 8Dk(ρ + η)2k/ρk

+ C2
(

1 + 2(ρ + η)2k/ρk
)2

+ 4C(ρ + η)2k/ρk.

Hence, we can set

D̄k+1 = D̄k + 8Dk(ρ + η)2k/ρk + C2
(

1 + 2(ρ + η)2k/ρk
)2

+ 4C(ρ + η)2k/ρk

and obtain easily that

D̄k = O (k) .

Thus, in order to complete the proof of (36) we just have to show that γ
[2]
k (x) =

O (1/(1− |y(x))), too, for x ∈ ∆. We rewrite the recurrence (39) as

γ
[2]
k+1(x) = y(x)γ

[2]
k (x) + bk(x),

where

bk(x) = y(x)
∑

i≥2

iγ
[2]
k (xi) + y(x)





∑

i≥1

γ
[1]
k (xi)





2

+ y(x)
∑

i≥2

(i − 1)γ
[1]
k (xi).

Since γ
[2]
0 (x) = 0 the solution of this recurrence can be written as

γ
[2]
k (x) = bk−1(x) + y(x)bk−2(x) + · · · + y(x)k−1b0(x).

From what we know we directly get bk(x) = O (1) uniformly for x ∈ ∆. Hence,

γ
[2]
k (x) = O





k−1
∑

j=0

|y(x)|j


 = O
(

1

1 − |y(x)|

)

.

This completes the proof of (36).
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The recurrence for γ
[2]
h,r(x) is similar to that of γ

[2]
k (x).

(40) γ
[2]
r+1,h(x) = y(x)

∑

i≥1

iγ
[2]
r,h(xi) + y(x)





∑

i≥1

γ
[1]
r,h(xi)





2

+ y(x)
∑

i≥2

(i − 1)γ
[1]
r,h(xi)

with initial value γ
[2]
0,h(x) = γ

[2]
h (x). Now assume that we already know that |γ [2]

r,h(x)| ≤ Dr,h|x/ρ|r
for |x| ≤ ρ − η. By (37) we can set D0,h = Dh which is bounded as h → ∞. We also assume that

|γ[1]
r,h(x)| ≤ C|x/ρ|k for |x| ≤ ρ − η. Then by (40) we get

|γ[2]
r+1,h(x)| ≤ Dr,h|x/ρ|k+1 + Dr,h|x/ρ| 2|x|2k/ρk

(1 − |x|k)2

+ C2|x/ρ|
( |x/ρ|k

1 − |x|k
)2

+ C|x/ρ| 2|x|2k/ρk

(1 − |x|k)2

Thus, we can set

Dr+1,h = Dr,h

(

1 +
2(ρ − η)k

(1 − ρk)2

)

+ C2 (ρ − η)k

(1 − ρk)2
+ C

2(ρ − η)k

(1 − ρk)2

and obtain Dr,h uniformly bounded. Consequently γ
[1]
r,h(x) = O (|x/ρ|r) for |x| ≤ ρ − η.

Next we assume that |γ [2]
r,h(x)| ≤ D̄r,h for x ∈ ∆, and of course we already know that |γ [1]

r,h(x)| ≤
C h

h+r for x ∈ ∆. Hence

|γ[2]
r+1,h(x)| ≤ D̄r,h + Dr,h

∑

i≥2

i|xi/ρ|r

+ C2





h

r + h
+
∑

i≥2

|xi/ρ|r




2

+ C
∑

i≥2

(i − 1)|xi/ρ|r

≤ D̄r,h + 8Dr,h(ρ + η)2r/ρr

+ C2

(

h

r + h
+ 2(ρ + η)2r/ρr

)2

+ 4C(ρ + η)2r/ρr.

Thus, we can set

D̄r+1,h = D̄r,h + 8Dr,h(ρ + η)2r/ρr + C2

(

h

r + h
+ 2(ρ + η)2r/ρr

)2

+ 4C(ρ + η)2r/ρr

with initial value D̄0,h = D̄h = O (h) and obtain a uniform upper bound of the form

D̄r,h = O (h) .

Consequently γ
[2]
r,h(x) = O (h) for x ∈ ∆.

Thus, in order to complete the proof of (37) it remains to prove γ
[2]
r,h(x) = O (1/(1 − |y(x)|)),

too, for x ∈ ∆. Similarly to the above we represent γ
[2]
r,h(x) as

(41) γ
[2]
r,h(x) = γ

[2]
0,h(x) + cr−1,h(x) + y(x)cr−2,h(x) + · · · + y(x)r−1c0,h(x),

where

cj,h(x) = y(x)
∑

i≥2

iγ
[2]
j,h(xi) + y(x)





∑

i≥1

γ
[1]
j,h(xi)





2

+ y(x)
∑

i≥2

(i − 1)γ
[1]
j,h(xi).

Observe that there exists η > 0 such that |xi| ≤ ρ−η for i ≥ 2 and x ∈ ∆. Hence it directly follows

that cj,h(x) = O (1) for x ∈ ∆. Since γ
[2]
0,h(x) = γ

[2]
h (x) = O (1/(1 − |y(x)|)) we consequently get

γ
[2]
r,h(x) = γ

[2]
h (x) + O

(

1

1− |y(x)|

)

= O
(

1

1 − |y(x)|

)

.
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�

Remark. Note that the estimates of Lemma 9 already prove that

E (Ln(r) − Ln(r + h))2 = O
(

h
√

n
)

.

Unfortunately this estimate is not sufficient to prove tightness. In fact, we have to deal with the
4-th moments.

Before we start with bounds for γ
[3]
k (x) and γ

[4]
k (x) we need an auxiliary bound.

Lemma 10. We have uniformly for x ∈ ∆

(42)
∑

r≥0

|γ[1]
r,h(x)γ

[2]
r,h(x)| = O

(

h2
)

.

Proof: We use the representation (41), where we can approximate cj,h(x) by

cj,h(x) = y(x)γ
[1]
j,h(x)2 + O

(

Lj
)

= O
(

h2

(r + h)2

)

uniformly for x ∈ ∆ with some constant L that satisfies 0 < L < 1. Furthermore, we use the
approximation

γ
[1]
r,h(x) = C(x)y(x)r(1 − y(x)h) + O (Lr)

that is uniform for x ∈ ∆. For example, this shows

∑

r≥0

|γ[1]
r,h(x)| = |C(x)| |1 − y(x)h|

1 − |y(x)| + O (1) .

Now observe that for x ∈ ∆ there exists a constant c > 0 with |1− y(x)| ≥ c(1− |y(x)|). Hence it
follows that

|1 − y(x)h|
1 − |y(x)| = O

(

1 − y(x)h

1 − y(x)

)

= O (h)

and consequently
∑

r≥0

|γ[1]
r,h(x)| = O (h) .

Similarly we get

∑

r≥1

|γ[1]
r,h(x)|

∣

∣

∣

∣

∣

∣

∑

j<r

y(x)r−j−1cj,h(x)

∣

∣

∣

∣

∣

∣

≤
∑

j≥0

|cj,h(x)| |y(x)|−j−1
∑

r>j

|y(x)|r |γ[1]
r,h(x)|

=
∑

j≥0

|cj,h(x)| |y(x)|−j−1

(

|C(x)| |y(x)|2j+2 |1 − y(x)h|
1 − |y(x)|2 + O

(

|y(x)|j+1Lj
)

)

= O





∑

j≥0

h3

(j + h)2





= O
(

h2
)

.

Hence, we finally obtain

∑

r≥0

|γ[1]
r,h(x)γ

[2]
r,h(x)| ≤

∑

r≥0

|γ[1]
r,h(x)| |γ[2]

r,h(x)| +
∑

r≥1

|γ[1]
r,h(x)|

∣

∣

∣

∣

∣

∣

∑

j<r

y(x)r−j−1cj,h(x)

∣

∣

∣

∣

∣

∣

= O
(

h2
)

.

�
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Lemma 11. We have

(43) γ
[3]
k (x) =

{

O
(

min{k2, k
1−|y(x)|}

)

uniformly for x ∈ ∆,

O
(

|x/ρ|k
)

uniformly for |x| ≤ ρ − η

and

(44) γ
[3]
r,h(x) =

{

O
(

min{h2, h
1−|y(x)|}

)

uniformly for x ∈ ∆,

O (|x/ρ|r) uniformly for |x| ≤ ρ − η

for every η > 0.

Proof: The recurrence for γ
[3]
k (x) is given by

γ
[3]
k+1(x) = y(x)

∑

i≥1

i3γ
[3]
k (xi) + y(x)





∑

i≥i

γ
[1]
k (xi)





3

+ 3y(x)





∑

i≥1

γ
[1]
k (xi)









∑

i≥1

iγ
[2]
k (xi)





+ 3y(x)





∑

i≥1

γ
[1]
k (xi)









∑

i≥1

(i − 1)γ
[i]
k (xi)



+ 3y(x)
∑

i≥1

i(i − 1)γ
[2]
k (xi)(45)

+ y(x)
∑

i≥1

(i − 1)(i − 2)γ
[1]
k (xi)

By inspecting the proof of Lemmas 8 and 9 one expects that the only important part of this
recurrence if given by

(46) γ
[3]
k+1(x) = y(x)γ

[3]
k (x) + y(x)γ

[1]
k (x)3 + 3y(x)γ

[1]
k (x)γ

[2]
k (x) + Rk

and Rk collects the less important remainder terms that only contributes exponentially small
terms. Thus, in order to shorten our presentation we will only focus on these terms. In particular

it is easy to show the bound γ
[3]
k (x) = O

(

|x/ρ|k
)

for |x| ≤ ρ − η. (We omit the details.)

Next, since y(x)γ
[1]
k (x)3 + 3y(x)γ

[1]
k (x)γ

[2]
k (x) + Rk = O (k) it directly follows that γ

[3]
k (x) =

O
(

k2
)

.

Now we proceed by induction and observe that a bound of the form |γ [3]
k (x)| ≤ Ek/(1− |y(x)|)

leads to

|γ[3]
k+1(x)| ≤ Ek

1 − |y(x)| + O
(

1

1 − |y(x)|

)

+ |Rk|

and consequently to Ek+1 ≤ Ek + O (1). Hence, Ek = O (k) and γ
[3]
k (x) = O (k/(1 − |y(x)|)).

Similarly, the leading part of the recurrence for γ
[3]
r,h(x) is given by

γ
[3]
r+1,h(x) = y(x)γ

[3]
r,h(x) + y(x)γ

[1]
r,h(x)3 + 3y(x)γ

[1]
r,h(x)γ

[2]
r,h(x) + R̄r,h(47)

= y(x)γ
[3]
r,h(x) + dr,h(x),

where

dr,h(x) = y(x)γ
[1]
r,h(x)3 + 3y(x)γ

[1]
r,h(x)γ

[2]
r,h(x) + R̄r,h = O (h)

and the initial value is given by

γ
[3]
0,h(x) = −γ

[3]
h (x) − 3γ

[2]
h (x) = O

(

min

{

h2,
h

1 − |y(x)|

})

.

Note that we also assume that γ
[3]
r,h(x) = O (|x/ρ|r) for |x| ≤ ρ − η (which can be easily proved).

Consequently it directly follows that

γ
[3]
r,h(x) = γ

[3]
0,h(x) + dr−1,h(x) + y(x)dr−1,h(x) + · · · + y(x)r−1d0,h(x)

= O
(

h

1 − |y(x)|

)

.
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Next observe that Lemmas 8–10 ensure that
∑

j≥0

|dj,h(x)| = O
(

h2
)

uniformly for x ∈ ∆. Hence, we finally get

γ
[3]
r,h(x) = O

(

h2
)

which completes the proof of Lemma 11. �

Lemma 12. We have

(48) γ
[4]
k (x) =

{

O
(

k2

1−|y(x)|

)

uniformly for x ∈ ∆,

O
(

|x/ρ|k
)

uniformly for |x| ≤ ρ − η

and

(49) γ
[4]
r,h(x) =

{

O
(

h2

1−|y(x)|

)

uniformly for x ∈ ∆,

O (|x/ρ|r) uniformly for |x| ≤ ρ − η

for every η > 0.

Proof: The proof is very similar to that of Lemma 11. First, the recurrence for γ
[4]
k (x) is essentially

of the form

γ
[4]
k+1(x) = y(x)γ

[4]
k (x) + y(x)γ

[1]
k (x)4 + 4y(x)γ

[1]
k (x)γ

[3]
k (x)(50)

+ 6y(x)γ
[1]
k (x)2γ

[2]
k (x) + 3y(x)γ

[2]
k (x)2 + Rk,

where Rk collects all exponentially small summands. We assume that we have already proved the

upper bound γ
[4]
k (x) = O

(

|x/ρ|k
)

for |x| ≤ ρ− η. Now, by induction it the assumption |γ [4]
k (x)| ≤

Fk/(1−|y(x)|) and the known estimates γ
[1]
k (x) = O (1), γ

[2]
k (x) = O (min{k, 1/(1− |y(x)|)}), and

γ
[3]
k (x) = O (k/(1− |y(x)|)) we get

|γ[4]
k+1(x)| ≤ Fk

1 − |y(x)| + O
(

|y(x)|k
)

+ O
(

k

1 − |y(x)|

)

+ O
(

1

1− |y(x)|

)

+ |Rk|

and consequently Fk = O
(

k2
)

.

Finally, the essential part of the recurrence for γ
[4]
r,h(x) is given by

γ
[4]
r+1,h(x) = y(x)γ

[4]
r,h(x) + y(x)γ

[1]
r,h(x)4 + 4y(x)γ

[1]
r,h(x)γ

[3]
r,h(x)(51)

+ 6y(x)γ
[1]
r,h(x)2γ

[2]
r,h(x) + 3y(x)γ

[2]
r,h(x)2 + R̄r,h

= y(x)γ
[4]
r,h(x) + er,h(x),

where

er,h(x) = y(x)γ
[1]
r,h(x)4 + 4y(x)γ

[1]
r,h(x)γ

[3]
r,h(x)

+ 6y(x)γ
[1]
r,h(x)2γ

[2]
r,h(x) + 3y(x)γ

[2]
r,h(x)2 + R̄r,h.

As above, R̄r,h collects all exponentially small terms. Thus,

γ
[4]
r,h(x) = γ

[4]
0,h(x) + er−1,h(x) + y(x)er−1,h(x) + · · · + y(x)r−1e0,h(x).

If we use the known estimates γ
[1]
r,h(x) = O (1), γ

[2]
r,h(x) = O (h), and γ

[3]
r,h(x) = O

(

h2
)

which gives

dr,h = O
(

h2
)

and the initial condition

γ
[4]
0,h(x) = 12γ

[2]
h (x) + 8γ

[3]
h (x) + γ

[4]
h (x) = O

(

h2

1 − |y(x)|

)

we obtain

γ
[4]
r,h(x) = O

(

h2

1− |y(x)|

)

.
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This completes the proof of Lemma 12. �

The proof of (32) is now immediate. As already noted this implies (31) and proves Theorem 4.

6. The Height

Let ykn denote the number of trees with n nodes and height at most k. Then the generating
function yk(x) =

∑

n≥1 yknxn satisfies the recurrence relation

y0(x) = 0

yk+1(x) = x exp





∑

i≥1

yk(xi)

i



 , k ≥ 0.

Obviously yk(x) = yk(x, 0) where the function on the right-hand side is the generating function
of (6) which we used to analyze the profile in the previous sections. So wk and Σk can be defined
accordingly, i.e., we write

wk(x) := wk(x, 0) = y(x) − yk(x) =
∑

n≥0

P {Hn > k} ynxn

and

Σk(x) := Σk(x, 0) =
∑

i≥2

wk(xi)

i
.

So, wk(x) encodes the distribution of the height and thus it suffices to analyze this function.

Lemma 13. For |x| ≤ ρ2 + ε (ε > 0 sufficiently small) we have |wk(x)| ≤ C|x|Lk for all k. The
constants L and C are those of Lemma 1. Consequently, for |x| < ρ + ε we have |Σk(x)| ≤ CLk.

Proof: This is a special case of Lemma 1 and Corollary 1. �

Note that Lemma 4 holds for u = 0. So the next task is to derive upper and lower bounds for
wk(x).

Lemma 14. Let x ∈ ∆. Then there is a C > 0 such that

|wk(x)| ≤ C√
k

∣

∣

∣

∣

x

ρ

∣

∣

∣

∣

k

Proof: Obviously, for |x| ≤ ρ we have

|wk(x)| =
∑

n>k

(yn − ykn)|x|n ≤
∑

n>k

yn|x|n.

The assertion for this domain follows now from yn � ρ−nn−3/2.
For x ∈ ∆ but outside the circle |x| ≤ ρ observe that in view of Lemma 13 it is easy to show

|yk(x)| ≤ |y(x)| inductively. Thus by Lemma 2a |wk(x)| is bounded whereas the bound in the
assertion is not (|x| > ρ in the considered case). �

Lemma 15. Let x ∈ ∆ and |x − ρ| < ε. Then

|wk(x)| ≥ C|y(x)|k+1e−
√

k

for some C > 0.

Proof: Throughout the proof Ci and 0 < L < 1 denote again suitable positive constants. We have

|wk+1(x)| ≥ |wk(x)||y(x)|
(

1 −
∣

∣

∣

∣

Σk(x)

wk(x)

∣

∣

∣

∣

)

(1 + O (wk))
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By Lemma 4 we have 1 −
∣

∣

∣

Σk(x)
wk(x)

∣

∣

∣ ≥ 1 − C1L
k. With the upper bound of Lemma 14 we obtain

1 + O (wk) ≥ 1 − C2√
k
.

Hence

|wk+1(x)| ≥ |y(x)|k+1
k
∏

i=1

(1 − C1L
i)

k
∏

i=1

(

1 − C2√
i

)

and since the latter product is bounded from below by C3e
−
√

k we are done. �

The essential property of wk(x) that is needed is the following one.

Proposition 3. Let k = κ
√

n. Then, as n → ∞, we have

(52) wk(x) =
−y(x)k

1
2

1−y(x)k

1−y(x) + O
(√

k
)

uniformly for |x − ρ| < ε such that x ∈ ∆.

Proof: We use essentially the same arguments as in the proof of Proposition 1. As there we set
qk = yk/wk and get

qk+1 = qk − yk

2
− eΣk − 1

w2
k

yk + O (wk) + O
(

L̃k
)

Using Lemma 14 we obtain

qk =
1

w0
− 1

2

1 − yk

1 − y
−

k−1
∑

`=0

eΣ` − 1

w2
`

y` + O
(

1 − L̃k

1 − L̃

)

+ O
(√

k
)

= −1

2

1 − yk

1 − y
−

k−1
∑

`=0

eΣ` − 1

w2
`

y` + O
(√

k
)

Applying Lemma 15 yields

k−1
∑

`=0

eΣ`(x) − 1

w`(x)2
y(x)` = O (1)

and this completes the proof. �

Now we are able to complete the proof of Theorem 1. In fact, it is an immediate consequence
of the following proposition.

Proposition 4. The asymptotic behaviour (52) in ∆ implies (3) for the average height and (4)
for the distribution of the height of Pólya trees.

Proof: Note that, when computing [xn]wk(x) by a Cauchy integral, we can choose an integration
contour following more or less the boundary of ∆ (the singularity has to be avoided of course).
Since wk(x) is bounded on ∆ the contribution of the circular part is – after normalization by
1/yn – exponentially small. This fact in conjunction with Proposition 3 means, that the shape of
wk(x) precisely matches that of the corresponding quantity for simply generated trees: Flajolet
and Odlyzko showed that (52) implies (3), see [20, p. 204] where this argument was used to derive
the average height of simply generated trees. When computing the distribution of the height of
simply generated tree, Flajolet et al. showed that (52) implies (4), see [19, end of Section 2]. �
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