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Abstract

Divide-and-conquer recurrences are one of the most studied equations in computer science.
Yet, discrete versions of these recurrences, namely

T (n) = an +

m∑

j=1

bjT (⌊pjn+ δj⌋) +

m∑

j=1

b′jT
(⌈
pjn+ δ′j

⌉)

for some known sequence an and given bj , b
′

j, pj and δj , δ
′

j, present some challenges. The dis-
crete nature of this recurrence (represented by the floor function) introduces certain oscillations
not captured by the traditional Master Theorem, for example due to Akra and Bazzi who pri-
mary studied the continuous version of the recurrence. We apply powerful techniques such as
Dirichlet series, Mellin-Perron formula, and (extended) Tauberian theorems of Wiener-Ikehara
to provide a complete and precise solution to this basic computer science recurrence. We illus-
trate applicability of our results on several examples including a popular and fast arithmetic
coding algorithm due to Boncelet for which we estimate its average redundancy and prove the
Central Limit Theorem for the phrase length. To the best of our knowledge, discrete divide and
conquer recurrences were not studied in this generality and such detail; in particular, this allows
us to compare the redundancy of Boncelet’s algorithm to the (asymptotically) optimal Tunstall
scheme.
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1 Introduction

Divide and conquer is a very popular strategy to design algorithms. It splits the input into several
smaller subproblems, solving each subproblem separately, and then knitting together to solve the
original problem. Typical examples include heapsort, mergesort, discrete Fourier transform, queues,
sorting networks, compression algorithms, and so forth [7, 22, 26, 29, 30]. While it is relatively easy
to determine the general growth order for the algorithm complexity, a precise asymptotic analysis
is often appreciably more subtle. Our goal is to present such an analysis for discrete divide and
conquer recurrences.

The complexity of a divide and conquer algorithm is well described by its divide and conquer
recurrence. We assume that the problem is split into m ≥ 2 subproblems. It is natural to assume
that there is a cost associated with combining subproblems together to find the solution. We denote
such a cost by an, where n is the size of the original problem. In addition, each subproblem may
contribute in a different way to the final solution; we represent this by coefficients bj and bj for
1 ≤ j ≤ m. Finally, we postulate that the original input n is divided into subproblems of size ⌊hj(n)⌋
and ⌈hj(n)⌉, 1 ≤ j ≤ m, where hj(x) and hj(x) are functions that satisfy hj(x) ∼ hj(x) ∼ pjx for
x → ∞ and for some 0 < pj < 1. We aim at presenting precise asymptotic solutions of discrete
divide and conquer recurrences of the following form [7]

T (n) = an +
m∑

j=1

bjT (⌊hj(x)⌋) +
m∑

j=1

bjT
(⌈
hj(x)

⌉)
(n ≥ 2). (1)

A popular approach to solve this recurrence is to relax it to a continuous version of the following
form (hereafter we assume bj = 0 for simplicity)

T (x) = a(x) +
m∑

j=1

bjT (hj(x)), x > 1, (2)

(where hj(x) ∼ pjx with 0 < pj < 1) and solve it using a Master Theorem as for example in [7, 26].
This is usually quite powerful and provides order of the growth for T (x). The most general solution
of (2) is due to Akra and Bazzi [2] who proved (under certain regularity assumptions, namely that
a′(x) is of polynomial growth and that hj(x)− pjx = O(x/(log x)2))

T (x) = Θ

(
xs0

(
1 +

∫ x

1

a(u)

us0+1
du

))
,

where s0 is a unique real root of ∑

j

bjp
s
j = 1.

Actually this also leads directly to

T (n) = Θ


ns0


1 +

n∑

j=1

aj
js0+1






in the discrete version provided that an+1 − an is at most of polynomial growth.
For more precise results of the continuous version one can apply Mellin transform techniques

[14, 15, 30]. Indeed, let

t(s) =

∫ ∞

0
T (x)xs−1dx
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be the Mellin transform of T (x). Then using standard properties of the Mellin transform applied
to the (slightly simplified) divide and conquer recurrence T (x) = a(x) +

∑m
j=1 bjT (pjx) we arrive

at

t(s) =
a(s) + g(s)

1−∑mj=1 bjp
−s
i

,

where a(s) is the Mellin transform of a(x), and g(s) is an additional function due to the initial
conditions. Suppose that a(s) and g(s) are analytic for ℜ(s) ≥ −s0, where −s0 is the root of
1 =

∑
j bjp

−s
i . Then we recover the asymptotics of T (x) showing that

T (x) ∼ Cxs0 or T (x) ∼ Ψ(log x)xs0

where C is a constant, and Ψ(x) is a discontinuous periodic function when the logarithms log pj
are rationally related (i.e., log pi are integer multiplies of a real number as in Definition 1)

Discrete versions of the divide and conquer recurrence, given by (1) are more subtle and require
a different approach. We first apply Dirichlet series (closely related to the Mellin transform) that
better captures the discrete nature of the recurrence, and then use Tauberian theorems (and also the
Mellin-Perron formula) to obtain asymptotics for T (n). The corresponding result, a precise Discrete
Master Theorem, is stated in Theorem 1 of the next section. As in the continuous case the solution
depends crucially on the relation between log p1, . . . , log pm; when log p1, . . . , log pm are rationally
related the final solution will exhibit some oscillation that disappears when log p1, . . . , log pm are
irrationally related. This phenomenon was already observed for other discrete recurrences [9, 12].

In the nutshell, in Theorem 1 for nondecreasing sequences an of the form an = Cnσ(log n)α

with C > 0, and irrationally related log p1, . . . , log pm we prove

T (n) =





C1 + o(1) if α = σ = 0 and s0 < 0,
C2 log n+ C ′2 + o(1) if α = σ = s0 = 0,
C3(log n)α+1 · (1 + o(1)) if σ = s0 = 0,
C4 n

s0 · (1 + o(1)) if σ < s0 and s0 > 0,
C5n

s0(log n)α+1 · (1 + o(1)) if σ = s0 > 0 and α 6= −1,
C5n

s0 log log n · (1 + o(1)) if σ = s0 > 0 and α = −1,
C6 (log n)α(1 + o(1)) if σ = 0 and s0 < 0,
C7 n

σa(log n)α · (1 + o(1)) if σ > s0 and σ > 0,

(3)

where the explicitly computable constants C1, C2, C3, C4, C5, C6, C7 are positive and C ′2 is real.
When log p1, . . . , log pm are rationally related, T (n) behaves as in the irrationally related case with
the following two exceptions:

C2 log n+ Ψ2(log n) + o(1) if α = σ = s0 = 0,
Ψ4(log n)ns0 · (1 + o(1)) if σ < s0 and s0 > 0,

(4)

where C2 is positive and Ψ2(t),Ψ4(t) are periodic functions with period L (with usually countably
many discontinuities).

It should be remarked that the order of magnitude of T (n) can be checked easily by the Akra-
Bazzi theorem [2]. If we just know an upper bound for an which is of the form an = O(nσ(log n)α)
– even if an is not necessarily increasing – the Akra-Bazzi theorem provides an upper bound for
T (n) which is of form stated in (4). Furthermore, if we know an only approximately (e.g., if
an = nσ(log n)α + O((nσ1 (log n)α1 ) with σ1 < σ and if σ = σ1 but α1 < α), then our results still
holds approximately.
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As a featured application of our results and techniques developed for solving the general discrete
divide and conquer recurrence, we shall present a comprehensive analysis of a data compression
algorithm due to Boncelet [4], where we need even more precise results than stated in Theorem 1.
Boncelet’s algorithm is a variable-to-fixed data compression scheme. One of the best variable-to-
fixed scheme belongs to Tunstall [31]; another variation is due to Khodak [20]. Boncelet’s algorithm
is based on the divide and conquer strategy, and therefore is very fast and easy to implement. The
question arises how it compares to the (asymptotically) optimal Tunstall algorithm. In Theorem 2
and Corollary 1 we provide an answer by first computing the redundancy of the Boncelet scheme
(i.e., the excess of code length over the optimal code length) and compare it to the redundancy of
the Tunstall code. In this case precise asymptotics of the Boncelet recurrence are crucial. We also
prove in Theorem 3 that the phrase length of the Boncelet’s algorithm obeys the central limit law,
as for the Tunstall algorithm [10].

The literature on continuous divide and conquer recurrence is very extensive. We mention here
[2, 7, 6]. Unfortunately, the discrete version of the recurrence has received much less attention,
especially with respect to precise asymptotics. Flajolet and Golin [13] and Cheung et al. [5]
use similar techniques to ours, however, their recurrence is a simpler one with p1 = p2 = 1/2.
Erdős et al. [11] apply renewal theory and Hwang [18] (cf. also [19]) analytic techniques when
dealing with similar recurrences. However, the approach presented in this paper is generalized
and somewhat simplified by using a combination of methods such as Tauberian theorems and
Mellin-Perron techniques. To the best of our knowledge, there is no comprehensive analysis of the
discrete divide and conquer recurrences and therefore there is no precise redundancy analysis for
the Boncelet’s algorithm.

The paper is organized as follows. In the next two sections we present our main results regarding
the discrete divide and conquer recurrence, and the Boncelet’s algorithm. All proofs are delayed
till the last section. In the Appendix A we discuss analytic continuations properties of certain
Dirichlet series, and in the Appendix B we present the Wiener-Ikehara Tauberian theorem and
several extensions.

2 Main Results

In this section we present our main results, including an asymptotic solution to a general discrete
divide and conquer recurrence, and its application to an arithmetic coding algorithm due to Boncelet
[4].

2.1 Divide and Conquer Recurrence

Form ≥ 2, let b1, . . . , bm and b1, . . . , bm be positive real numbers and hj(x) and hj(x) non-decreasing
positive functions with hj(x) = pjx+O(x1−δ) and hj(x) = pjx+O(x1−δ) for some positive numbers
pj < 1 and some δ > 0 (for 1 ≤ j ≤ m). We consider a (general) divide and conquer recurrence:
given T (0) ≤ T (1) for n ≥ 2 we set

T (n) = an +
m∑

j=1

bjT (⌊hj(x)⌋) +
m∑

j=1

bjT
(⌈
hj(x)

⌉)
(n ≥ 2), (5)

= an +
m∑

j=1

bjT
(⌊
pjx+O(x1−δ)

⌋)
+
m∑

j=1

bjT
(⌈
pjx+O(x1−δ)

⌉)
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where (an)n≥2 is a known non-negative and non-decreasing sequence. We also assume that hj(2) < 2
and hj(2) ≤ 1 (for 1 ≤ j ≤ m) so that the recurrence is well defined. It follows by induction that
T (n) is nondecreasing, too. In order to solve recurrence (5), we use Dirichlet series [3, 30]. In fact,
in the proof presented in Section 4 we make use of the following Dirichlet series

T̃ (s) =
∞∑

n=1

T (n+ 2)− T (n+ 1)

ns
(6)

from which we can calculate
∑n−2
i=1 T (i+ 2)− T (i+ 1) = T (n)− T (2).

For an asymptotic solution of recurrence (5), we will make some assumptions regarding the
Dirichlet series of the known sequence an. We postulate that the abscissa of absolute convergence
σa of the Dirichlet series

Ã(s) =
∞∑

n=1

an+2 − an+1

ns
(7)

is finite (or −∞), hence Ã(s) represents an analytic function for ℜ(s) > σa. For example, if we
know that an is non-decreasing and

an = O(nσ(log n)α)

for some real number σ and α, then Ã(s) converges (absolutely) for all s with ℜ(s) > σ. In
particular, we have σa ≤ σ.

Analytically, these observations follow from the fact, proved in Section 4, that the Dirichlet
series T̃ (s) can be expressed as

T̃ (s) =
Ã(s) +B(s)

1−∑mj=1(bj + bj) p
s
j

(8)

for some analytic function B(s) and Ã(s) as in (7). For the asymptotic analysis, we appeal to the
Tauberian theorem by Wiener-Ikehara and an analysis based on the Mellin-Perron formula (see
Appendix B and Section 4.3). Both approaches rely on the singular behaviour of T̃ (s). By the
Mellin-Peron formula, we shall observe that

T (n) = T (2) +
1

2πi

∫ c+i∞

c−i∞
T̃ (s)

(n − 3
2 )s

s
ds. (9)

Hence, the asymptotic behavior of T (n) depends on the singular behaviour of Ã(s), s = 0, and
roots of the denominator in (8), that is, roots of the characteristic equation

m∑

j=1

(bj + bj) p
s
j = 1. (10)

We denote by s0 the unique real solution of this equation.
A master theorem as presented in this paper has usually three (major) parts. In the first case,

the asymptotics of T (n) is driven by the recurrence and does not depend on an, in the second
case, there is an interaction between the internal structure of the recurrence and the sequence an
(resonance), and in the third case, the (asymptotic) behaviour of an dominates. Informally, the
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Figure 1: Illustration to the asymptotic analysis of the divide and conquer recurrence

first case corresponds to s0 > σa, the second case to s0 = σa, and the third one to s0 < σa. This is
illustrated in Figure 1 as an application of the residue analysis applied to the integral in (9). The
interplay between the poles at s = 0, s = σa and s0 determines the asymptotic behavior.

We will handle these cases separately. Nevertheless, if s0 = σa or if s0 < σa we have to assume
some regularity properties about the sequence an in order to cope with the asymptotics of T (n).
We assume that Ã(s) has a certain extension to a region that contains the line ℜ(s) = σa with a
pole-like singularity at s = σa. To be more precise, we will assume that there exist functions F̃ (s),
g0(s), . . . , gJ(s) that are analytic in a region that contains the half plane ℜ(s) ≥ σa such that

Ã(s) = g0(s)

(
log 1
s−σa

)β0

(s− σa)α0
+
J∑

j=1

gj(s)

(
log 1
s−σa

)βj

(s− σa)αj
+ F̃ (s), (11)

where g0(σa) 6= 0, βj are non-negative integers, α0 is real, and α1, . . . , αJ are complex numbers
with ℜ(αj) < α0 (1 ≤ j ≤ J), and β0 is non-negative if α0 is contained in the set {0,−1,−2, . . .}.

As demonstrated in Appendix A, this is certainly the case if an is a linear combination of
sequences of the form

nσ(log n)α

(or related to such sequences with floor and ceiling functions). For example, if α is not a negative
integer, then the corresponding Dirichlet series Ã(s) (in (7)) of the sequence an = nσ(log n)α can
be expressed as

Ã(s) = σ
Γ(α+ 1)

(s− σ)α+1
+

Γ(α+ 1)

(s− σ)α + F̃ (s),

6



where F̃ (s) is analytic for ℜ(s) > σ − 1, see Theorem 8 of Appendix A. Therefore,

σa = σ and α0 = α+ 1.

We will discuss several examples in Section 2.3.
If s0 = σa or if s0 > σa, then the zeros of the equation (10) influence the analysis. It turns out

we need to consider two different scenarios depending on a certain property of p1, . . . , pm.

Definition 1. We say that log(1/p1), . . . , log(1/pm) are rationally related if there exists a positive
real number L such that log(1/p1), . . . , log(1/pm) are integer multiples of L, that is, log(1/pj) =
njL, nj ∈ Z, (1 ≤ j ≤ m). Without loss of generality we can assume that L is as large as possible
which is equivalent to gcd(n1, . . . , nm) = 1. Similarly, we say that log(1/p1), . . . , log(1/pm) are
irrationally related if they are not rationally related.

Example. If m = 1, then we are always in the rationally related case. In the binary case m = 2,
the numbers log(1/p1), log(1/p2) are rationally related if and only if the ratio log(1/p1)/ log(1/p2)
is rational.

The following property of the roots of (10) is due to Schachinger [28] (cf. also [10, 16]).

Lemma 1. Let s0 be the unique real solution of equation (10). Then all other solutions s′ of (10)
satisfy ℜ(s′) ≤ s0.
(i) If log(1/p1), . . . , log(1/pm) are irrationally related, then s0 is the only solution of (10) on ℜ(s) =
s0.
(ii) If log(1/p1), . . . , log(1/pm) are rationally related, then there are infinitely many solutions sk,
k ∈ Z, with ℜ(sk) = s0 which are given by

sk = s0 + k
2πi

L
(k ∈ Z),

where L > 0 is the largest real number such that log(1/pj) are all integer multiples of L. Further-
more, there exists δ > 0 such that all remaining solutions of (10) satisfy ℜ(s) ≤ s0 − δ.

2.2 Discrete Master Theorem

We are now ready to formulate our main results regarding the asymptotic solutions of discrete divide
and conquer recurrences. Note that the irrational case is easier to handle whereas the rational case
needs additional assumptions on the Dirichlet series. Nevertheless these assumptions are usually
easy to establish in practice.

As discussed, our Discrete Master Theorem shows that for sequences an of practical importance
such as

an = nσ(log n)α

the solution T (n) of the divide and conquer recurrence grows as

T (n) ∼ C nσ′(log n)α
′

(log log n)β
′

(12)

(with σ′ = max{σ, s0}) when log p1, . . . log pm are irrationally related. For rationally related
log p1, . . . log pm, it is either of the form (12) or (if s0 > σ) there appears an oscillation in the
form of

T (n) ∼ Ψ(log n)ns0 (13)
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with a discontinuous periodic function Ψ(x); see Figure 3 of Section 2.3.
More precisely, in Section 4 we prove the following result.

Theorem 1 (Discrete Master Theorem). Let T (n) be the divide and conquer recurrence
defined in (5), where bj and bj are non-negative with bj + bj > 0, hj(x) and hj(x) are increasing
and non-negative functions with hj(2) < 2, hj(2) ≤ 1, and with hj(x) = pjx + O(x1−δ) and
hj(x) = pjx + O(x1−δ) for positive numbers pj < 1 and some δ > 0. Furthermore assume that
the sequence (an)n≥2 is non-negative and non-decreasing. Let σa denote the abscissa of absolute
convergence of the Dirichlet series Ã(s) and s0 the real root of (10). If σa ≥ s0 ≥ 0 assume further
that Ã(s) has a representation of the form (11), where F̃ (s), g0(s), . . . , gJ(s) are analytic in a region
that contains the half plane ℜ(s) ≥ σa, g0(σa) 6= 0, α0 is real and ℜ(αj) < α0 (1 ≤ j ≤ J), βj are
non-negative integers such that β0 > 0 if α0 is not contained in the set {0,−1,−2, . . .}.
(i) If log(1/p1), . . . , log(1/pm) are irrationally related and if α0 is not contained in the set {0,−1,−2, . . .},
then as n→∞

T (n) =






C1 + o(1) if σa < 0 and s0 < 0,
C2 log n+ C ′2 + o(1) if σa < s0 and s0 = 0,
C3(log n)α0+1(log log n)β0 · (1 + o(1)) if σa = s0 = 0,
C4 n

s0 · (1 + o(1)) if σa < s0 and s0 > 0,
C5n

s0(log n)α0(log log n)β0 · (1 + o(1)) if σa = s0 > 0,
C6 (log n)α0(log log n)β0(1 + o(1)) if σa = 0 and s0 < 0,
C7 n

σa(log n)α0−1(log log n)β0 · (1 + o(1)) if σa > s0 and σa > 0,

(14)

where the explicitly computable constants C1, C2, C3, C4, C5, C6, C7 are positive and C ′2 is real. Fur-
thermore if α0 is contained the set {0,−1,−2, . . .} (and if β0 > 0) then we have to replace the
factor (log log n)β0 by (log log n)β0−1 in (14) if

if σa = s0 = 0 and α0 ≤ −2,
if σa = s0 > 0 and α0 ≤ −1,
if σa = 0, s0 < 0, and α0 ≤ −1, and
if σa > s0 and σa > 0.

In all other cases there is no change in (14).

(ii) If log(1/p1), . . . , log(1/pm) are rationally related and if in the case s0 = σa the Fourier series

∑

k∈Z\{0}

Ã(s0 + 2πik/L)

s0 + 2πik/L
e2πikx/L (15)

is convergent for x ∈ R and represents an integrable function, then T (n) behaves as in the irra-
tionally related case with the following two exceptions:

T (n) =

{
C2 log n+ Ψ2(log n) + o(1) if σa < s0 and s0 = 0,
Ψ4(log n)ns0 · (1 + o(1)) if σa < s0 and s0 > 0,

(16)

where C2 is positive and Ψ2(t),Ψ4(t) are periodic functions with period L.
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Remark 1. We should point out that the periodic functions Ψ2(t) and Ψ4(t) that appear in
the second part of Theorem 1 have (usually) countably many discontinuities and, thus, have no
absolutely convergent Fourier series. This makes the analysis actually more challenging. We will
show in Section 4.4 that Ψ(t) has building blocks of the form

λ−t
∑

n≥1

Bn
λ⌊t−

logn
L ⌋+1

λ− 1

for some λ > 1 and a sequence Bn such that the series
∑
n≥1Bnλ

−(logn)/L is absolutely convergent.1

This function is periodic (with period L) and of bounded variation. Consequently, it has a conver-
gent Fourier series but it is discontinuous for t = {log n/L}, n ≥ 1, where, as usual {x} = x− ⌊x⌋
denotes the fractional part of a real number x.

Remark 2. The condition (15) for Ã(s) looks artificial. However, it is really needed in the proof
in order to control the polar singularities of T̃ (s) at sk, k ∈ Z \ {0}. Nevertheless it is no real
restriction in practice. As shown in Appendix A the condition (15) is satisfied for sequences of the
form an = nσ(log n)α.

Remark 3. By linearity the superposition principle applies. Hence we can combine Theorem 1
and the Akra-Bazzi theorem [2] to recurrences (5), where

an = c nσ(log n)α +O (nσ1(log n)α1)

where σ1 < σ or σ1 = σ and α1 < α. Let T0(n) be the solution of (5) when an0 = nσ(log n)α. Then

T (n) ∼ T0(n).

for large n.

2.3 Applications

We first illustrate our theorem on a few simple divide and conquer recurrences before in the next
subsection presenting a detailed analysis of Boncelet’s algorithm. Several of these examples are
also discussed in [25], where the growth order of T (n) is determined.
Example 1. Consider the recurrence

T (n) = 2T (⌊n/2⌋) + 3T (⌊n/6⌋) + n log n.

The Dirichlet series Ã(s) =
∑

(an+2 − an+1)n−s corresponding to the sequence an = n log n has
σa = 1 as the abscissa of absolute convergence. Furthermore the equation

2 · 2−s + 3 · 6−s = 1

has the (real) solution s0 = 1.402 . . . > 1. It is also easy to check that log(1/2) and log(1/6) are
irrationally related. Namely, if log(1/2)/ log(1/6) were rational, say a/b then it would follow that
2b = 6a. However, this equation has no non-zero integer solution. Hence by (14) Case 4, we obtain

T (n) ∼ Cns0 (n→∞)

9



Figure 2: T (n) versus n from Example 1.

for some constant C > 0 as shown in Figure 2.

Example 2. Next consider the recurrence

T (n) = 2T (⌊n/2⌋) +
8

9
T (⌊3n/4⌋) +

n2

log n
.

Here σa = s0 = 2 and we are (again) in the irrationally related case. Now Theorem 8 implies that
Ã(s) has a singular representation of the form

Ã(s) = s log
1

s− 2
+G(s)

for some function G(s) that is analytic for ℜ(s) > 1. Consequently, by (14) Case 6 we have

T (n) ∼ Cn2log log n (n→∞)

for some constant C > 0.
Example 3. Consider now

T (n) = T (⌊n/2⌋) + log n.

Here we have σa = s0 = 0. Since m = 1 we are also in the rational case. By Theorem 8 of
Appendix A Ã(s) has a singular representation of the form

Ã(s) =
1

s
+G(s)

1One can derive a complicated explicit formula for Ψ(t) but it does not provide any new insight.
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with some G(s) that is analytic for ℜ(s) > −1. Recall that Theorem 9 assures that condition (15)
is satisfied. Hence, by (14) case 3 we obtain

T (n) ∼ C(log n)2 (n→∞)

for some constant C > 0.
Example 4. The recurrence

T (n) =
1

2
T (⌊n/2⌋) +

1

n

is not covered by Theorem 1 since an is decreasing. Hence, T (n) is not increasing, either. However,
we can apply the proof methods of Theorem 1.2 Formally we have σa = s0 = −1 < 0 and, since
m = 1, we are in the rationally related case. It follows that

Tn = C
log n

n
+

Ψ(log n)

n
+ o

(
1

n

)

for some constant C > 0 and a periodic function Ψ(t).
Example 5. The recurrence

Figure 3: T (n) versus n from Example 5.

T (n) = 3T (⌈n/2⌉) + n

is related to the Karatsuba algorithm [21, 22]. Here we have s0 = (log 3)/(log 2) = 1.5849 . . . and
s0 > σa = 1. Furthermore, since m = 1, we are in the rationally related case. Hence, we have

T (n) = Ψ(log n)n
log 3
log 2 · (1 + o(1)) (n→∞)

2Actually the formal calculations are the same.
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with some periodic function Ψ(t), as shown in Figure 3.
In a similar manner, the Strassen algorithm for matrix multiplications results in the following

recurrence
T (n) = 7T (⌈n/2⌉) + n2.

Again, here we have m = 1, s0 = log 7/ log 2 ≈ 2.81 and σa = 2, thus

T (n) = Ψ(log n)n
log 7
log 2 · (1 + o(1)) (n→∞)

with some periodic function Ψ(t).

Example 6. The recurrences

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + n− 1,

Y (n) = Y (⌊n/2⌋) + Y (⌈n/2⌉) + ⌊n/2⌋,

U(n) = U(⌊n/2⌋) + U(⌈n/2⌉) + n− ⌊n/2⌋
⌈n/2⌉ + 1

+
⌈n/2⌉
⌊n/2⌋ + 1

⌊n/2⌋

are related to Mergesort (see [13]). For all three recurrences we have σa = s0 = 1 and we are
(again) in the rationally related case. Hence, we obtain asymptotic expansions of the form

C n log n+ nΨ(log n) + o(n) (n→∞),

where C = 1/ log 2 for T (n) and U(n) and C = 1/(2 log 2) for Y (n), and Ψ(t) is a periodic function.

3 Boncelet’s Arithmetic Coding Algorithm

We present a novel application of our analytic approach to discrete divide and conquer recurrences.
We compute the redundancy of a new and practical variable-to-fixed compression algorithm due to
Boncelet [4]. To recall, a variable-to-fixed length encoder partitions the source string, say over an
m-ary alphabet A, into a concatenation of variable-length phrases. Each phrase belongs to a given
dictionary of source strings. We represent a uniquely parsable dictionary by a complete parsing
tree, i.e., a tree in which every internal node has all m children nodes. The dictionary entries
correspond to the leaves of the associated parsing tree. The encoder represents each parsed string
by the fixed length binary code word corresponding to its dictionary entry. There are several well
known variable-to-fixed algorithms; e.g., Tunstall and Khodak schemes (cf. [10, 20, 31]). Boncelet’s
algorithm, described next, is a practical and computationally fast algorithm that becomes more and
more popular. Therefore, we compare its redundancy to the (asymptotically) optimal Tunstall’s
algorithm.

Boncelet describes his algorithm in terms of a parsing tree. For fixed n (representing the
number of leaves in the parsing tree and hence also the number of distinct phrases), the algorithm
in each step creates two subtrees of predetermined number of leaves (phrases). Thus at the root,

n is split into two subtrees with the number of leaves, respectively, equal to n1 =
⌊
p1n+ 1

2

⌋
and

n2 =
⌊
p2n+ 1

2

⌋
. This continues recursively until only 1 or 2 leaves are left. Note that this splitting

procedure does not assure that n1 + n2 = n. For example if p1 = 3
8 and p2 = 5

8 , then n = 4
would be split into n1 = 2 and n2 = 3. Therefore, we propose to modify the splitting as follows
n1 = ⌊p1n+ δ⌋ and n2 = ⌈p2n− δ⌉ for some δ ∈ (0, 1) that satisfies 2p1 + δ < 2.

12



Let {v1, . . . vn} denote phrases of the Boncelet code that correspond to the paths from the root
to leaves of the parsing tree, and let ℓ(v1), . . . , ℓ(vn) be the corresponding phrase lengths. Observe
that while the parsing tree in the Boncelet’s algorithm is fixed, a randomly generated sequence is
partitioned into random length phrases. Therefore, one can talk about the probabilities of phrases
denoted as P (v1), . . . , P (vn). Here we restrict the analysis to a binary alphabet and denote the
probabilities by p := p1 and q := p2 = 1− p.

For sequences generated by a binary memoryless source, we aim at understanding the proba-
bilistic behavior of the phrase length that we denote as Dn. Its probability generating function is
defined as

C(n, y) = E yDn

which can also be represented as

C(n, y) =
n∑

j=1

P (vj)y
ℓ(vj).

The Boncelet’s splitting procedure leads to the following recurrence on C(n, y) for n ≥ 2

C(n, y) = p y C (⌊pn+ δ⌋ , y) + q y C (⌈qn− δ⌉ , y) (17)

with initial conditions C(0, y) = 0 and C(1, y) = 1.
Next let d(n) denote the average phrase length

EDn := d(n) =
n∑

j=1

P (vj) ℓ(vj)

which is also given by d(n) = C ′(n, 1) (where the derivative is taken with respect to y) and satisfies
the recurrence

d(n) = 1 + p1d (⌊p1n+ δ⌋) + p2d (⌈p2n− δ⌉) (18)

with d(0) = d(1) = 0. This recurrence falls exactly under our general divide and conquer recurrence,
hence Theorem 1 applies.

Theorem 2. Consider a binary memoryless source with positive probabilities p1 = p and p2 = q
and the entropy rate H = p log(1/p)+q log(1/q). Let d(n) = EDn denote the expected phrase length
of the binary Boncelet code.
(i) If the ratio (log p)/(log q) is irrational, then

d(n) =
1

H
log n− α

H
+ o(1), (19)

where

α = E
′
(0) −G′(0) −H − H2

2H
, (20)

H2 = p log 2p + q log 2q, and E′(0) and G′(0) are the derivatives at s = 0 of the Dirichlet series
defined in (27) of Section 4.
(ii) If (log p)/(log q) is rational, then

d(n) =
1

H
log n− α+ Ψ(log n)

H
+O(n−η), (21)

where Ψ(t) is a periodic function and η > 0.
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For practical data compression algorithms, it is important to achieve low redundancy defined
as the excess of the code length over the optimal code length nH. For variable-to-fixed codes, the
average redundancy is expressed as [10, 27]

Rn =
log n

EDn
−H =

log n

d(n)
−H

since every phrase of average length d(n) requires log n bits to point to a dictionary entry. Our
previous results imply immediately the following corollary.

Corollary 1. Let Rn denote the redundancy of the binary Boncelet code with positive probabilities
p1 = p and p2 = q.
(i) If the ratio (log p)/(log q) is irrational, then

Rn =
Hα

log n
+ o

(
1

log n

)
. (22)

with α defined in (20).
(ii) If (log p)/(log q) is rational, then

Rn =
H(α+ Ψ̃(log n))

log n
+ o

(
1

log n

)
. (23)

where Ψ̃(t) is a periodic function.

We should compare the redundancy of Boncelet’s algorithm to asymptotically optimal Tunstall
algorithm. From [10, 27] we know that the redundancy of the Tunstall code is

RTn =
H

log n

(
− logH − H2

2H

)
+ o

(
1

log n

)

(provided that (log p)/(log q) is irrational; in the rational case there is also a periodic term in the
leading asymptotics). This should be compared to the redundancy of the Boncelet algorithm.

Example. Consider p = 1/3 and q = 2/3. Then one computes

α =
∑

m≥1

d(m+ 2)− d(m+ 1)

3

(
log

⌈
3m+

5

2

⌉
− log(3m)

)

+ 2
∑

m≥1

d(m+ 2)− d(m+ 1)

3

(
log

⌊
3

2
m+

5

4

⌋
− log(

3m

2
)

)

+
log 3

3
−H − H2

2H
≈ 0.0518

while for the Tunstall code − logH − H2
2H ≈ 0.0496.

We also have to observe that the leading constant of the log n-term equals 1/H. This follows
analytically from the initial conditions d(0) = d(1) = 0 and the fact that the function 1−ps+1−qs+1

has derivativeH at s = 0. On the other hand, if we use as an a-priori information that d(n) ∼ c log n
then by comparing the asymptotic expansion on the left and right hand side of (18) it also follows
that c = 1/H.

Finally, we deal with the limiting distribution of the phrase length Dn. The proof is presented
in Section 5.
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Theorem 3. Consider a biased memoryless source (i.e., p 6= q) generating a sequence of length n
parsed by the Boncelet algorithm. The phrase length Dn satisfies the central limit law, that is,

Dn − 1
H log n

√(
H2
H3 − 1

H

)
log n

→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, and

EDn =
log n

H
+O(1), VarDn ∼

(
H2

H3
− 1

H

)
log n

for n→∞.

We observe that the phrase length Dn follows the same central limit law as the Tunstall algo-
rithm [10].

4 Analysis and Asymptotics

We prove here a general asymptotic solution of the divide and conquer recurrence (cf. Theorem 1).
We first derive the appropriate Dirichlet series and apply Tauberian theorem for the irrationally
related case, then discuss the Perron-Mellin formula, and finally finish the proof of Theorem 1 for
the rationally related case.

4.1 Dirichlet Series

As discussed in the previous section, the proof makes use of the Dirichlet series

T̃ (s) =
∞∑

n=1

T (n+ 2)− T (n+ 1)

ns
,

where we apply Tauberian theorems and the Mellin-Perron formula to obtain asymptotics for T (n)
from a singularity analysis of T̃ (s).

By partial summation and using a-priori upper bounds for the sequence T (n), it follows that
T̃ (s) converges (absolutely) for s ∈ C with ℜ(s) > max{s0, σa, 0}, where s0 is the real solution of
the equation (10), and σa is the abscissa of absolute convergence of Ã(s).

Next we apply the recurrence relation (5) to T̃ (s). To simplify our presentation, we assume
that bj = 0, that is, we consider only the floor function on the right hand side of the recurrence
(5); those parts that contain the ceiling function can be handled in the same way. We thus obtain

T̃ (s) = Ã(s) +
m∑

j=1

bj

∞∑

n=1

T (⌊hj(n+ 2)⌋)− T (⌊hj(n+ 1)⌋)
ns

.

For k ≥ 1 set
nj(k) := max{n ≥ 1 : hj(n+ 1) < k + 2}.

By definition it is clear that nj(k + 1) ≥ nj(k) and

nj(k) =
n

pj
+O

(
k1−δ

)
. (24)
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Furthermore by setting

Gj(s) =
∑

n≥1,hj(n+2)<3

T (⌊hj(n+ 2)⌋)− T (⌊hj(n+ 1)⌋)
ns

we obtain

∞∑

n=1

T (⌊hj(n+ 2)⌋)− T (⌊hj(n+ 1)⌋)
ns

= Gj(s) +
∞∑

k=1

T (k + 2) − T (k + 1)

nj(k)s
.

We now compare the last sum to psj T̃ (s):

∞∑

k=1

T (k + 2)− T (k + 1)

nj(k)s
=
∞∑

k=1

T (k + 2)− T (k + 1)

(k/pj)s

−
∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)

= psj T̃ (s)− Ej(s),

where

Ej(s) =
∞∑

k=1

(T (k + 2)− T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
. (25)

Defining

E(s) =
m∑

j=1

bjEj(s) and G(s) =
m∑

j=1

bjGj(s)

we finally obtain the relation

T̃ (s) =
Ã(s) +G(s)− E(s)

1−∑mj=1 bj p
s
j

. (26)

As mentioned above, (almost) the same procedure applies if some of the bj are positive, that
is, the ceiling function also appear in the recurrence equation. The only difference to (26) is that
we arrive at a representation of the form

T̃ (s) =
Ã(s) +G(s)− E(s)

1−∑mj=1(bj + bj) p
s
j

, (27)

with a slightly modified functionsG(s) and E(s), however, they have the same analyticity properties
as in (26).

By our previous assumptions, we know the analytic behaviors of Ã(s) and
(
1−∑mj=1(bj + bj) p

s
j

)−1
:

Ã(s) has a pole-like singularity at s = σa (if σa ≥ s0) and a proper continuation to a complex domain
that contains the (punctuated) line ℜ(s) = σa, s 6= σa. On the other hand,

1

1−∑mj=1(bj + bj) psj
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has a polar singularity at s = s0 (and infinitely many other poles on the line ℜ(s) = s0 if the numbers
log(1/pj) are rationally related), and also a meromorphic continuation to a complex domain that
contains the line ℜ(s) = s0. Furthermore, G(s) is an entire function. It suffices to discuss Ej(s).
First observe (24) implies

1

(k/pj)s
− 1

nj(k)s
= O

(
1

(k/pj)ℜ(s)+δ

)
.

By partial summation (and by using again the a-priori estimates), it follows immediately that the
series ∞∑

k=1

(T (k + 2)− T (k + 1))
1

(k/pj)ℜ(s)+δ

converges for ℜ(s) > max{s0, σa, 0}−δ. Since T (n) is an increasing sequence, this implies (absolute)
convergence of the series Ej(s), just representing an analytic function in this region, too.

In order to recover (asymptotically) T (n) from T̃ (s) we apply several different techniques dis-
cussed in the next subsection. The main analytic tools are Tauberian theorems (of Wiener-Ikehara
which discussed in detail in Appendix B) and the Mellin-Perron formula (Theorem 4).

4.2 Tauberian Theorems

We are now ready to prove several parts of Theorem 1 with the help of Tauberian theorems of
Wiener-Ikehara type (see Appendix B). We recall that such theorems apply in general to the
so-called Mellin-Stieltjes transform

∫ ∞

1−
v−s dc(v) = s

∫ ∞

1
c(v)v−s−1 dv

of a non-negative and non-decreasing function c(v). If c(n) is a sequence of non-negative numbers,
then the Dirichlet series C(s) =

∑
n≥1 c(n)n

−s is just the Mellin-Stieltjes transform of the function
c(v) =

∑
n≤v c(n):

C(s) =
∑

n≥1

c(n)n−s =

∫ ∞

1−
v−s dc(v) = s

∫ ∞

1
c(v)v−s−1 dv.

Informally, a Tauberian theorem is a correspondence between the singular behaviour of 1
sC(s) and

the asymptotic behaviour of c(v). In the context of Tauberian theorems of Wiener-Ikehara type
one assumes that C(s) continues analytically to a proper region, has only one (real) singularity s0
on the critical line ℜ(s) = s0, and the singularity is of special type (for example a polar or algebraic
singularity, see Appendix B).

We recall that T̃ (s) is the Dirichlet series of the sequence c(n) = T (n+ 2)− T (n+ 1). Hence

T (n) = c(n− 2) + T (2).

Consequently, if we know the asymptotic behaviour of c(v) we also find that of T (n) (which is more
or less the same).

We recall that T̃ (s) is given by (27). Hence the dominant singularity of 1
s T̃ (s) is either zero, or

induced by the singular behaviour of Ã(s), or induced by the zeros of the denominator

1−
m∑

j=1

(bj + bj)p
s
j .
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Here it is essential to assume that the log pj are irrationally related. Precisely in this case the
denominator has only the real zero s0 on the line ℜ(s) = s0. Hence Tauberian theorems can be
applied in the irrationally related case if s0 ≥ σa. (For the rational case we will apply a different
approach to cover the case s0 ≥ σa.)

Our conclusions for the proof of the first part of Theorem 1 are summarized as follows:

1. σa < 0 and s0 < 0:
This is indeed a trivial case, since the dominant singularity is at s = 0 and the series T̃ (s)
converges for s = 0:

T̃ (0) =
∑

n≥1

(T (n+ 2)− T (n+ 1)),

hence
T (n) = C1 + o(1),

where C1 = T (2) + T̃ (0).

2. σa < s0 and s0 = 0:
We can apply directly a proper version of the Wiener-Ikehara theorem (Theorem 11 of Ap-
pendix B) that proves

T (n) = C2 log n · (1 + o(1)).

Observe, that s = 0 is a double pole of 1
s T̃ (s) that induces the log n-term in the asymptotic

expansion. Note that this does not prove the full version that is stated in Theorem 1. By
applying Theorem 5 (that is based on a more refined analysis) we also arrive at an asymptotic
expansion of the form

T (n) = C2 log n+ C ′2 + o(1).

3. σa = s0 = 0:
In this case the dominant singular term of 1

s T̃ (s) is given by

C
(log(1/s))β0

sα0+2
with C =

−g0(0)
∑m
j=1(bj + bj) log pj

Hence, an application of Theorem 12 of Appendix B provides the asymptotic leading term
for T (n). Recall that we have to handle separately the case when α0 is contained in the set
{−2,−3, . . .} (and β0 > 0). In this case, only logarithmic singularities remain.

4. σa < s0 and s0 > 0:
Here the classical version of the Wiener-Ikehara theorem (Theorem 10 of Appendix B) applies.
Note again that it is crucial that the denominator has only one pole on the line ℜ(s) = s0.

5. σa = s0 > 0:
Here the function 1

s T̃ (s) has the dominant singular term

C
(log(1/(s − σa)))β0

(s− σa)α0+1

for some constant C > 0 (and there are no other singularities on the line ℜ(s) = s0). Thus, an
application of Theorem 12 of Appendix B provides the asymptotic leading term for T (n). Ob-
serve that we have to handle separately the case when α0 is contained in the set {−1,−2, . . .}
(and β0 > 0).
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6. σa = 0 and s0 < 0:
The analysis of this case is very close to the previous one. The dominant singular term of
1
s T̃ (s) is of the form

C
(log(1/s))β0

sα0+1
.

7. σa > s0 and σa > 0:
In this case the singular behavior of Ã(s) dominates the asymptotic behavior of 1

s T̃ (s). An
application of Theorem 12 of Appendix B provides the asymptotic leading term of T (n).

4.3 Mellin-Perron Formula

One disadvantage of the use of Tauberian theorems is that they provide (usually) only the asymp-
totic leading term and no error terms. In order to provide error terms or second order terms one has
to use more refined methods. In the framework of Dirichlet series we can apply the Mellin-Perron
formula that we recall next (in fact, it follows from Lemma 2 below).

Below we shall use Iverson’s notation [[P ]] which is 1 if P is a true proposition and 0 else.

Theorem 4 (see [3]). For a sequence c(n) define the Dirichlet series

C(s) =
∞∑

n=1

c(n)

ns

and assume that the abscissa of absolute convergence σa is finite or −∞. Then for all σ > σa and
all x > 0

∑

n<x

c(n) +
c(⌊x⌋)

2
[[x ∈ Z]] = lim

T→∞
1

2πi

∫ σ+iT

σ−iT
C(s)
xs

s
ds.

Note that – similarly to the Tauberian theorems – the Mellin-Perron formula enables us to
obtain precise information about the function c(v) =

∑
n≥v c(n) if we know the behaviour of 1

sC(s).
In our context we have c(n) = T (n+ 2)− T (n), that is,

T (n) = T (2) + lim
T→∞

1

2πi

∫ c+iT

c−iT
T̃ (s)

(n− 3
2)s

s
ds (28)

with

T̃ (s) =
∞∑

n=1

T (n+ 2)− T (n+ 1)

ns
.

As a first application we apply the Mellin-Perron formula of Theorem 4 for Dirichlet series of
the form

C(s) =
∑

n≥1

c(n)n−s =
B(s)

1−∑mj=1 bjp
s
j

, (29)

where we assume that the log pj are not rationally related and where B(s) is analytic in a region
that contains the real zero s0 of the denominator. This theorem can be also applied to the proof
of some parts of Theorem 1; in particular for the (irrationally related) cases

if σa < 0 and s0 < 0,
if σa < s0 and s0 = 0, and
if σa < s0 and s0 > 0.

Note that Theorem 5 provides a second order term in the case σa < s0 = 0, see also Remark 5.
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Theorem 5. Suppose that 0 < pj < 1, 1 ≤ j ≤ m, are given such that log pj, 1 ≤ j ≤ m, are not
rationally related and let s0 denote the real solution of the equation

m∑

j=1

bjp
s
j = 1,

where bj > 0, 1 ≤ j ≤ m. Let C(s) =
∑
n≥1 c(n)n

−s be a Dirichlet series with non-negative
coefficients c(n) that has a representation of the form (29), that is,

C(s) =
∑

n≥1

c(n)n−s =
B(s)

1−∑mj=1 bjp
s
j

where B(s) is an analytic function for ℜ(s) ≥ s0 − η for some η > 0 and is bounded in this region.
Then

∑

n≤v
c(n) =





B(0)

1−∑mj=1 bj
+ o(1) if s0 < 0,

B(0)

H(0)
log v +

B′(0) +B(0)H2/H

H
+ o(1) if s0 = 0,

B(s0)

−∑mj=1 bjp
s0
j log pj

vs0 (1 + o(1)) if s0 > 0

,

where H(s) = −∑mj=1 bjp
s
j log pj with H = H(0), and H2(s) =

∑m
j=1 bjp

s
j(log pj)2 with H2 = H2(0).

Proof. We will use the Mellin-Perron formula of Theorem 4, however, we cannot use it directly,
since there are convergence problems. Namely, if we shift the line of integration ℜ(s) = c > s0 to
the left (to ℜ(s) = σ < s0) and collect residues we obtain (with Z = {s ∈ C :

∑m
j=1 bjp

s
j = 1})

∑

n≤v
c(n) = lim

T→∞

∑

s′∈Z, ℜ(s′)<σ,|ℑ(s′)|<T
Res(C(s)

vs

s
, s = s′)

+
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

B(s)

1−∑mj=1 bjp
s
j

vs

s
ds

= lim
T→∞

∑

s′∈Z, ℜ(s′)<σ,|ℑ(s′)|<T

B(s′)vs
′

s′H(s′)

+
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

B(s)

1−∑mj=1 bjp
s
j

vs

s
ds

provided that the series of residues converges and the limit T → ∞ of the last integral exists.
The problem is that neither the series nor the integral above are absolutely convergent since the
integrand is only of order 1/s. We have to introduce the auxiliary function

c1(v) =

∫ v

0



∑

n≤w
c(n)


 dw

which is also given by

c1(v) =
1

2πi

∫ c+i∞

c−i∞
C(s)

vs+1

s(s+ 1)
ds =

1

2πi

∫ c+i∞

c−i∞

B(s)

1−∑mj=1 bjp
s
j

vs+1

s(s+ 1)
ds,
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for c > s0. Note that there is no need to consider the limit T → ∞ in this case since the series
and the integral are now absolutely convergent. Hence, the above procedure works without any
convergence problem. We shift the line of integration to ℜ(s) = σ < min{−1, s0}. In order to make
the presentation of our analysis slightly easier we additionally assume that the region of analyticity
of B(s) is large enough such that all zeros in Z have real part > σ. Then we have to consider the
sum of residues

∑

s′∈Z,
Res

(
C(s)

vs+1

s(s+ 1)
, s = s′

)
=

=
∑

s′∈Z

B(s′)
s′(s′ + 1)H(s′)

vs
′+1.

For σ < 0 or σ < −1 the residues at s = 0 and s = 1 are respectively

B(0)

1−∑mj=1 bj
v, − B(−1)

1−∑mj=1 bjp
−1
j

,

and the integral is

1

2πi

∫ σ+i∞

σ−i∞
C(s)

vs+1

s(s+ 1)
ds =

1

2πi

∫ σ+i∞

σ−i∞

B(s)

1−∑mj=1 bjp
s
j

vs+1

s(s+ 1)
ds = O(v1+σ).

Thus, we obtain

c1(v) =
B(s0)

(s0 + 1)H(s0)
(1 +Q(log v))v1+s0 +O(v1+s0−η)

for some η > 0, where

Q(x) =
∑

s′∈Z\{s0}

2H(s0)B(s′)
s′(s′ + 1)H(s′)B(s0)

e−x(s
′+1).

It is easy to show that Q(x)→ 0 as x→∞ (cf. also with [28, Lemma 4] and [30]). Indeed, suppose
that ε > 0 is given. Then there exists S0 = S0(ε) > 0 such that

∑

s′∈Z, |s′|>S0

∣∣∣∣
2B(s′)H(s0)

s′(s′ + 1)H(s′)B(s0)

∣∣∣∣ <
ε

2
.

Further, since ℜ(s′) < s0 for all s′ ∈ Z \ {s0}, and by the assumption of irrationality zeros are not
on the critical line ℜ(s) = s0 (except the real one), it follows that there exists x0 = x0(ε) > 0 with

∣∣∣∣∣∣

∑

s′∈Z\{s0}, |s′|≤S0

2B(s′)H(s0)

s′(s′ + 1)H(s′)B(s0)
e−x(s

′+1)

∣∣∣∣∣∣
<
ε

2

for x ≥ x0. Hence |Q(x)| < ε for x ≥ x0(ε).
Note that we cannot obtain the rate of convergence for Q(x). This means that we just get

c1(v) ∼ B(s0)

(s0 + 1)H(s0)
· v1+s0
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as v →∞. However, since,
∑
n≤v c(n) is monotonely increasing in v (by assumption) it also follows

that ∑

n≤v
c(n) ∼ B(s0)

H(s0)
vs0 ,

compare with the case s0 = 0 that we discuss next.
Now suppose that s0 = 0 which means that C(s) has a double pole as s = 0. We can almost

use the same analysis as above and obtain the asymptotic expansion

c1(v) ∼ B(0)

H
v log v +

B′(0)−B(0) +B(0)H2/H)

H
v.

It is now an easy exercise to derive from this expansion the final result

∑

n≤v
c(n) =

B(0)

H
log v +

B′(0) +B(0)H2/H

H
+ o(1) (30)

in the following way. For simplicity we write c1(v) = C1v log v + C2v + o(v). By the assumption

|c1(v)− C1v log v + C2v| ≤ εv
for v ≥ v0. Set v′ = ε1/2v, then by monotonicity we obtain (for v ≥ v0)

∑

n≤v
c(n) ≤ c1(v + v′)− c1(v)

v′
≤ 1

v′
(
C1(v + v′) log(v + v′) + C2(v + v′)−

C1v log v − C2v) + ε
2v + v′

v′

= C1 log(v + v′) + C2 + C1
v

v′
log

(
1 +
v′

v

)
+ ε

2v + v′

v′

= C1 log v + C2 + C1 +O
(
ε1/2

)
,

where the O-constant is an absolute one. In a similar manner, we obtain the corresponding lower

bound (for v ≥ v0 + v
1/2
0 ). Hence, it follows that

∣∣∣∣∣∣

∑

n≤v
c(n)− C1 log v − C1 − C2

∣∣∣∣∣∣
≤ C ′ε1/2

for v ≥ v0 + v
1/2
0 . This proves

∑
n≤v c(n) = C1 log v + C1 + C2 + o(1) and consequently (30).

Remark 5. The advantage of the preceding proof is its flexibility. For example, we can apply the
procedure for multiple poles and are able to derive asymptotic expansions of the form

∑

n≤v
c(n) =

K∑

j=0

Aj
(log v)j

j!
vs0 + o(vs0).

Furthermore we can derive asymptotic expansions that are uniform in an additional parameter
when we have some control on the singularities in terms of the additional parameter. We will use
this generalization in the proof of the central limit theorem for the phrase lengths of the Boncelet
code (Theorem 3).

In principle it is also possible to obtain bounds for the error terms. However, they depend
heavily on Diophantine approximation properties of the vector (log p1, . . . log pm), see [16].
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4.4 The Rationally Related Case

Unfortunately, the previous method generally is not applicable when there are several poles (or
infinitely many poles) on the line ℜ(s) = s0. This means that we cannot use the above procedure
when the log pj are rationally related. The reason is that it does not follow automatically that an
asymptotic expansion of the form

c1(v) =

∫ v

0
c(w) dw ∼ Ψ1(log v) · vs0+1

implies
c(v) ∼ Ψ(log v) · vs0

for certain periodic functions Ψ and Ψ1, even if c(v) is non-negative and non-decreasing.
Therefore we will apply an alternative approach which is – in some sense – more direct and

applies only in this case, but it proves a convergence result for c(v) of the form

c(v) =
∑

n≤v
c(n) ∼ Ψ(log v) vs0

even for a periodic functions Ψ(t) with countably many discontinuities.
Suppose that log pj = −njL for coprime integers nj and a real number L > 0. Then the

equation 1−∑mj=1 bjp
s
j with the only real solution s0 becomes an algebraic equation

1−
m∑

j=1

bjz
nj = 0 with z = e−Ls.

with a single (dominating) real root z0 = e−Ls0 . We can factor this polynomial as

1−
m∑

j=1

bjz
nj = (1− eLs0z)P (z)

and obtain also a partial fraction decomposition of the form

1

1−∑mj=1 bjz
nj

=
1/P (e−Ls0)

1− eLs0z +
Q(z)

P (z)
.

Therefore, it is natural in this context to consider Mellin-Perron integrals of the form

1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1− e−Lsλ
xs

s
ds

for some complex number λ 6= 0 and a Dirichlet series B(s). The corresponding result is stated
below in Theorem 6

For the proof of Theorem 6 we need the following two lemmas. The first lemma (Lemma 2) is
also the basis of the proof of the Mellin-Perron formula (cf. [3, 30]). For the reader’s convenience
we provide a short proof of Lemma 2.
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Lemma 2. Suppose that a and c are positive real numbers. Then
∣∣∣∣∣

1

2πi

∫ c+iT

c−iT
as
ds

s
− 1

∣∣∣∣∣ ≤
ac

πT log a
(a > 1),

∣∣∣∣∣
1

2πi

∫ c+iT

c−iT
as
ds

s

∣∣∣∣∣ ≤
ac

πT log(1/a)
(0 < a < 1),

∣∣∣∣∣
1

2πi

∫ c+iT

c−iT
as
ds

s
− 1

2

∣∣∣∣∣ ≤
C

T
(a = 1).

Proof. Suppose first that a > 1. By considering the contour integral of the function F (s) = as/s
around the rectangle with vertices −A− iT, c− iT, c+ iT,−A+ iT and letting A→∞ one directly
obtains the representation

1

2πi

∫ c+iT

c−iT
as
ds

s
= Res(as/s; s = 0) +

1

2πi

∫ c

−∞

ax+iT

x+ iT
dx+

1

2πi

∫ c

−∞

ax−iT

x− iT dx.

Since ∣∣∣∣∣
1

2πi

∫ c

−∞

ax±iT

x± iT dx
∣∣∣∣∣ ≤

ac

πT log a

we directly obtain the bound in the case a > 1.
The case 0 < a < 1 can be handled in the same way. And finally, in the case a = 1 the integral

can be explicitly calculated (and estimated).

Lemma 3. Suppose that L is a positive real number, λ a complex number different from 0 and 1,
and c a real number with c > 1

L log |λ|. Then we have for all real numbers x > 1

1

2πi
lim
T→∞

∫ c+iT

c−iT

1

1− e−Lsλ
xs

s
ds =

λ⌊
log x
L ⌋+1 − 1

λ− 1
− 1

2
λ⌊

log x
L ⌋[[log x/L ∈ Z]]. (31)

Proof. By assumption we have |λe−Ls| < 1. Thus, by using a geometric series expansion we get for
all x > 1 such that log x/L is not an integer

1

2πi

∫ c+iT

c−iT

1

1− e−Lsλ
xs

s
ds =

∑

k≥0

λk
1

2πi

∫ c+iT

c−iT

(
x

eLk

)s ds
s

=
∑

k≤ logx
L

λk +O


 1

T

∑

k≥0

|λ|k
(
x
eLk

)c
∣∣∣log

(
x
eLk

)∣∣∣




=
λ⌊

log x
L ⌋+1 − 1

λ− 1
+O

(
1

T

xc

1− 1
eLc
|λ|

)
.

In the second line above we use the first part of Lemma 2 replacing the integral by 1 plus the error
term. Similarly we can proceed if log x/L is an integer. Of course, this implies (31).

Theorem 6. Let L be a positive real number, λ be a non-zero complex number, and suppose that

B(s) =
∑

n≥1

Bnn
−s
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is a Dirichlet series that is absolutely convergent for ℜ(s) > 1
L log |λ| − η for some η > 0. Then

1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1− e−Lsλ
xs

s
ds =

∑

n≥1

Bn
λ
⌊

log(x/n)
L

⌋
+1

λ− 1
− 1

2

∑

n≥1

Bnλ
⌊

log(x/n)
L

⌋
[[log(x/n)/L ∈ Z]]

(32)

+O
(
x

1
L

log |λ|−η
)
.

if |λ| > 1, and

1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1− e−Ls
xs

s
ds =

∑

n≥1

Bn

(⌊
log(x/n)

L

⌋
+ 1

)
(33)

− 1

2

∑

n≥1

Bn[[log(x/n)/L ∈ Z]] +O
(
x−η

)
.

if λ = 1.

Proof. We split the integral into an infinite sum of integrals according to the series B(s) =∑
n≥1Bnn

−s and apply (31) for each term by replacing x by x/n.

First assume that log(x/n)/L is not an integer for n ≥ 1. Hence, if x > neLk, then we have

1

2πi

∫ c+iT

c−iT

1
ns

1− e−Lsλ
xs

s
ds =

λ
⌊

log(x/n)
L

⌋
+1 − 1

λ− 1
+

O



 1

T

∑

k≥0

|λ|k
(
x
eLkn

)c
∣∣∣log

(
x
eLkn

)∣∣∣



 ,

and if x < neLk, then we just have

1

2πi

∫ c+iT

c−iT

1
ns

1− e−Lsλ
xs

s
ds = O



 1

T

∑

k≥0

|λ|k
(
x
eLkn

)c
∣∣∣log

(
x
eLkn

)∣∣∣



 .

Further, for given x there are only finitely many pairs (k, n) with

∣∣∣∣
x

eLkn
− 1

∣∣∣∣ <
1

2
.

Hence, the series

∑

n≥1

∑

k≥0

Bn
|λ|k

(
x
eLkn

)c
∣∣∣log

(
x
eLkn

)∣∣∣

is convergent. Consequently we get

1

2πi
lim
T→∞

∫ c+iT

c−iT

∑
n≥1Bnn

−s

1− e−Lsλ
xs

s
ds =
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1

λ− 1

∑

n<x

Bn

(
λ
⌊

log(x/n)
L

⌋
+1 − 1

)
+O(1)

(and a similar expression if there are integers n ≥ 1 for which log(x/n)/L is an integer). Finally,
since ∑

n<x

Bn = O
(
n

1
L

log |λ|−η
)

and ∑

n>x

Bnn
− 1
L

log |λ| = O
(
x−η

)

it follows that

1

λ− 1

∑

n<x

Bn

(
λ
⌊

log(x/n)
L

⌋
+1 − 1

)
=

1

λ− 1

∑

n≥1

Bn

(
λ
⌊

log(x/n)
L

⌋
+1
)

+O
(
n

1
L

log |λ|−η
)

(and similarly if there are integers n ≥ 1 for which log(x/n)/L is an integer). This proves (35).
If λ = 1 we first observe that (31) rewrites to

1

2πi
lim
T→∞

∫ c+iT

c−iT

1

1− e−Ls
xs

s
ds =

⌊
log x

L

⌋
+ 1− 1

2
[[log x/L ∈ Z]].

Now the proof of (33) is very similar to that of (35).

Remark 6. The representations (32) and (33) have nice interpretations. When |λ| > 1 set

Ψ(t) = λ−t
∑

n≥1

Bn
λ⌊t−

log n
L ⌋+1

λ− 1
− λ

−t

2

∑

n≥1

Bnλ
⌊t− logn

L ⌋[[t − log n/L ∈ Z]].

Then Ψ(t) is a periodic function of bounded variation with period 1, that has (usually) countably
many discontinuities for t = {log n/L}, n ≥ 1, and

1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1− e−Lsλ
xs

s
ds = x

1
L

log λΨ

(
log x

L

)
+O

(
x

1
L

log |λ|−η
)
.

Formally this representation also follows by adding the residues of

B(s)/(1− e−Lsλ)

at s = s0 + 2kπi/L (k ∈ Z) which are the zeros of 1− eLsλ = 0. This means that in both cases the
leading asymptotic follows from a formal residue calculus.

Furthermore, if we go back to the original problem, where we have to discuss a function of the
form

B(s)

1−∑mj=1 bjp
s
j

,

for log pj rationally related, then we have

1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1−∑mj=1 bjp
s
j

xs

s
ds = xs0 Ψ

(
log x

L

)
+O

(
xs0−η

)
.
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As mentioned above we split up the integral with the help of a partial fraction decomposition of
the rational function

1

1−∑mj=1 bjz
nj
.

The leading term can be handled directly with the help of Theorem 3. The remaining terms one
again uses (31) and obtains (finally) a second error term of order O (xs0−η).

Remark 7. If λ = 1 then the situation is even simpler. Set

C =
1

L

∑

n≥1

Bn

and

Ψ̃(t) =
∑

n≥1

Bn

(
−
{
t− log n

L

}
+ 1

)
− 1

2

∑

n≥1

Bn[[t −
log n

L
∈ Z]]− 1

L

∑

n≥1

Bn log n.

Then Ψ̃(t) is a periodic function with period 1, that has (usually) countably many discontinuities
for t = {log n/L}, n ≥ 1, and we have

1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1− e−Ls
xs

s
ds = C log x+ Ψ̃

(
log x

L

)
+O

(
x−η

)
.

Hence, by applying the same partial fraction decomposition as above we also obtain (if s0 = 0 and
if the log pj are rationally related)

1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1−∑mj=1 bjp
s
j

xs

s
ds = C log x+ Ψ̃

(
log x

L

)
+O

(
x−η

)
.

Remark 8. There is also an immediate generalization of (32) to functions of the form

B(s) =
∑

n≥1

Bn

(
1

ns
− 1

(n+ hn)s

)
, (34)

where (hn)n≥1 is a sequence that is bounded by hn = O(n1−δ) for some δ > 0 and where the series
converges absolutely for ℜ(s) > 1

L log |λ| − η for some η > 0. Here we have

1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1− e−Lsλ
xs

s
ds =

1

1− λ−1

∑

n≥1

Bn

(
λ
⌊

log(x/n)
L

⌋
− λ

⌊
log(x/(n+hn))

L

⌋)
(35)

−1

2

∑

n≥1

Bnλ
⌊

log(x/n)
L

⌋
[[log(x/n)/L ∈ Z]]

+
1

2

∑

n≥1

Bnλ
⌊

log(x/(n+hn))
L

⌋
[[log(x/(n+ hn))/L ∈ Z]] +O(1).

Again if we define the 1-periodic function

Ψ(t) =
λ−t

1− λ−1

∑

n≥1

Bn

(
λ⌊t−

log n
L ⌋ − λ

⌊
t

log(n+hn)
L

⌋)
− λ

−t

2

∑

n≥1

Bnλ
⌊t logn

L ⌋[[t − log n/L ∈ Z]]

+
λ−t

2

∑

n≥1

Bnλ
⌊
t− log(n+hn)

L

⌋
[[t− log(n+ hn)/L ∈ Z]],
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then
1

2πi
lim
T→∞

∫ c+iT

c−iT

B(s)

1− e−Lsλ
xs

s
ds = x

1
L

log λΨ

(
log x

L

)
+O

(
x

1
L

log |λ|−η
)
.

Summing up, we can handle all parts of T̃ (s) (given by (27)) with the help of these techniques
if s0 > σa and s0 ≥ 0. (Recall that G′(s) is a finite Dirichlet series and E′(s) is a finite sum of
function of the form (34).)

4.5 Finishing the Proof

It remains to complete the proof of Theorem 1 in the rationally related case. Actually we only have
to (re)consider the cases, where s0 ≥ σa. Namely, if σa > s0 then the zeros of the equation (10)
do not contributed to the leading analytic behaviour of T̃ (s) and we can apply proper Tauberian
theorems. In what follows we comment on the differences in the cases of interest.

2. σa < s0 and s0 = 0:
This case is basically handled in Theorem 3, in particular see Remarks 7 and 8.

3. σa = s0 = 0:
In this case we apply proper generalizations of Tauberian theorems. Recall that in this case
the dominant singular term of 1

s T̃ (s) is given by

C
(log(1/s))β0

sα0+2

and there are infinitely many simple poles at s = 2πik/L (k ∈ Z \ {0}). Of course we have
α0 ≥ 0, otherwise the sequence an would not be non-decreasing. Here we need a slightly
modified version of Theorem 11 or Theorem 12, resp., which is easy to establish. The proof
just requires that the Fourier series (15) converges and represents an integrable function, see
Remark 9. However, this property does not effect the asymptotic leading term, it is only
required in the proof.

4. σa < s0 and s0 > 0:
Here we apply Theorem 6, see also Remark 6.

5. σa = s0 and s0 > 0:
This case is very similar to Case 3.

5 Proof of Theorem 3

Finally, we briefly discuss the proof of Theorem 3 for the non-symmetric binary case (biased mem-
oryless source). For simplicity, we shall write p for p1 and q for p2 = 1− p 6= p1.

We recall that C(n, y) satisfies the recurrence (17) with initial conditions C(0, y) = 0 and
C(1, y) = 1. It is clear that for every fixed positive real number y we can apply Theorem 1.
However, we have to be careful since we need an asymptotic representation for C(n, y) uniformly
for y in an interval that contains 1 in its interior. Note that C(n, 1) = 1.

For the proof of Theorem 3, one has to consider the Dirichlet series

C(s, y) =
∞∑

n=1

C(n+ 2, y)− C(n+ 1, y)

ns
.
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For simplicity we just consider here the case y > 1. (The case y ≤ 1 can be handled in a similar
way.) Then C(s, y) converges for ℜ(s) > s0(y), where s0(y) denotes the real zero of the equation
y(ps+1 + qs+1) = 1. We find

C(s, y) =
(y − 1)− Ẽ(s, y)

1− y(ps+1 + qs+1)
,

where

Ẽ(s, y) = py
∞∑

k=1

(C(k + 2, y)) − C(k + 1, y))



 1

(k/p)s
− 1(⌈

k+2−δ
p

⌉
− 2

)s





+ qy
∞∑

k=1

(C(k + 2, y)) − C(k + 1, y))



 1

(k/q)s
− 1(⌊

k+1+δ
q

⌋
− 1

)s





converges for ℜ(s) > s0(y)− 1 and satisfies Ẽ(0, y) = 0 and Ẽ(s, 1) = 0.
Suppose first that we are in the irrational case. Then by the Wiener-Ikehara theorem only the

residue at s0(y) contributes to the main asymptotic leading term. (Recall that we consider the case
y > 1). We thus have

C(n, y) ∼ Res

(
((y − 1)− Ẽ(s, y))(n − 3/2)s

s(1− y(ps+1 + qs+1))
; s = s0(y)

)

=
((y − 1)− Ẽ(s0(y), y))(n − 3/2)s0(y)

−s0(y)(log(p)ps0(y)+1 + log(q)qs0(y)+1))
(1 + o(1)).

The essential but non-trivial observation is that this asymptotic relation holds uniform for y in
an interval around 1. In order to make this precise we can use the Mellin-Perron formula from
Theorem 4

C(n, y) = C(2, y) +
1

2πi

∫ c+i∞

c−i∞
C(s, y)

(
n− 3

2

)s

s
ds

and apply the methods presented in the proof of Theorem 5, compare also with [10]. We observe
that the sum of residues (that is denoted by Q(x) in the proof of Theorem 5) converges to 0
uniformly in y. This follows from the fact that the zeros of the equation y(ps+1 + qs+1) = 1 vary
continuously in y. Hence, if y in contained in some (compact) interval Y and snr(y) denotes one of
the non-real zeros, then

min
y∈Y
ℜ(snr(y)− s0(y)) > 0.

Hence we find
C(n, y) = (1 +O(y − 1))ns0(y)(1 + o(1))

uniformly for real y that are contained in an interval around 1. Finally by using the local expansion

s0(y) =
y − 1

H
+

(
H2

2H3
− 1

H

)
(y − 1)2 +O((y − 1)3), (36)
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and by setting y = et/(log n)1/2
we obtain

ns0(y) = exp

(
log n

(
y − 1

H
−
(

1

H
− H2

2H3

)
(y − 1)2 +O(|z − 1|3)

))

= exp

(
1

H
t
√

log n+
1

H

t2

2
−
(

1

H
− H2

2H3

)
t2 +O(t3/

√
log n)

)

= exp

(
1

H
t
√

log n+

(
H2

H3
− 1

H

)
t2

2
+O(t3/

√
log n)

)
,

and consequently

E

[
eDnt/

√
logn

]
= C

(
n, et/

√
logn

)
= exp

(
1

H
t
√

log n+

(
H2

H3
− 1

H

)
t2

2

)
(1 + o(1)).

Hence, we arrive at

E

[
et(Dn−

1
H

logn)/
√

logn
]

= e−(t/H)
√

log v
E

[
eDnt/

√
logn

]
(37)

= e
t2
2

(
H2
H3
− 1
H

)
+ o(1).

By the convergence theorem for the Laplace transform (see [30]) this proves the normal limiting
distribution as n→∞ and also convergence of (centralized) moments.

In the rational case we can use a similar procedure. However, we have to use a proper variation
of the proof of Theorem 3, from which we obtain estimates that are uniform in (real) y. Formally,
we just have to add the residues coming from the zeros sk(y) = s0(y) + k2πi/L for k 6= 0 (where
L > 0 is the largest real number such that log(1/p) and log(1/q) are integer multiples of L). These
terms lead to an additional contribution of the form

∑

k∈Z\{0}

((y − 1)− Ẽ(sk(y), y))(n − 3/2)sk(y)

−sk(y)(log(p)psk(y)+1 + log(q)qsk(y)+1))
= O(|y − 1|ns0(y)).

Since (y − 1) − Ẽ(sk(y), y) = O(|y − 1|) it follows that these additional terms are bounded by

O(|y − 1|ns0(y)). Hence, if we set y = et/(log n)1/2
this term is asymptotically negligible and the

central limit theorem follows also in the rational case.
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A Analytic Continuation of Dirichlet Series

Dirichlet series of special sequences are frequently used in the present paper. In particular we are
interested in the Dirichlet series of sequences of the form

c(n) = nσ(log n)α.

It is clear that the Dirichlet series C(s) =
∑
n≥1 c(n)n

−s converges (absolutely) for complex s with
ℜ(s) > σ + 1. We also know that the abscissa of absolute convergence is given by σa = σ + 1.
However, it is not immediate that C(s) has a certain analytic continuation to a larger region (that
does not contain the singularity s = σa. Nevertheless, such continuation properties do hold (see
[17]).

Theorem 7. Suppose that σ and α are real numbers and let C(s) be the Dirichlet series

C(s) =
∑

n≥2

nσ(log n)αn−s.

(i) If α is not a negative integer, then C(s) can be represented as

C(s) =
Γ(α+ 1)

(s − σ − 1)α+1
+G(s),

where G(s) is an entire function.

32



(ii) If α = −k is a negative integer, then we have

C(s) =
(−1)k

(k − 1)!
(s− σ − 1)k−1 log(s − σ + 1) +G(s),

where G(s) is an entire function.

Proof. We do not provide a full proof but sketch the arguments from [17] where even a slightly
more general situation was considered. Furthermore it is sufficient to consider the case σ = 0.

First it follows form the Euler Maclaurin summation that C(s) can be represented (for ℜ(s) > 1)
as

C(s) =

∫ ∞

2

(log v)α

vs
dv +

(log 2)α

2s+1

+

∫ ∞

2

(
{v} − 1

2

)(
α(log v)α−1 − s(log v)α

)
v−s−1 dv,

where the second integral on the right hand side represents a function that is analytic for ℜ(s) > 0.
Furthermore, by using the substitution z = (s− 1) log v the first integral can be rewritten as

∫ ∞

2

(log v)α

vs
dv = (s− 1)−α−1

∫ ∞

(s−1) log 2
zαe−z dz.

The latter integral is precisely the incomplete Γ-function.
If α is not a negative integer, then [1]

∫ ∞

w
zαe−z dz = Γ(α+ 1)− wα+1

∞∑

m=0

(−1)m

m!

wm

(m+ α+ 1)

and if α = −k is a negative integer, then [1]

∫ ∞

w
z−ke−z dz = Γk−1(−k + 1) +

(−1)k

(k − 1)!
log(w)

−wα+1
∞∑

m=0, m6=k−1

(−1)m

m!

wm

(m+ α+ 1)
,

where Γk(z) = Γ(z)− (−1)k/(k!(k + z)). Hence the conclusion follows.

Note that the above method is quite flexible. For example, if

c(n) = nσ(log n)α +O(nσ−δ)

for some δ > 0, then we obtain a similar representation except that G(s) is not any more an entire
function but a function that is analytic for ℜ(s) > σ + 1− δ.

It is now easy to apply Theorem 7 to sequences of the form

c(n) = an+2 − an+1,

where
an = nσ(log n)α.
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Theorem 8. Suppose that an = nσ(log n)α, where σ and α are real numbers, and let Ã(s) be the
Dirichlet series

Ã(s) =
∑

n≥1

an+2 − an+1

ns
.

(i) If α is not a negative integer, then Ã(s) can be represented as

Ã(s) = σ
Γ(α+ 1)

(s− σ)α+1
+

Γ(α+ 1)

(s− σ)α +G(s),

where G(s) is analytic for ℜ(s) > σ − 1.
(ii) If α = −k is a negative integer, then we have

Ã(s) = σ
(−1)k

(k − 1)!
(s− σ)k−1 log(s− σ)

+
k(−1)k

(k − 1)!
(s− σ)k log(s− σ) +G(s),

where G(s) is analytic for ℜ(s) > σ − 1.

Proof. This follows from the simple fact that

an+2 − an+1 = σnσ−1(log n)α
(
1 +O(n−1)

)

+ αnσ−1(log n)α−1
(
1 +O(n−1)

)
.

Note that Theorem 8 is even more flexible than Theorem 7. For example, we can also consider
sequences of the form an = (⌊ρn + τ⌋)σ for some ρ with 0 < ρ < 1 (or similarly defined sequences).
In this case one could argue, as in Section 4.1, that

Ã(s) = ρsB(s) +R(s),

where B(s) is the Dirichlet series of the differences (n + 2)σ − (n + 1)σ and R(s) is analytic for
ℜ(s) > σ − 1.

Finally we show that condition (15) of Theorem 1 is satisfied for sequences an = nσ(log n)α.

Theorem 9. Suppose that an = nσ(log n)α and let Ã(s) denote the corresponding Dirichlet series.
Then the Fourier series

∑

k∈Z\{0}

Ã(σ + 2πik/L)

σ + 2πik/L
e2πikx/L (A.1)

is convergent for x ∈ R and represents an integrable function.

Proof. We restrict ourselves to the case σ = 1, which means that the sequence an+2−an+1 consists
(mainly) of the two terms (log n)α and (log n)α−1. To simplify the presentation, we only discuss
the function

A(s) =
∑

n≥2

(log n)αn−s
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instead of Ã(s) (and neglect the error terms, since they be handled easily).
Following the proof of Theorem 7 we have to discuss the three integrals

A1(s) =

∫ ∞

2

(log v)α

vs
dv,

A2(s) =

∫ ∞

2

(
{v} − 1

2

)
α(log v)α−1v−s−1 dv,

A3(s) = s

∫ ∞

2

(
{v} − 1

2

)
(log v)αv−s−1 dv.

Let us start with A3(s) which we represent as

A3(s) = s

∫ ∞

0
v−sh(v) dv,

where h(v) = 0 for 0 ≤ v < 2 and h(v)/v is of bounded variation on [2,∞). (Note that in our case,
h(v) is not continuous if v is an integer.) Set

F (x) = L
∑

m∈Z

h(ex+mL).

Then F (x) is periodic (with period L) and also of bounded variation. Hence it has a convergent
Fourier series with Fourier coefficients (see [24])

fk =
1

L

∫ L

0
F (x)e−2πikx/L dx =

∫ L

0

∑

m∈Z

h(ex+mL)e−(x+mL)2πik/L dx

=

∫ ∞

−∞
h(ex) e−x2πik/L dx =

∫ ∞

0
h(v) v−(1+2πik/L) dv

=
A3(1 + 2πik/L)

1 + 2πik/L
.

Consequently the Fourier series with Fourier coefficients A3(1+2πik/L)/(1+2πik/L) is convergent.
Furthermore, it is integrable, since the set of discontinuities of F (x) is countable and F (x) equals
its Fourier series at all points of continuity (here we use the fact that fk = O(1/k)).

Similarly we can handle A2(s). We represent it as

A2(s) =

∫ ∞

2
h(v)v−s dv,

where h(v)/v is of bounded variation on [2,∞). Here the corresponding periodic function is given
by

F (x) = L

∫ ∞

2
h(v)
e−L{(x−log v)/L}

v(1− e−L)
dv.

Finally, we have to consider A1(s). By Theorem 7 we know that A1(s) has an analytic contin-
uation to the slit region C \ (−∞, 1]. In particular it follows that the limit

lim
ε→0+

A1(1 + ε+ 2πik/L)
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exists and equals to (the analytically continued value) A1(1 + 2πik/L) . By partial integration it
follows that (for real t)

∫ ∞

2

(log v)α

v1+ε+it
dv =

(log 2)α

ε+ it
2−ε−it +

α

ε+ it

∫ ∞

2

(log v)α−1

v1+ε+it
dv.

This implies that

A1(1 + it) = O

(
1

t

)
.

Consequently the Fourier series with Fourier coefficients A1(1 + 2πik/L)/(1 + 2πik/L), k 6= 0,
converges absolutely. This completes the proof of the Theorem.

B Tauberian Theorems

The main analytic problem in the present paper is to obtain asymptotic information on the partial
sums

c(v) =
∑

n≤v
c(n)

from analytic properties of the Dirichlet series

C(s) =
∑

n≥1

c(n)n−s.

The classical Tauberian theorem of Wiener-Ikehara, as presented in Theorem 10, is a very strong
tool in this context. Actually it applies to the Mellin-Stieltjes transforms (see [23]) that is closely
related to Dirichlet series:

C(s) =
∑

n≥1

c(n)n−s =

∫ ∞

1−
v−s dc(v).

Theorem 10 (Wiener-Ikehara; cf. [23]). Let c(v) be non-negative and non-decreasing on [1,∞)
such that the Mellin-Stieltjes transform

C(s) =

∫ ∞

1−
v−s dc(v) = s

∫ ∞

1
c(v)v−s−1 dv

exists for ℜ(s) > 1. Suppose that for some constant A0 > 0, the analytic function

F (s) =
1

s
C(s)− A0

s− 1
(ℜ(s) > 1)

has a continuous extension to the closed half-plane ℜ(s) ≥ 1. Then

c(v) ∼ A0v

as v →∞.

Theorem 10 is quite flexible. For example, it is sufficient to assume that c(v)(log v)α is non-
decreasing for some real α (and v ≥ 2). Furthermore it is clear that it generalizes directly to the
case when C(s) converges for ℜ(s) > s0 and has a continuous extension to the closed half-plane
ℜ(s) ≥ s0 (for s0 ≥ 0). It also applies if C(s) behaves like a pole of higher order for s → s0,
however, the asymptotic result has to be adjusted accordingly.
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Theorem 11. Let c(v) be non-negative and non-decreasing on [1,∞) such that the Mellin-Stieltjes
transform C(s) exists for ℜ(s) > s0 for some s0 ≥ 0 and suppose that there exist real constants
A0, . . . , AK (with AK > 0) such that

F̃ (s) =
1

s
C(s)−

K∑

j=0

Aj
(s− s0)j+1

(B.1)

has a continuous extension to the closed half-plane ℜ(s) ≥ s0. Then we have

c(v) ∼ AK
K!

(log v)Kvs0 (v →∞). (B.2)

We indicate how Theorem 11 can be deduced from (a slight variation of) Theorem 10 when
K = 2 and s0 = 1. Let

1

s
C(s) =

∫ ∞

1
c(v)v−s−1 ds =

A1

(s− 1)2
+
A0

s− 1
+ F̃ (s)

with some A1 > 0 and some function F̃ (s) that is analytic for ℜ(s) > 1 and has a continuous
extension to the half plane ℜ(s) ≥ 1. By subtracting A0/(s − 1) and by splitting up the integral
into two parts we obtain

∫ ∞

2
(c(v)−A0v) v

−s−1 dv =
A1

(s − 1)2
+ F̃ (s)

−
∫

1
2 (c(v) −A0v) v

−s−1 dv

Hence, by integrating with respect to s (from 2 to s) we have

∫ ∞

2

(
c(v) −A0v

log v

)
v−s−1 dv =

A1

s− 1
−A1 −

∫ s

2
F̃ (t) dt +

∫ ∞

2

(
c(v)−A0v

log v

)
v−3 dv

+

∫ s

2

∫

1
2(c(v)−A0v)v

−t−1 dv dt.

We can apply a slight generalization of Theorem 10 to (c(v)−A0v)/ log v. Note that the right hand
side is of the form A1/(s − 1) + F (s), where F (s) has a continuous continuation to the half plane
ℜ(s) ≥ 1. The point is that the function (c(v) − A0v)/ log v is not necessarily non-negative and
non-decreasing. However, there is certainly a constant C > 0 such that (c(v)−A0v)/ log v+Cv ≥ 0,
and A1 on the right hand side can be replaced by A1 + C. Furthermore, the proof of Theorem 10
has some flexibility. As mentioned above the proof of Theorem 10 can be easily modified so that
it also applies to a function of the form (c(v) − A0v)/ log v, where it is only assumed that c(v) is
non-decreasing [23].

Note that the cases s0 > 0 and s0 = 0 of Theorem 1 have to be handled separately.3 Further-
more, the case s0 < 0 is not applicable in this setting. Namely if c(v) > 0 and non-decreasing,
then C(s) cannot converge for s with ℜ(s) < 0. Note also that we cannot expect a more pre-
cise asymptotic expansion in this generality. For example if c(v) = (A1 log v + A0 + sin(log 2v))v
with A1 > 2. Then c(v) is positive and non-decreasing, so (B.1) is satisfied but we do not have
c(v) = (A1 log v +A0 + o(1))v.

3The approach we present works for s0 > 0. For s0 = 0 we have to adjust parts of the proof of Theorem 10.
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Remark 9. The above mentioned proof method of Theorem 11 also applies to situations, where
1
sC(s) has a representation of the form

1

s
C(s) =

∫ ∞

1
c(v)v−s−1 ds =

A1

(s − 1)2
+
∑

m∈Z

A0,m

s+ imτ − 1
+ F̃ (s)

with some A1 > 0 and some function F̃ (s) that is analytic for ℜ(s) > 1 and has a continuous
extension to the half plane ℜ(s) ≥ 1. Furthermore we have to assume that the Fourier series

∑

m∈Z

A0,me
imτx

is convergent and represents an integrable function. Note that this condition corresponds to the
condition (15) in Theorem 1. Under these assumptions the previous proof works, too, and it follows
that c(v) ∼ A1v log v.

This kind of reasoning is precisely what is needed in Section 4.5, where we completed the proof
of Theorem 1 in the rationally related case.

There are even more general versions by Delange [8] that cover singularities of algebraic-
logarithmic type that we state next. Note that this theorem requires an analytic continuation
property and not only a continuity property.

Theorem 12 (Delange [8]). Let c(v) be non-negative and non-decreasing on [1,∞) such that the
Mellin-Stieltjes transform C(s) exists for ℜ(s) > s0 for some s0 > 0 and suppose that there exist
functions F̃ (s), g0(s), . . . , gJ (s) that are analytic in a region that contains half plane ℜ(s) ≥ s0
such that

1

s
C(s) = g0(s)

(
log 1
s−s0

)β0

(s− s0)α0
+
J∑

j=1

gj(s)

(
log 1
s−s0

)βj

(s − s0)αj
+ F̃ (s),

where g0(s0) 6= 0, βj are non-negative integers, α0 is real but not a negative integer when it is non-
zero, and α1, . . . , αJ are complex numbers with ℜ(αj) < α0. Furthermore β0 > 0 if α0 is contained
in the set {0,−1,−2, . . .}. Then, as v →∞,

c(v) ∼ g0(s0)

Γ(α0)
(log v)α0−1(log log v)β0vs0 (B.3)

if α0 is not contained in the set {0,−1,−2, . . .} and

c(v) ∼ (−1)α0(−α0)!β0g0(s0)(log v)α0−1(log log v)β0−1vs0 (B.4)

if α0 is contained in the set {0,−1,−2, . . .} and β0 > 0.

Interestingly, Theorem 10 generalizes – partly – to the case, where there are infinitely many
poles on the line ℜ(s) = s0, where one obtains a fluctuating factor in the asymptotic expansion.

The drawback of this generalization is that it only applies if the appearing periodic function has
an absolutely convergent Fourier series. Unfortunately we cannot apply it in the present context,
since the appearing periodic functions have discontinuities. Anyway, we could not find such a
theorem in the literature, so we present it here.
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Theorem 13. Let c(v) be non-negative and non-decreasing on [1,∞) such that the Mellin-Stieltjes
transform C(s) exists for ℜ(s) > s0, where s0 > 0. Assume that the function

F̃ (s) =
1

s
C(s)−

∑

m∈Z

Am
s− s0 − imτ

, (B.5)

with some real τ > 0 and real coefficients Am, where A0 > 0, has a continuous extension to the
closed half-plane ℜ(s) ≥ s0. Furthermore assume that the Fourier series

Ψ(x) =
∑

m∈Z

Am e
imτx

is absolutely convergent and has bounded derivative. Then

c(v) ∼ Ψ(log v) vs0 (v →∞). (B.6)

The proof is an extension of the approach from [23]. For the reader’s convenience we give it
here. Let

Kλ(t) =
1− cos(λt)

πλt2
=
λ

2π

(
sin(λt/2)

λt/2

)
2

denote the Fejer kernel.

Lemma 4. Let κ > 0 and
h(t) =

∑

m∈Z

Ame
imτt

be an absolutely convergent Fourier series with bounded derivative. Then
∫ ∞

0
Kλ(u− t)h(t) dt = h(u) + o(1) (λ→∞) (B.7)

uniformly for u ≥ 1.

Proof. Let m0 = m0(ε) be defined by

∑

|m|>m0(ε)

|Am| < ε

and suppose that for λ0 = λ0(ε) >> κm0(ε) we have

∑

|m|≤m0(ε)

|mAm| < ελ0(ε).

Furthermore we note that for u ≥ 1

∫ ∞

u
Kλ(t) dt = O

(
1

λ

)
(λ→∞).
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Consequently it follows for λ ≥ λ0(ε)
∫ ∞

0
Kλ(u− t)h(t) dt =

∑

m∈Z

Am

∫ ∞

0
Kλ(u− t)eimτt dt

=
∑

m∈Z

Am

∫ ∞

−∞
Kλ(t)e

imτ(u−t) dt+O
(∫ ∞

u
Kλ(t) dt

)

=
∑

m∈Z

Ame
imκuK̂λ(κm) +O

(
1

λ

)

=
∑

m∈Z

Ame
imκu

(
1− |κm|

λ

)
+O

(
1

λ

)

=
∑

|m|≤λ/κ
Ame

imκu +O


1

λ

∑

|m|≤λ/κ
|mAm|


+O

(
1

λ

)

Since λ0 > κm0 we have
∣∣∣∣∣∣
h(u)−

∑

|m|≤λ/κ
Ame

imκu

∣∣∣∣∣∣
≤

∑

|m|>m0(ε)

|Am| < ε.

Furthermore

1

λ

∑

|m|≤λ/κ
|mAm| ≤

1

λ

∑

|m|≤m0

|mAm|+
1

λ

∑

m0<|m|λ/κ≤
|mAm|

< ε+
∑

|m|>m0

|Am|

< 2ε.

Of course this proves (B.7).

Lemma 5. Let ℓ(t) be non-negative for t ≥ 0 such that the Laplace transform

L(z) =

∫ ∞

0
ℓ(t)e−zt dt

exists for ℜ(z) > 0. Suppose further that there exists a bounded and integrable function h(t) (for
t ≥ 0) with the property that

G(z) = L(z)−H(z)

has a continuous extension to the closed half-plane ℜ(z) ≥ 0, where H(z) denotes the Laplace
transform of h(t). Then

lim
u→∞

(∫ ∞

0
Kλ(u− t)ℓ(t) dt −

∫ ∞

0
Kλ(u− t)h(t) dt

)
= 0

Proof. Let K̂λ(y) = max{1− |y|/λ, 0} denote the Fourier transform of Kλ(t) which is non-negative
and has support [−λ, λ]. Then we have for x > 0

∫ ∞

0
Kλ(u− t)ℓ(t)eixt dt =

∫ ∞

0
Kλ(u− t)h(t)eixt dt

+
1

2π

∫ λ

−λ
K̂λ(y)G(x + iy)eiuy dy.
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By assumption the right hand side has a finite limit as x → 0+. Hence, by the monotone conver-
gence theorem it follows that Kλ(u− t)ℓ(t) is integrable over (0,∞) and it follows that

∫ ∞

0
Kλ(u− t)ℓ(t) dt =

∫ ∞

0
Kλ(u− t)h(t) dt +

1

2π

∫ λ

−λ
K̂λ(y)G(iy)eiuy dy.

Finally, the Riemann-Lebesgue lemma implies

lim
u→∞

1

2π

∫ λ

−λ
K̂λ(y)G(iy)eiuy dy = 0.

This proves the lemma.

With the help of these preliminaries we prove Theorem 11.

Proof of Theorem 11. We set ℓ(t) = e−s0ta(et). Then for ℜ(z) > 0

L(z) =

∫ ∞

0
ℓ(t)e−zt dt =

∫ ∞

1
a(v)v−(s0+z)−1 dv =

A(s0 + z)

s0 + z
.

Furthermore observe that the Laplace transform of Ψ(t) (for ℜ(z) > 0) is given by

H(z) =

∫ ∞

0
Ψ(t)e−tz dt =

∑

m∈Z

Am
z − imτ

Hence, by assumption the function

G(z) = L(z)−H(z) =
A(s0 + z)

s0 + z
−
∑

m∈Z

Am
z − imτ

has a continuous extension to the half-plane ℜ(z) ≥ 0. Consequently by Lemma 5

lim
u→∞

(∫ ∞

0
Kλ(u− t)e−s0ta(et) dt −

∫ ∞

0
Kλ(u− t)Ψ(t) dt

)
= 0

Since Ψ(t) is bounded it also follows that the second integral is uniformly bounded in λ and u.
Hence

lim sup
u→∞

∫ ∞

0
Kλ(u− t)ℓ(t) dt ≤ C

for some constant that is uniform in λ. Since a(v) is positive and non-decreasing it follows that

∫ ∞

0
Kλ(u− t)ℓ(t) dt ≥ ℓ(u− 1/

√
λ)e−2s0/

√
λ
∫ 1/

√
λ

−1/
√
λ
Kλ(t) dt = ℓ(u− 1/

√
λ)
(
1 +O(1/

√
λ)
)

and consequently

lim sup
u→∞

ℓ(u− 1/
√
λ) ≤ C

(
1 +O(1/

√
λ)
)
.

This shows that ℓ(t) is a bounded function.
Now, for given ε > 0 choose λ0 = λ0(ε) >> 1/ε2 such that

∣∣∣∣
∫ ∞

0
Kλ0(u− t)Ψ(t) dt −Ψ(u)

∣∣∣∣ < ε.
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Since Ψ(t) has bounded derivative we also have |Ψ(u) − Ψ(u − 1/
√
λ0)| ≤ C/

√
λ0 ≤ Cε. Putting

these estimates together it follows that

lim sup
u→∞

(
ℓ(u− 1/

√
λ0)

(
1 +O(1/

√
λ0)
)
−Ψ(u− 1/

√
λ0)
)
≤ (1 + C)ε

and consequently
lim sup
u→∞

(ℓ(u)−Ψ(u)) ≤ 0.

Similarly we obtain estimates from below. We just have to observe that

∫ ∞

0
Kλ(u− t)ℓ(t) dt ≤ ℓ(u+ 1/

√
λ)e2s0/

√
λ
∫ 1/

√
λ

−1/
√
λ
Kλ(t) dt +O

(∫

1/
√
λ
Kλ(t) dt

)

= ℓ(u+ 1/
√
λ)
(
1 +O(1/

√
λ)
)

+O
(
1/
√
λ
)

and obtain in the same way
lim inf
u→∞

(ℓ(u)−Ψ(u)) ≥ 0.

Hence, ℓ(u) = Ψ(u) + o(1) and consequently a(v) = (Ψ(log v) + o(1)) vs0 . Finally, since a(v) is
non-decreasing we have min Ψ(u) > 0 and consequently a(v) ∼ Ψ(log v)vs0 .
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