
THE SUM OF DIGITS FUNCTION OF SQUARES

MICHAEL DRMOTA∗ AND JOËL RIVAT∗∗

Abstract. We consider the set of squares n2, n < 2k, and split up the sum
of binary digits s(n2) into two parts s[<k](n

2) + s[≥k](n
2), where s[<k](n

2) =

s(n2 mod 2k) collects the first k digits and s[≥k](n
2) = s(bn2/2kc) collects

the remaining digits. We present very precise results on the distribution on
s[<k](n

2) and s[≥k](n
2). For example, we provide asymptotic formulas for

the numbers #{n < 2k : s[<k](n
2) = m} and #{n < 2k : s[≥k](n

2) = m}
and show that these partial sum of digits functions are asymptotically equidis-

tributed in residue classes. These results are motivated by a conjecture by
Gelfond [11] saying that the (total) sum of digits function s(n2) is asymptoti-

cally equidistributed in residue classes.

1. Introduction

Let s(n) denote the binary sum of digits function, that is,

s(n) =
∑
j≥0

εj(n),

where εj(n) ∈ {0, 1} (j ≥ 0) are the digits in the binary digital expansion

n =
∑
j≥0

εj(n)2j

of n ≥ 0.
The main purpose of this paper is to analyze the distribution of the sum of digits

function of squares s(n2). There are some known facts, for example, Peter [17] has
proved that

1
N

∑
n<N

s(n2) = log2N + γ(log2N) +O(N−η) (1.1)

where log2N = (logN)/(log 2), γ is a continuous periodic function and η > 0.
Furthermore, Bassily and Kátai [1] studied the distribution of q-additive functions
on polynomial sequences P (n). In particular for s(n2) one gets

1
N

#

{
n < N : s(n2) ≤ log2N + y

√
1
2

log2N

}
= Φ(y) + o(1), (1.2)

where Φ(y) denotes the normal distribution function.
These results show that s(n2), n < N , behaves (asymptotically) like the sum

of 2 log2N independent random variables Xj (the digits) with Pr{Xj = 0} =
Pr{Xj = 1} = 1/2. However, (1.1) and (1.2) give only information on the overall
distribution for s(n2) (n < N) and they do not provide asymptotic relations for the
numbers #{n < N : s(n2) = m}. In particular it is an open problem (see Gelfond

Date: May 8, 2004.

1991 Mathematics Subject Classification. Primary: 11A63, Secondary: 11N60.
1This research was supported by the Austrian Science Foundation FWF, grant S8302-MAT.
∗Institute of Discrete Mathematics and Geometry, Technische Universität Wien, Wiedner

Hauptstraße 8-10/113, A-1040 Wien, Austria.
∗∗Institut de Mathématiques de Luminy, CNRS UMR 6206, Université de la Méditerranée,
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[11]) whether #{n < N : s(n2) ≡ 0 mod 2} ∼ N/2 or not. Quite recently Dartyge
and Tenenbaum [4] could show that

#{n < N : s(n2) ≡ 0 mod 2} � N and #{n < N : s(n2) ≡ 1 mod 2} � N.

It seems to be a very difficult problem to obtain precise information on the exact
distribution of s(n2). In what follows we present a completely new approach to this
kind of problems. We consider the set of squares n2, n < 2k, and split up the sum
of binary digits s(n2) into two parts s[<k](n2) + s[≥k](n2), where

s[<k](n2) = s(n2 mod 2k) =
∑
j<k

εj(n2)

collects the first k digits and

s[≥k](n2) = s

(⌊
n2

2k

⌋)
=
∑
j≥k

εj(n2)

collects the remaining digits. Interestingly, we obtain very precise results on the
distribution on s[<k](n2) and s[≥k](n2). For example, we provide asymptotic formu-
las for the numbers #{n < 2k : s[<k](n2) = m} and #{n < 2k : s[<k](n2) = m} and
show that these partial sum of digits functions are asymptotically equidistributed
in residue classes. Unfortunately these results cannot be applied to obtain corre-
sponding results for s(n2) = s[<k](n2) + s[≥k](n2) (we only get upper bounds). Our
methods rely on generating functions and estimates on multivariate exponential
sums.

In section 2 we collect and discuss the main results of this paper. In section 3
and 4 we prove Theorem 1, in particular we derive representations for the gener-
ating function of s[<k](n2) and s[≥k](n2) respectively. In section 5 we indicate how
Theorems 2 and 3 can be derived from Theorem 1. Finally, in section 6 we present
some results on squares with a large sum-of-digits function.

2. Results

The basic result is the following one.

Theorem 1. Let s[<k](n) :=
∑
j<k εj = s(n mod 2k) and s[≥k](n) :=

∑
j≥k εj =

s(bn/2kc) denote the partial sum of digits funtions that collect the first k resp. the
remaining digits εj of n. Then we have (for complex x 6= ±

√
2− 1)

∑
n<2k

xs[<k](n
2) =


4x(1 + x)k−1

x2 + 2x− 1
− 2

k
2

(1 + x)2(1− x)
x2 + 2x− 1

if k is even,

4x(1 + x)k−1

x2 + 2x− 1
+ 2

k−1
2
x3 + 3x2 − 4x− 2

x2 + 2x− 1
if k is odd. (2.1)

Set ξ1 = 25/6 − 1 = 0.78179 . . . and ξ2 = 1 +
√

2 +
√

2(1 +
√

2) = 4.61158 . . . and
suppose that ξ1 + ε ≤ |x| ≤ ξ2− ε for some ε > 0. Then there exists η > 0 such that
uniformly in that range∑

n<2k

xs[≥k](n
2) = C(x)(1 + x)k +O

(
(1 + |x|)k(1−η)

)
, (2.2)

where C(x) is a continuous function (defined in (4.7)) that is also analytic in the
range |x| < |1 + x|.

Remark 1. Formula (2.2) can be stated in a litte bit more precise form, compare
with Proposition 2. In particular, for x = −1 one gets∑

n<2k

(−1)s[≥k](n
2) = O

(
k425k/6

)
.
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Furthermore, it is also possible to extend (2.2) to∑
n<N

xs[≥k](n
2) = C(x, log2N)(1 + x)log2 N +O

(
(1 + |x|)log2 N(1−η)

)
for k close to log2N . Here C(x, t) denotes a continuous function that is periodic in
t: C(x, t+ 1) = C(x, t). However, for the sake of shortness we just prove (2.2).

Remark 2. We also want to note that it seems that there are extensions of The-
orem 1 to s(nd) for d ≥ 2. In particular, it is possible to extend the methods of
section 3 to provide an explicit representation for∑

n<2k

xs[<k](n
d),

and the double large sieve methods of section 4 seem to work even for s[≥k](nd) =
s(bnd/2kc), at least up to some d0.

From (2.1) and (2.2) the following distributional properties of s[<k](n2) and
s[≥k](n2) follow almost directly.

Theorem 2. Let ε > 0. Then for (1−1/
√

2+ε)k ≤ m ≤ (1−ε)k we have uniformly

#{n < 2k : s[<k](n2) = m} =
4m(k −m)2

k(4km− 2m2 − k2)

(
k

m

)(
1 +O

(
k−1

))
.

(2.3)

For ε ≤ m ≤ (1− 1/
√

2− ε)k we uniformly have

#{n < 2k : s[<k](n2) = m} =

{
2k/2(1 +

√
2)m (1 +O (e−ηm)) for even k,

6+
√

2
4 2k/2(1 +

√
2)m (1 +O (e−ηm)) for odd k.(2.4)

and for some η > 0. Furthermore, for (ξ1/(1 + ξ1) + ε)k ≤ m ≤ (ξ2/(1 + ξ2)− ε)k
(where ξ1 and ξ2 are defined in Theorem 1) we uniformly obtain

#{n < 2k : s[≥k](n2) = m} = C

(
m

k −m

)
·
(
k

m

)(
1 +O

(
k−1

))
,

(2.5)

where C(x) is the continuous function of Theorem 1.

Remark 3. Note that s[<k](n2) and s[≥k](n2) also satisfy central limit theorems of
the forms

1
2k

#

{
n < 2k : s[<k](n2) ≤ k

2
+ y

√
k

4

}
= Φ(y) + o(1),

and
1
2k

#

{
n < 2k : s[≥k](n2) ≤ k

2
+ y

√
k

4

}
= Φ(y) + o(1).

This follows (almost) directly from the methods of [1] and is in accordance to
Theorem 2, that might be interpreted as a local central limit theorem. By adapting
the methods of [1] we also get a joint central limit theorem of the form

1
2k

#

{
n < 2k : s[<k](n2) ≤ k

2
+ y1

√
k

4
, s[≥k](n2) ≤ k

2
+ y2

√
k

4

}
= Φ(y1)Φ(y2) + o(1).

This means that in an overall sense s[<k](n2) and s[≥k](n2) are asymptotically
independent.
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Theorem 3. Let M ≥ 2 be an integer. Then there exists η > 0 such that for all
integers c we have

1
2k
·#{n < 2k : s[<k](n2) ≡ c mod M} =

1
M

+O(2−ηk) (2.6)

and
1
2k
·#{n < 2k : s[≥k](n2) ≡ c mod M} =

1
M

+O(2−ηk) (2.7)

3. Generating Function for s[<k](n2)

In this section we prove the first part of Theorem 1, the explicit formula (2.1).
for the generating function of s[<k](n2).

Lemma 1. Set
S

(0)
k (x) =

∑
n<2k,n≡1mod2

xs[<k](n
2)

and
S

(1)
k (x) =

∑
n<2k,n≡1mod2

xs[<k+1](n
2).

Then we have S(0)
1 (x) = x, S(0)

2 (x) = 2x, and

S
(0)
k (x) = 4x(1 + x)k−3 for k ≥ 3, (3.1)

and S(1)
1 (x) = x and

S
(1)
k (x) = 2x(1 + x)k−2 for k ≥ 2. (3.2)

Proof. The representations for S(0)
1 (x), S(0)

2 (x), and S
(1)
1 (x) are trivial. We next

show that

S
(0)
k (x) = 2S(1)

k−1(x) for k ≥ 2 (3.3)

and

S
(1)
k (x) = (1 + x)S(1)

k−1(x) for k ≥ 2. (3.4)

Obviously, (3.3) and (3.4) prove the lemma.
First, we have

S
(0)
k (x) =

∑
n<2k,n≡1mod2

xs(n
2)mod2k

=
∑

n<2k−1,n≡1mod2

xs(n
2mod2k) +

∑
n<2k−1,n≡1mod2

xs((n+2k−1)2mod2k).

Since k ≥ 2 it follows that

(n+ 2k−1)2 = n2 + 2kn+ 22k−2 ≡ n2 mod 2k.

Hence, S(0)
k (x) = 2S(1)

k−1(x), that is, we have proved (3.3).
Next, we get

S
(1)
k (x) =

∑
n<2k,n≡1mod2

xs(n
2mod2k+1)

=
∑

n<2k−1,n≡1mod2

xs(n
2mod2k+1) +

∑
n<2k−1,n≡1mod2

xs((n+2k−1)2mod2k+1).

Since n ≡ 1 mod 2 and k ≥ 2 we now have

(n+ 2k−1)2 = n2 + 2kn+ 22k−2 ≡ n2 + 2k mod 2k+1.

Hence if εk(n2) = 0 then s(n2 mod 2k+1) = s(n2 mod 2k) and s((n + 2k−1)2 mod
2k+1) = s(n2 mod 2k)+1. On the other hand, if εk(n2) = 1 then s(n2 mod 2k+1) =
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s(n2 mod 2k) + 1 and s((n+ 2k−1)2 mod 2k+1) = s(n2 mod 2k). So after all we get
S

(1)
k (x) = (1 + x)S(1)

k−1(x). This completes the proof of the lemma. �

Proposition 1. Suppose that k ≥ 4 is even. If x 6= ±
√

2− 1 then∑
n<2k

xs[<k](n
2) =

4x(1 + x)k−1

x2 + 2x− 1
− 2

k
2

(1 + x)2(1− x)
x2 + 2x− 1

. (3.5)

If x = ±
√

2− 1 then∑
n<2k

xs[<k](n
2) = k2

k
2−1x(1 + x) + 2

k
2 (1 + x)(1− x). (3.6)

If k ≥ 3 is odd and x 6= ±
√

2− 1 then∑
n<2k

xs[<k](n
2) =

4x(1 + x)k−1

x2 + 2x− 1
+ 2

k−1
2
x3 + 3x2 − 4x− 2

x2 + 2x− 1
. (3.7)

and if x = ±
√

2− 1 then∑
n<2k

xs[<k](n
2) = k2

k−1
2 x+ 2

k−1
2 (1− x). (3.8)

Proof. By splitting between odd and even n < 2k we directly get the recurrence∑
n<2k

xs[<k](n
2) = S

(0)
k (x) + 2

∑
n<2k−2

xs[<k−2](n
2)

and thus (if k ≥ 4 is even)∑
n<2k

xs[<k](n
2) = S

(0)
k (x) + 2S(0)

k−2(x) + · · ·+ 2
k
2−1S

(0)
2 (x) + 2

k
2 .

Hence, by using (3.1) we directly obtain (3.5) and (3.6). In the same way we derive
(3.7) and (3.8). �

4. Generating Function for s[≥k](n2)

We now turn to the generating function (2.2) for s[≥k](n2) that is much more
difficult to handle than that for s[<k](n2).

Lemma 2. Set aj = #
{
n < 2k :

√
2kj ≤ n <

√
2k(j + 1)

}
. Then∑

n<2k

xs[≥k](n
2) =

∑
j<2k

ajx
s(j).

Proof. The proof is obvious by observing that s[≥k](n2) = s(bn2/2kc). �

Note that with help of Ψ(x) = x− bxc − 1
2 we can rewrite aj to

aj = #
{
n < 2k :

√
2kj ≤ n <

√
2k(j + 1)

}
=

⌈√
2k(j + 1)

⌉
−
⌈√

2kj
⌉

= 2
k
2

(√
j + 1−

√
j
)

+ Ψ
(
−
√

2k(j + 1)
)
−Ψ

(
−
√

2kj
)
.
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Hence, we have to deal with three sums:

S1 = 2
k
2

∑
j<2k

(√
j + 1−

√
j
)
xs(j),

S2 =
∑
j<2k

Ψ
(
−
√

2kj
)
xs(j),

S3 =
∑
j<2k

Ψ
(
−
√

2k(j + 1)
)
xs(j).

It turns out that the first sum is easy to handle, whereas the other two require non-
trivial tools from multivariate exponential sums. (We use the double large sieve by
Bombieri and Iwanies [2].)

Our goal is to prove the following representation (that follows from a combination
of Lemma 3, 8 and 9.)

Proposition 2. Set ξ1 = 25/6 − 1 = 0.78179 . . . and ξ2 = 1 +
√

2 +
√

2(1 +
√

2) =
4.61158 . . . and suppose that ξ1 < x1 ≤ x2 < ξ2. Then for every

η > min
(

1− 6
5

log(2)/ log(1 + x1),
1
2
−
(

1
4

log(1 + x2
2) +

1
8

log 2
)
/ log(1 + x2)

)
.

we have uniformly for x1 ≤ |x| ≤ x2∑
n<2k

xs[≥k](n
2) = C(x)(1 + x)k +O

(
(1 + |x|)k(1−η)

)
, (4.1)

where C(x) is a continuous function (defined in (4.7)).

4.1. Evaluation of S1.

Lemma 3. Suppose that N is represented in its digital expansion of the form N =
2k1 + 2k2 + · · ·+ 2kL with k1 > k2 > · · · > kL ≥ 0 then we have∑

n<N

xs(n) = (1 + x)k1 + x(1 + x)k2 + · · ·+ xL−1(1 + x)kL (4.2)

In particular, if |x| < |1 + x| and |1 + x| ≥ 1 this can be written as∑
n<N

xs(n) = γ(x, log2N) (1 + x)log2 N , (4.3)

where γ(x, t), x ∈ C is analytic in x and periodic in t with peroid 1. Furthermore,
γ(x, t) is Lipschitz continuous in t of the form

|γ(x, t1)− γ(x, t2)| � |t1 − t2|log2
|1+x|
|x| .

Furthermore, we have∣∣∣∣∣∑
n<N

xs(n)

∣∣∣∣∣ ≤


1−|1+x|k1

1−|1+x| if |x+ 1| < 1 and |x| ≤ |1 + x|,
1−|x|k1

1−|x| if |x+ 1| < 1 and |x| > |1 + x|,
k1|x|k1 if |x+ 1| ≥ 1 and |x| > |1 + x|,

(4.4)

where k1 = blog2Nc (as above).

Proof. First note that ∑
n<N

xs(n) =
∑
n<2k

xs(n) + x
∑
n<N ′

xs(n),

if N = 2k +N ′ with N ′ < 2k. Furthermore, we have∑
n<2k

xs(n) = (1 + x)k.
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Hence, (4.2) follows.
For 0 ≤ t < 1 let the binary expansion of 2t be written as

2t = 1 +
∑
j≥1

2−`j ,

where 1 ≤ `1 < `2 < · · · , and set

γ(x, t) = (1 + x)−t

1 +
∑
j≥1

xj(1 + x)−`j

 ,

where we have to assume that |x| < |1 + x| and |1 + x| ≥ 1. Then it is easy to
verify that γ is analytic in x and Lipschitz continuous in t (of the above form).
Furthermore γ(x, 1) = γ(x, 0) = 1. Thus, we can extend it to a continuous periodic
function in t. Finally with help of (4.2) and we also get (4.3) in a direct way.

The estimates (4.4) follow immediately from (4.2). �

Lemma 4. There exists a continuous function C(x), x ∈ C with |x| < |1 + x| and
|1 + x| ≥ 1, such that

S1 = 2
k
2

∑
j<2k

(√
j + 1−

√
j
)
xs(j) = C(x)(1 + x)k +O

(
|1 + x|k(1−β)

)
(4.5)

uniformly for |x| ≤ (1−η1)|1+x|, where 0 < η1 < 1 and β = log2((|1+x|)/|x|) > 0.
Furthermore, if x varies in a compact set K of the complex plane that does not
contain the positive real line then we have

S1 � (1 + |x|)(1−η)k (4.6)

uniformly for x ∈ K, where

η = max
x∈K

(
log(|1 + x|)
log(1 + |x|)

,
log(|x|)

log(1 + |x|)

)
.

Proof. Set cj =
√
j + 1−

√
j. Then we have

cj =
1

2j1/2
+O

(
j−3/2

)
, cj − cj+1 =

1
4j3/2

+O
(
j−5/2

)
,

and by partial summation we obtain

2−
k
2 S1 =

∑
j<2k

cj x
s(j)

= c2k−1

∑
j<2k

xs(j) +
∑

j<2k−1

(cj − cj+1)
∑
m≤j

xs(m)

=
(

2−
k
2 +O

(
2−

3k
2

)) ∑
j<2k

xs(j)

+
∑

j<2k−1

(
1

4j3/2
+O

(
j−5/2

))∑
m≤j

xs(m).

Now suppose that |x| < |1 +x| and |1 +x| ≥ 1. Then we can use (4.3) from Lemma
3 to proceed further. For this purpose we will use the (easy to derive) asymptotic
formula∑

n<N

nαγ(log2 n) = Nα+1

∫ 1

0

tαγ(log2 t− log2N) dt+O
(
Nmax(<α+1−β,<α)

)
,

where α has real part <α > −1 and γ(t) is a continuous periodic function (with
period 1 and Lipschitz exponent β > 0). In particular we use β = log2((|1 +
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x|)/|x|) > 0 and α = log2(1 + x)− 3
2 that has real part <α = log2 |1 + x| − 3

2 ≥ −
1
2

and obtain∑
j<2k−1

1
j3/2

∑
m≤j

xs(m) =
∑

j<2k−1

jlog2(1+x)− 3
2 γ(x, log2 j)

= 2k(α+1)

∫ 1

0

tαγ(x, log2 t) dt+O
(

2k(α+1−β)
)

= 2−
k
2C(x)(1 + x)k +O

(
2−

k
2 |1 + x|k(1−β)

)
,

where

C(x) =
∫ 1

0

tlog2(1+x)− 3
2 γ(x, log2 t) dt. (4.7)

Of course, the remaining part can be treated in a similar way so that after all we
get (4.5).

For the proof of (4.6) we just have to use the upper bounds (4.4) instead of (4.3)
and proceed along similar lines. It is also a little bit easier since we only have to
provide upper bounds. �

Note that the proof also shows that for real x > 0 one always gets∑
n<2k

xs[≥k](n) ≤ C(1 + x)k

for a certain constant C > 0.

4.2. Reduction of S2 and S3. Let x ∈ C, k ≥ 2, u ∈ [0, 1]. We consider

S(x) :=
∑
`<2k

Ψ
(
−
√

2k(`+ u)
)
xs(`).

Let r be an integer with 0 < r < k. We write ` = 2rm+ n and obtain

S(x) =
∑

0≤i<k−r

∑
0≤j<r

S(2i, 2j) +O

 ∑
m<2k−r

|x|s(m)

+O

(∑
n<2r

|x|s(n)

)
,

S(x) =
∑

0≤i<k−r

∑
0≤j<r

S(2i, 2j) +O
(
(1 + |x|)k−r

)
+O ((1 + |x|)r) (4.8)

where

S(M,N, x) :=
∑

M≤m<2M

∑
N≤n<2N

Ψ
(
−
√

2k(2rm+ n+ u)
)
xs(m)xs(n).

(4.9)

Lemma 5 (Vaaler, 1985). For H ∈ N, h ∈ Z, 1 ≤ |h| ≤ H, let

0 < θH(h) := π
|h|

H + 1

(
1− |h|

H + 1

)
cot
(
π
|h|

H + 1

)
+
|h|

H + 1
< 1.

Then, the trigonometric polynomial

Ψ∗H(x) = − 1
2iπ

∑
1≤|h|≤H

θH(h)
h

e(hx)

satisfies

|Ψ(x)−Ψ∗H(x)| ≤ 1
2H + 2

∑
|h|≤H

(
1− |h|

H + 1

)
e(hx) (x ∈ R).
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Proof. For x 6∈ Z this is inequality (7.14) of Vaaler [18]. For x ∈ Z, both sides
are equal to 1/2, so the result remains true. �

Let H0 > 0. Using this lemma with H0 and splitting the summation over h we
get

|S(M,N, x)| (4.10)

� 1
H0

∑
M≤m<2M

∑
N≤n<2N

|x|s(m)+s(n)

+
∑

q�log 2H0

|S1(H0/2q,M,N)|+
∑

q�log 2H0

|S2(H0/2q,M,N)| , (4.11)

where S1(H,M,N, x) is the sum∑
H≤h<2H

∑
M≤m<2M

∑
N≤n<2N

θH0(h)
h

xs(m)xs(n) e
(
h
√

2k(2rm+ n+ u)
)

and S2(H,M,N, x) is the sum∑
M≤m<2M

∑
N≤n<2N

|x|s(m) |x|s(n)
∑

H≤h<2H

cH0(h)
h

e
(
h
√

2k(2rm+ n+ u)
)

with

cH0(h) :=
h

H0 + 1

(
1− h

H0 + 1

)
.

Hence

|S1(H,M,N, x)| � H−1S3(H,M,N, x), (4.12)
|S2(H,M,N, x)| � H−1S3(H,M,N, |x|), (4.13)

where S3(H,M,N, x) is the sum

∑
H≤h<2H

∣∣∣∣∣∣
∑

M≤m<2M

∑
N≤n<2N

xs(m)xs(n) e
(
h
√

2k(2rm+ n+ u)
)∣∣∣∣∣∣

By Taylor expansion we can write

h
√

2k(2rm+ n+ u)

= h2(k+r)/2m1/2 + 1
2h2(k−r)/2m−1/2(n+ u)− 1

8h2(k−3r)/2m−3/2(n+ u)2

+ O(H2(k−5r)/2M−5/2N3).

We introduce

φ(h,m, n+ u) = 1
2h2(k−r)/2m−1/2(n+ u)− 1

8h2(k−3r)/2m−3/2(n+ u)2

Then

S3(H,M,N, x) ≤ S4(H,M,N, x) +O(H22(k−5r)/2M−3/2N4),
(4.14)

where S4(H,M,N, x) is the sum

∑
H≤h<2H

∑
M≤m<2M

|x|s(m)

∣∣∣∣∣∣
∑

N≤n<2N

xs(n) e (φ(h,m, n+ u))

∣∣∣∣∣∣ (4.15)
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4.3. Exponential sums estimates.

Lemma 6. Let X > 1 be a real number and M , N , H be integers with 0 < M < X2,
0 < N < X2, H > 0. Let am, bn, ρh,m be complex numbers for m = M, . . . , 2M−1,
n = N, . . . , 2N − 1, h = H, . . . , 2H − 1. We suppose |ρh,m| ≤ 1. Then uniformly
for any α ∈ [1/16, 1] and u ∈ [0, 1], writing

φ(h,m, n) = Xhm−1/2n− αX−1hm−3/2n2,

we have ∣∣∣∣∣∣
∑

H≤h<2H

∑
M≤m<2M

∑
N≤n<2N

ρh,mambn e(φ(h,m, n+ u))

∣∣∣∣∣∣
2

� (M + ∆−1
1 )(1 + ∆−1

2 ) H2
∑

M≤m<2M

|am|2
∑

N≤n<2N

|bn|2 .

where
∆−1

1 = 29XHM−1/2N, ∆−1
2 = 29X−1HM−3/2N2.

Proof. By Lemma 2.4 of [2], we have∣∣∣∣∣∣
∑

H≤h<2H

∑
M≤m<2M

∑
N≤n<2N

ρh,mambn e(φ(h,m, n+ u))

∣∣∣∣∣∣
2

� (1 + ∆−1
1 )(1 + ∆−1

2 )
∑

(h,h′,m,m′)∈E1

|ρh,mρh′,m′amam′ |
∑

(n,n′)∈E2

|bnbn′ |

where E1 is the set of quadruples (h, h′,m,m′) such that∣∣∣hm−1/2 − h′m′−1/2
∣∣∣ ≤ ∆1HM

−1/2,
∣∣∣hm−3/2 − h′m′−3/2

∣∣∣ ≤ ∆2HM
−3/2,

and E2 is the set of pairs (n, n′) ∈ {N, . . . , 2N − 1}2 such that

|n− n′| ≤ ∆1N,
∣∣∣n2 − n′2

∣∣∣ ≤ ∆2N
2.

We observe that M < X2 implies

∆1N = 2−9X−1H−1M1/2 < 1.

Therefore all pairs (n, n′) in E2 satisfy n = n′, i.e. E2 is exactly the diagonal of
{N, . . . , 2N − 1}2 and we get∑

(n,n′)∈E2

|bnbn′ | =
∑

N≤n<2N

|bn|2 .

Now we write |amam′ | ≤ (|am|2 + |am′ |2)/2. Hence by symmetry of the roles of
m and m′, we have∑

(h,h′,m,m′)∈E1

|ρh,mρh′,m′amam′ | ≤
∑

(h,h′,m,m′)∈E1

|amam′ | ≤
∑

(h,h′,m,m′)∈E1

|am|2 .

If we fix h, h′ and m, we observe that m′ must be in an interval of length � ∆1M ,
thus there are � 1 + ∆1M such m′. We obtain∑

(h,h′,m,m′)∈E1

|am|2 �
∑

H≤h<2H

∑
H≤h′<2H

∑
M≤m<2M

|am|2 (1 + ∆1M)

= H2(1 + ∆1M)
∑

M≤m<2M

|am|2 ,

and the inequality of Lemma 6 follows since ∆−1
1 � 1 and (1 + ∆−1

1 )(1 + ∆1M)�
M + ∆−1

1 . �
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Lemma 7. Suppose that the assumptions of Lemma 6 are satisfied and that |am| ≤
1. Then ∣∣∣∣∣∣

∑
H≤h<2H

∑
M≤m<2M

∑
N≤n<2N

ρh,mambn e(φ(h,m, n+ u))

∣∣∣∣∣∣
2

� ∆−1
1 (1 + ∆−1

2 ) (HM log(2HM) + ∆1H
2M2)

∑
N≤n<2N

|bn|2 .

Proof. We follow the proof of Lemma 6, except for the sum∑
(h,h′,m,m′)∈E1

|ρh,mρh′,m′amam′ |

for which we use |ρh,mρh′,m′amam′ | ≤ 1, and Lemma 1 of [8], that asserts∑
(h,h′,m,m′)∈E1

1� HM log(2HM) + ∆1H
2M2.

Of course, this completes the proof. �

4.4. Application of the exponential sums estimates.

Lemma 8. Uniformly for x ∈ C, 0.84 ≤ |x| ≤ ξ2, k ≥ 2, u ∈ [0, 1], we have∣∣∣∣∣∣
∑
`<2k

Ψ
(
−
√

2k(`+ u)
)
xs(`)

∣∣∣∣∣∣� k22k/8(1 + |x|)k/2(1 + |x|2)k/4.

Note that in the full range 0.84 ≤ |x| ≤ ξ2 − ε this upper bound is better than
the trivial estimate (1 + |x|)k.

Proof. We write X = 2(k−r)/2−1. By Lemma 6 we have

H−2 |S4(H,M,N)|2

� (M +XHM−1/2N)(1 +X−1HM−3/2N2)
∑

M≤m<2M

|x|2s(m)
∑

N≤n<2N

|x|2s(n)

To simplify the computations, we choose

r = bk/2c .

Then X � 2k/4, M < 2k/2 and N < 2k/2. Hence

M +XHM−1/2N � 2k/2 +HM−1/223k/4 � HM−1/223k/4,

and
1 +X−1HM−3/2N2 � 1 +HM−3/223k/4 � HM−3/223k/4.

Therefore

H−2 |S4(H,M,N)|2 � H2M−223k/2
∑

M≤m<2M

|x|2s(m)
∑

N≤n<2N

|x|2s(n)
.

Using ∑
2i≤n<2i+1

|x|2s(n) = |x|2 (1 + |x|2)i,

we get
H−1

∣∣S4(H, 2i, 2j)
∣∣� H23k/4−i |x|2 (1 + |x|2)(i+j)/2.

We report this upperbound in (4.14) and get for i ≤ bk/2c, j ≤ dk/2e:

H−1
∣∣S3(H, 2i, 2j)

∣∣ � H23k/4−i |x|2 (1 + |x|2)(i+j)/2 +H2−3k/4−3i/2+4j

� H23k/4−i |x|2 (1 + |x|2)i/2+k/4 +H25k/4−3i/2.
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We choose
H0 =

⌈
2i/2−3k/8(1 + |x|)i/2+k/4(1 + |x|2)−i/4−k/8

⌉
and by (4.12), (4.13), and (4.11) we get for i ≤ bk/2c, j ≤ dk/2e:∣∣S(2i, 2j , x)

∣∣ � 23k/8−i/2 |x|2 (1 + |x|)i/2+k/4(1 + |x|2)i/4+k/8

+ 23k/4−i |x|2 (1 + |x|2)i/2+k/4

+ 27k/8−i(1 + |x|)i/2+k/4(1 + |x|2)−i/4−k/8 + 25k/4−3i/2.

In order to simplify the computations, we assume that |x| ≥ 2/3. This implies that

(1 + |x|)
√

1 + |x|2 > 2,

and we get an upper bound for the first term by replacing i by k/2 in it. For the
remaining terms we will assume first that i ≥ k/3. We get∣∣S(2i, 2j , x)

∣∣ � 2k/8 |x|2 (1 + |x|)k/2(1 + |x|2)k/4

+ 25k/12 |x|2 (1 + |x|2)5k/12 + 2k/4 |x|2 (1 + |x|2)k/2

+ 213k/24(1 + |x|)5k/12(1 + |x|2)−5k/24 + 23k/4.

When i < k/3, we may use the trivial upper bound:∣∣S(2i, 2j , x)
∣∣� |x|2 (1 + |x|)i+k/2 � |x|2 (1 + |x|)5k/6.

For 0.84 ≤ |x| ≤ ξ2 we can exhibit numerically a dominating term, and in that
range we get for all i ≤ bk/2c, j ≤ dk/2e:∣∣S(2i, 2j , x)

∣∣� 2k/8(1 + |x|)k/2(1 + |x|2)k/4.

Finally by (4.8) we obtain the result of Lemma 8. �

Lemma 9. Uniformly for x ∈ C, |x| ≤ 1, k ≥ 2, u ∈ [0, 1], we have∣∣∣∣∣∣
∑
`<2k

Ψ
(
−
√

2k(`+ u)
)
xs(`)

∣∣∣∣∣∣� k425k/6.

Note that this upper bound is only significant if k425k/6 ≤ (1 + |x|)k, that is, if
|x| > 25/6 − 1 = 0.781 . . . .

Proof. We write X = 2(k−r)/2−1. By Lemma 6 we have

|S4(H,M,N)|2

� XHM−1/2N(1 +X−1HM−3/2N2)(HM log(2HM) +X−1H−1M3/2)N.

Again, we choose
r = bk/2c .

Then X � 2k/4, M < 2k/2 and N < 2k/2. Hence

XHM−1/2N � 2k/2 +HM−1/223k/4 � HM−1/223k/4,

and
1 +X−1HM−3/2N2 � 1 +HM−3/223k/4 � HM−3/223k/4.

Furthermore

HM +X−1H−1M3/2 � HM(1 +X−1H−2M1/2)� HM(1 +H−2)� HM.

Therefore

|S4(H,M,N)|2 � H2M−223k/2HMN log(2HM)� H3M−122k log(2HM)

and
H−1 |S4(H,M,N)| � H1/2M−1/22k log(2HM).
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We choose H0 =
⌈
M2−k/3

⌉
. Then for 1 ≤ H ≤ H0,

H−1 |S4(H,M,N)| � (25k/6 +M−1/22k) log(2M).

We report this upperbound in (4.14) and get for H−1 |S3(H,M,N)| the upperbound

� (25k/6 +M−1/22k +H2−3k/4M−3/2N4) log(2M)

� (25k/6 +M−1/22k +M−1/2211k/12 +M−3/225k/4) log(2M)

� (25k/6 +M−1/22k +M−3/225k/4) log(2M).

By (4.12), (4.13), and (4.11) we get

|S(M,N, x)| � MN

H0
+ (25k/6 +M−1/22k +M−3/225k/4) log(2M) log(2H0)

� (25k/6 +M−1/22k +M−3/225k/4) log(2M) log(2H0).

Hence for M � 2k/3 we have

|S(M,N, x)| � k225k/6. (4.16)

For M � 2k/3 the trivial upperbound |S(M,N, x)| ≤ MN prove that (4.16) is
indeed valid for all M � 2k/2. Finally by (4.8) we obtain the result of Lemma 9. �

5. Proof of Theorems 2 and 3

5.1. Proof of Theorem 2. We start by stating the following lemma.

Lemma 10. Let A(x) =
∑
m≥0 amx

m be a power series of non-negative numbers
am. Suppose that for some 0 < r1 < r2 and η > 0 we have

A(x) = C(x)(1 + x)k +O
(

(1 + |x|)k(1−η)
)

uniformly for r1 ≤ |x| ≤ r2, where C(x) is a twice continuously differentible func-
tion. Then

am = C

(
j

k − j

)
·
(
k

m

)(
1 +O

(
k−1

))
uniformly for r1/(1 + r1) k ≤ m ≤ r2/(1 + r2) k.

Proof. The proof is immediate by using Cauchy’s formula

am =
1

2πi

∫
|x|=x0

A(x)
xm+1

dx,

where x0 = m/(k − m), and classical saddle point approximations, e.g. compare
with [7]. �

Two parts of Theorem 2, that is (2.3) and (2.5), are a direct corollary from
Propositions 1 and 2 (or from Theorem 1).

The proof of (2.4) is also almost direct. In the range ε ≤ m ≤ (1 − 1/
√

2 − ε)k
the second order terms in the generating function of s[<k](n2)

2
k
2

(1 + x)2(1− x)
x2 + 2x− 1

resp. 2
k−1

2
x3 + 3x2 − 4x− 2

x2 + 2x− 1

dominate the asymptotic behaviour of the coefficients. These terms are just rational
function. Thus the asymptotic behaviour for the coefficients follows immediately
(and it is easy to show that these terms are dominant).
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5.2. Proof of Theorem 3. As above set A(x) =
∑
n<2k x

s[<k](n
2). Then

#{n < 2k : s[<k](n2) ≡ c mod M} =
1
M

M−1∑
m=0

e(−mc/M)A (e(m/M)) .

Hence, (2.6) (and similarly (2.7)) follows from Proposition 1 (and from Proposi-
tion 2).

6. Squares with Large Sum of Digits Function

In this section we want to collect some results on squares n2 with large sum-of-
digits function s(n2).

First of all we have the following upper bound.

Theorem 4. Then, for every ε > 0 exists a constant C > 0 such that

#{n < 2k : s(n2) ≥ L} ≤ C(
L
2k

)L/2 (
1− L

2k

)k−L/2 (6.1)

for k ≤ L ≤ (2− ε)k.

Proof. Suppose that A(x) =
∑
m≥0 amx

m is a power series with non-negative coef-
ficients am. Then we obviously have (for x ≥ 1)∑

m≥L

am ≤ x−LA(x). (6.2)

The idea of the proof is to apply this (easy) method to

A(x) =
∑
n<2k

xs(n
2) =

∑
n<2k

xs[<k](n
2)+s[≥k](n

2).

By Propositions 1 and 2 we have for x ≥ 1∑
n<2k

xs[<k](n
2) � (1 + x)k

and ∑
n<2k

xs[≥k](n
2) � (1 + x)k.

Hence, by Cauchy-Schwarz’s inequality

|A(x)|2 =

∣∣∣∣∣∣
∑
n<2k

xs(n
2)

∣∣∣∣∣∣
2

≤
∑
n<2k

x2s[<k](n
2) ·

∑
n<2k

x2s[≥k](n
2)

� (1 + x2)2k.

Hence, with x =
√
L/(2k − L) and by the use of (6.2) we directly obtain (6.1). �

Unfortunately we do not have a corresponding lower bound. Nevertheless we can
prove the existence of squares n2 with very large sum-of-digits function.

Theorem 5. For every ε > 0 there exist infinitely many positive integers n such
that

s(n2) ≥ (2− ε) log2 n.
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Interestingly it seems to be a non-trivial problem to construct squares with a
large sum-of-digits as the following two examples by G. Baron (TU Wien) and J.
Cassaigne (Marseille) show. Nevertheless, if one combines these kinds of examples
with a second trick then we obtain a constructive proof of Theorem 5.

First Example. (G. Baron) Set N1 = 2m − 1 and L1 = m (for some m ≥ 1) and
inductively Nn+1 = 22Ln(2Ln − 1) − Nn, Ln+1 = 3Ln. Then N2

n has many 1-s in
the binary expansion. For example, for m = 8 we get

N2
2 =111111011111111100000011111111101111111000000001

N2
3 =1111111111111111111111011111111111111111111111110000001000

0000011111111111111101111111100000001011111101111111110000
0011111111101111111000000001.

The ratio s(N2
n)/ log2(N2

n) approaches 3/4 from below. (Other nice examples are
(25k − 23k − 2k + 1)2 with ratio 3/5 and (23k − 22k − 2k + 1)2 with ratio 2/3.)

Second Example. (J. Cassaigne) Set

Nn = 181(214 + 1)(242 + 1) · · · (214·3n−1
+ 1).

Then N2
n has 14 · 3n + 1 digits with 12 · 3n + 1 ones. The ratio tends to 6/7:

N0 =181 = 10110101

N2
0 =32761 = 111111111111001

N1 =2965685 = 1011010100000010110101

N2
1 =8795287519225 = 1111111111111001111111111001111111111111001

N2 =13043220567286431925
=1011010100000010110101000000000000000000001011010100000010110101

N2
2 =170125602766883791039492846197659205625

=11111111111110011111111110011111111111111001111111111100
11111111110011111111111110011111111111111001111111111001
111111111111001.

This second example is also interesting since it provides an infinite sequence of
numbersNn with very few a very small sum-of-digits function s(Nn) = 5·2n = o(3n).
On the other hand the squares have many non-zero digits. Note also that this
method is not restricted to the initial value N0 = 181.

Proof. (Theorem 5) The idea of the proof is to repeat a two step procedure of the
following kind. The first initial step is exactly Example 2. Recall that the numbers
Nn satisfy s(Nn) = 5 · 2n and s(N2

n) = 12 · 3n + 1.
Now observe that if n is an odd positive integer with n2 < 2k+1 then

s((2k − n)2) = s(2k−1((sk+1 − 1)− (n− 1)) + n2) = k − s(n) + s(n2).

This means that if we consider the numbers

Ñn = 228·3n−1+2 −Nn
then the ratio s(N2

n)/ log2(N2
n) approaches 13/14 (as n→∞). This completes the

second initial step.
We now repeat these two steps appropriately. First we go back to the construction

principle of the second example. Fix some large n0, set L0 := 56 ·3n0 + 4 and define

Nn,1 := Nn0((2L0 + 1)(2L0·3 + 1) · · · (2L·3
n−1

+ 1).

Then the ratio s(Nn,1)/ log2(Nn,1) approaches zero for large n whereas the ratio
s(N2

n,1)/ log2(N2
n,1) is approximately 13/14. With help of the second step we can
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now construct a numbers Ñn,1 for which the ratio s(Ñ2
n,1)/ log2(Ñ2

n,1) is approxi-
mately 27/28. In this way we can proceed further.

After k repetitions of the two step procedure we can approach the ratio 1−1/(7 ·
2k) to arbitrary precision. This completes the proof of Theorem 5. �
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