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WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT
RESTRICTIONS

by Michael DRMOTA and Christian MAUDUIT (*)

ABSTRACT. For any given integer ¢ > 2, we consider sets A/ of non-
negative integers that are defined by linear relations between their
g-adic digits (for example, the set of non-negative integers such that
the number of 1’s equals twice the number of 0’s in the binary rep-
resentation). The main goal is to prove that the sequence (an),ecn
is uniformly distributed modulo 1 for all irrational numbers «. The
proof if based on a saddle point analysis of certain generating func-
tions that allow us to bound the corresponding Weyl sums.

Sommes de Weyl et nombres entiers définis par des contraintes
linéaires sur leurs chiffres

RESUME. Le nombre entier g > 2 étant fixé, nous étudions les ensem-
bles A de nombres entiers positifs définis par des relations linéaires
entre les chiffres de leur représentation g-adique (par exemple I’ensemble
des nombres entiers positifs dont la représentation binaire contient
deux fois plus de 1 que de 0). Notre objectif principal est de démontrer
que la suite (an)pen est équirépartie modulo 1 pour tout nombre
irrationnel a. La preuve s’appuie sur ’étude des points selles d’une
certaine fonction génératrice qui permet de majorer les sommes de
Weyl.

1. Introduction

Let ¢ > 2 be a given integer and let
L
n="> e;n)g
j=0
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2 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

be the g-ary digital expansions with digits €;(n) € {0,1,...,¢ — 1} and
L = L(n) = [log,n] denotes the length of the expansion. Further, for
0e{0,1,...,q—1} let

Injp :=card{0 < j < L:g;j(n) =14}

denote the number of digits of n that equal £.
For example, the g-ary sum-of-digits function is given by

L qg—1
sq(n) =Y gi(n) = Lnl,.
j=0 =0

Several works concern the study of statistical properties of sequences of
integers defined by digital properties: distribution in residue classes ([11,
14, 15, 20, 21, 22]) uniform distribution modulo 1 ([2, 5, 6, 7, 17, 12, 19])
and study of the associated exponential sums ([3, 1, 4, 13]); see also [23]
for a description of the links to spectral analysis and properties of symbolic
dynamical systems.

The purpose of this paper is to study, for any fixed irrational number
a, the ditribution modulo 1 of the sequence (na),cnr, where A is a set of
integers defined by linear properties of their digits.

DEFINITION 1.1. — We say that the system £ = (Lg)g=1,... x of linear
forms on R defined for every (zo,...,xq4—1) € R? by

q—1
Lk(l'(),l‘h...,:tq,l): E Qf 0Ty, k‘:l,...,K
£=0

(with ay ¢ € Z for (k,0) € {1,..., K} x{0,...,q— 1}) is complete if

(i) the family of vectors formed by (a1,0, - .-, 01,g=1)s - -5 (QK,05- - QK q—1)

and (1,...,1) is linearly independent over Q.
(i) spang {Lg(no,...,ng—1) :k=1,..., K, (ng,...,ng—1) € Z} = zX.

Let £ be a complete system of linear forms over R? and n = (11, ...,7k)
be a K-tuple of non negative real numbers.

DEFINITION 1.2. — We say that m is L-admissible if the system of equa-
tions

Ly(x0,21,. .., Tg—1) = Ms k=1,... K,
x0+~~'+£€q_1:1

has a positive solution xo > 0,21 > 0,...,24-1 > 0.
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WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS 3

Example 1.3. — Tt K =1, £ = (L) with Ly (20, ..., 24-1) = Y.t—o lay,

then n = (q;—l) is L-admissible.

Example 1.4. — If K > 1, £L = (Lq,..., L) with Lg(xg,...,2q-1) =
xg—xp for k=1,..., K, then n = (0,...,0) is L-admissible.

Example 1.5. — If K =1, L= (Ly) with Li(zo,...,zq-1) = 2o — 221,
then n = (0,...,0) is L-admissible.

For any complete system L of linear forms over R?, for any £-admissible
K-tuple n € (RT)X and for any K-tuple g = (1, ..., ux) € ZX we define
the set of integers
N =N(Ln,p)

(1.1)

= {n e N: Li(nfo, In|1, .-, In|g—1) = [n% log, n|+ pe, k=1,... ,K} .
In what follows we will always assume that £ is complete and that n is
L-admissible.

In section 3 we will give the following estimate for card{n € N': n < N}:

THEOREM 1.6. — There exist positive constants C1,Cy and v < 1 de-
pending only on L, n, and p such that for any integer N > 2 we have
N7 N7
Ci——— <card{neN :n< N} <Co— .
1 (log, N)<72 card{n n } 2 (log, N)& /2

In section 4 we prove our main result:

THEOREM 1.7. — For any irrational number « the sequence (na)pen
is uniformly distributed modulo 1.

Such a kind of theorem has been proved in [12] in the particular case
of sequences of integers with an average sum of digits. More precisely, for
any b : N — R such that %V +b(v) € N for any v > 1 and such that

the sequence (b(l';i) is bounded, then Theorem 1.2 from [12] says that
v v>1

for any irrational number « the sequence (na),eg, is uniformly distributed
modulo 1, where

& = {n €N:s4(n) = q%l[logq n]+b ([logq n])} .

It is easy to verify that in the particular case where ¢ = 2 or 3, £ and
1 defined as in Example 1.3 and g = (0), our theorem is a consequence
of Theorem 1.2 from [12] but that these results are formally disjoint when
q > 4. Nevertheless the study of [12] concerns the case of integers whose
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4 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

/N /N /N /N

Figure 1.1. Infinite 3-automaton generating n € N with |n|o = |n|1 = |n|2

sum of digits is “close” to the expected value and our work generalizes
this study to the case of integers whose sum of digits (or any other linear
combination of digits) is “far” from the expected value.

In the particular case where £ and 7 are defined as in Example 1.4 and for
p=(0,...,0), our theorem corresponds to Theorem 4.2 (for the set £,_1)
from [19]. The main theorem from [19] can be understood as an uniform
distribution result in the case where the set N defined by (1.1) is generated
by a deterministic g-infinite automaton corresponding to a random walk of
zero average on a d-dimensional lattice (see [19] for definitions of these
notions).

For example when ¢ = 3, £ and 7 as in Example 1.4 and g = (0,...,0),
the set N = {n € N:|n|p = |n|]1 = |n|a} is generated by the deterministic
3-infinite automaton (that is depicted in Figure 1.1) with O as initial state
and 0 as unique final state.

The theorem we prove here is a generalization of this result to the case
of any random walk on a ¢-dimensional lattice (the more general case of
d-dimensional lattices, with d < ¢, corresponds to the generalization sug-
gested in section 5 of our paper).

Indeed for £ and n as in Example 1.5 and g = (0), the set N' = {n € N :
|njo = 2|n|1} is generated by the deterministic ¢g-infinite automaton that is
depicted in Figure 1.2 with 0 as initial state and 0 is unique final state. It is
also linked to the random walk on the lattice Z with probability transition
(4.2
number « the sequence (noz)‘nb:mn‘1 is uniformly distributed modulo 1

). It follows in particular from our main theorem that for any irrational

ANNALES DE L’INSTITUT FOURIER
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2,01 2,01 2.1 2...g1 2.1

Figure 1.2. Infinite g-automaton generating n € N with |n|o = 2|n|;

(such a kind of result was out of reach from the methods developped in [12]
and [19]).

It follows from Weyl’s criterion that in order to prove Theorem 1.7, it is
enough to show that for every irrational number o we have

Z e(an) = o(card{n e N : n < N})
neN ,n<N

Imiz (for general references to the

as N — oo, where we denote e(z) = e
theory of uniformly distributed sequences we refer to [16] and [10]). For
this purpose we use a sophisticated saddle point method applied to prop-
erly chosen generating functions. In Section 2 we set up the generating
functions related to our problem. Then in Section 3 we collect some tech-
nical properties that are necessary to apply a saddle point analysis which
leads to a proof of Theorem 1.6. A variation of this method leads then in
Section 4 to a proof of Theorem 1.7. Finally we comment on some gener-
alizations of Theorem 1.7 concerning missing digits (Section 5.1) and non

integer coefficients (Section 5.2).

2. Generating Functions
We first present explicit formulas for

_ Info,.In|1 [nlg—1, n
SN($07$17~~~»$q71»y) - E Lo Ty Ty .y Y
0<n<N
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6 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

LEMMA 2.1. — Define T, y(zo,Z1,...,Zq-1,y) for N < ¢” recursively
by
Tu,q” (33072101, cee 7xQ*17y) = H (‘rO + fUlqu + -+ xqfly(q_l)qr) )
r<v

Ty 0qi (0, T1,5 ., Tg—1,Y) =af 77! (JUO +ay? o+ Jﬂe—1y(£71)q])
X Tj,qj (Z‘O,Jfl, . 7xq—17y)
for1 < /¢ < qand j <v, and by
Tyigisn (0, T1, .o 2g—1,Y) =T 149 (0, T1, ..., Tg—1,Y)
tay T eyt T N (0, T, g1, Y)
for1<f¢<gqand N' < ¢.
Then we have
Sqv (X0, 21, -, Tg—1,Y) :Z (l“lyqj et Iq—ly(qfl)qj)
J<v
’ jjjaqj (50071’1, sy Tg—1, y)v
qu” (.’11'07.7,'17 (R 7$q717y) :Sq” ($0, Tiy--- 7xq717y)
-|-($1qu+ st 33@_1y(2_1)qu) Ty (20, T1, -y Tg—1,Y)
for 2 < f < ¢, and

Seqr+n(T0,T15 - -+, Tg—1,Y) =Segr (To, 21, -, Tg—1,Y)
i
+$£yeq TIJ,N’(m(h Tly- - 7xq717 y)
for N < ¢".
Proof. — First we give an alternate definition for T, v (2o, x1, - . ., T¢—1,¥).

Suppose that we consider all number n < ¢” in the form n = go(n) +
e1(n)g+ - +¢e,_1(n)g"" L. Similarly to the above we set

[nfye :=card{0 < j <v:ej(n) ={}.

Of course, if n < ¢” and ¢ # 0 then |n|, ¢ = |n|¢. However, for £ = 0 we
v,0 takes all zero digits up to ¢ — 1 into

usually have |n|, o # |n|o since |n
account. Now set (for N < ¢¥)

Ty N(T0, @1, ., Tg—1,Y) = Z xl)"‘"'ox‘lnl”’l ~-~:cl;i|§’q’ly".
n<N
With help of this definition the proof of Lemma 2.1 is immediate. 0
COROLLARY 2.2. — Suppose that xg, x1,...,xqs—1 are complex numbers

that are sufficiently close to the positive real axis and o + -+ +x4-1 # 1.

ANNALES DE L’INSTITUT FOURIER



WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS 7

Then we have

Z alMoglnhe .. ~a:‘qn_|‘i’1 = G(x0, ..., mg—1,108, N) - (xo + - -+ + wq_1)' 8V
0<n<N
1+ -+ Te
To+ T+t —1
where G (o, x1, ..., Zq—1,t) Is a function that is analytic in xg, T1,. .., Te—1
and continuous and periodic in t (with period 1).

Furthermore, if I is any closed interval of positive real numbers with
min [ > 1/q. Then, for every ¢ > 0 such that there is at least one j with
|arg(x;)| > €, there exists § > 0 and C' > 0 such that
(2.1)

S el <O (ol + | 4 g )T 8N
0<n<N

uniformly for all x; with |z;| € I.

Proof. — We first provide a corresponding representation for T, . Sup-
pose that the g-adic expansion of N’ is given by

N' = 0" + 64" + - + L1

with digits 0 < £; < ¢ and exponents ky > ko > --- > kr > 0, then it
directly follows that

Tk1+17N/(1‘0,332, e ,Jiq_l, 1) = (330 4+ 4 1‘[1_1)Xk1
+ xlgl_b_lle ($0 + -+ 5C3271)Xk2
+ x§1*k3*2xelxe2 (o + -+ xpy_1) X"
4o
+ xlglka*LJrlle . xZL,l(xO 4+ 4 ng)XkL7

where X abbreviates X = xg + x1 + - - + £4—1. Further we have
XY —1
X-1

Sqv (0, T2y« o, Xg—1,1) = (X — x0)

and (for £ > 2)

XV -1
quu(x07x2,...,xq,1,1) = (X—LE()) X _1 +($1 +"'+$z71)XV
X" -1 v v
:(X—.’Eo)X_l —.’ﬂoX +($0+"‘+$571)X .

Consequently, if IV is given by
N = Llog™ 4 l1g" 4 - 4 Lpq""
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8 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

then we have

Xhko 1
X-1
+ (20 + - 2y —1) X

ko—k1—1 k
+ M $50(1‘0+"'+l‘gl_1)X 1

SN(xQ,xz,...,lL'q_l,].):(Xffﬂo) 71’0Xk0

(2.2) + .’Elgo_kz_zxgoxgl (xo+ -+ SUEQ,l)X]Q
_|_ e
+ x’go_kL_Lxgo ceexg, (ot F ng)XkL.

For 0 <t < 1 let the g-adic expansion of ¢* be given by
g =ty + Zéjq_kj
j>1
with digits 0 < ¢; < ¢ and exponents 0 < k; < ka2 < --- and set

X (1 — o)
X -1

—ky
x X
+ (g4 @) ()
xr €T

G($0,I27...,$q_1,t):X7t< +($O+"’+xlo—l)

0 0

—ko

Toy T X

G BTl () ()
o o Zo

).

It is an easy exercise to show that G is continuous in ¢ and can be periodi-
cally extended to a (continuous) function with period 1 provided zo, ..., zq—1
are sufficiently close to the positive real line. If fact G is Holder continuous
with a positive exponent depending on xzq,...,2—1 (compare with [9]).
Furthermore by definition it follows that
X — Xo
X1
Finally, if we assume that |z;| € I and |arg(z;)| > ¢ for some j and
for some closed interval I of positive real numbers then the representation
(2.2) implies (2.1) almost immediately. Note that min I > 1/q implies that

SN(ZL'(), sy Tg—1, ].) = G((E(), e ,iEq,l,lqu N) . XIquN —

|130‘+"'+|1‘q_1|>1. O
COROLLARY 2.3. — Set
K
Pyn(z1,...,2K,Y) = Z H z,fk(‘nlo""’ln‘qfl)y”.
n<N k=1

ANNALES DE L’INSTITUT FOURIER
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Then we have

PN(Zla-~-7ZK7 SN <Hzak°,. HZakK, )

Consequently, there exists a function H(z1,...,z,t) that is analytic in
21,...,2 (if they are sufficiently close to the positive real axis) and con-
tinuous and periodic in t (with period 1) such that

(23)  Pn(21,...,2x,1) = H(z1,..., 2, log, N) - F(z1, ..., 2) %8 N

_F(Zla"'vzk)_ é{l Zko

F(z,...,2) — 1 ’

where we assume that

qg—1 K
F(z1,..., 2 2Hj““¢1
e_ —

Furthermore, if J is any closed interval of pos1t1've real numbers with the
property that F(|z1|,...,|zx|) > 1 for all z;, with |z;| € J (1 < k < K).
Then, for every € > 0 such that there is at least one k with |arg(zi)| > ¢,
there exists 6 > 0 and C' > 0 such that

(2.4) |Pn(21,...,2k,1)| S C - F(|z1), ..., |z]) 37108 ¥
uniformly for all zj, with |z;| € J.

Q0

Proof. — We just have to note that if we set z, = H?Zl then we

obtain
K q—1
_o @k.elnle
[~ [T
k=1

and can apply Corollary 2.2. In particular note that Definition 1.1.(ii) im-

plies that (2.1) translates to (2.4). O
In what follows we will make the assumption that
(2.5) aro=0 (1<k<K).

This implies that zo in Sy (o, ..., 24—1) is substituted by Hk LR =1
Hence, F(z1,...,2K) is of the form

q—1 K
F(z1,...,2k) =1+ Hza“
(=1k=1

In particular, we always have
F(Zl,...,ZK) >1

for all positive real numbers z1, ..., 2k.
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10 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

The assumption (2.5) is no real restriction. If we start with the general
linear forms

Li(zo,21,...,0q-1) = E Aoy,

then the slightly modified linear forms
q—1 —1

Li(wo, 1, 0g1) = »_(ake — ar0)Te = Y (ks — aro)e
£=0 1

=}

~
Il

have the property that the corresponding coefficients @y, = ar¢ — ak,0
satisfy a0 = 0 and the condition (1.1) translates to
Zk(‘n|07 "/l|1, SR |n|q—1) = Lk(‘n|07 ‘Tl|1, SRR |n|q—1) - ak,o[logq ’fl]
(2.6) = [mklogy n] + pu — ar,ollog, 1]
= [(mk — ak.0) log, n] + px + O(1),

where the O(1)-term depends on n and k. This means that if we replace
the linear forms Ly by Lj then (1.1) is replaces by (2.6) that is almost of
the same form. In fact, the following calculations could be worked out, too,
by using (2.6) instead of (1.1). However, in this case it would be necessary
to keep track of k and n which would make notations even more involved.
Therefore we have decided to work with (1.1) and, of course, with (2.5).

3. Estimate of card{n € N': n < N}: Saddle Point
Approximations

Our first goal is to give a precise estimate for the number
card{n € N : n < N},

that is, to prove Theorem 1.6. For this purpose, for every integral multiin-
dex m = (mq,...,mx) we consider the sets

Vm(N) = {n < N : Ly(|nlo, ..., |n|g—1) = mk, 1 <k < K}

and their cardinalities cardVy, (N). With help of the generating function
P(z1,...,2K,1) we can obtain these numbers by the use of K-fold Cauchy
integration:

cardVin (V) = card{n < N :Lg(nfo,. .., |nlg=1) =my, 1 <k < K}

dz1 dzg
3.1 o zi ] .
(3.1) 27rz / / (=1 2K 1) T“Ll z}?"“

ANNALES DE L’INSTITUT FOURIER
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Since P(z1,. .., 2Kk, 1) can be well approximated by a power F(z1,. .., zx )8V
it is natural to do this with help of a multivariate saddle point method.
We start with a preliminary lemma.
LEMMA 3.1. — Suppose that the system of equations
(3.2) S amze = m  (1<k<K),
q—1
(3.3) o =1
£=0
has a positive solution xg > 0,21 > 0,...,24—1 > 0. Then there uniquely
exist z1 > 0,...,zxg > 0 with
qg—1 K
(3.4) ZakgHz”f—nkZHz’f (1<k<K).
{=0r=1

Proof. — Let Z denote the set of solution (zo, . .., z4—1) of (3.4) and (3.3)
with positive coordinates. By assumption Z is not empty, in particular, it
either consists of exactly one point (if ¢ = K + 1) or it is the intersection
of a (¢ — K — 1)-dimensional hyperplane with the half spaces z; > 0, and,
thus, can be considered as an open set in a (¢ — K — 1)-dimensional space.
Next consider the function

flzo,. ., xq-1) ijlong, (o, ..., Tq—1) € Z.

Observe that f is a strictly concave positive function with unbounded de-
rivative if one of the z; goes to 0. Hence f attains its (only) maximum at
some point (zg,...,rg_1) € Z.

Alternatively, this maximum can be calculated with help of Lagrange
multipliers. Set

q—1 qg—1
f@o, - Zg—1,A05- -, AK) = — Z:Ej log z; + Ao (ng — 1)
=0 =0
K q—1
+) (Z k0 Te — 77k> :
k=1 =0

Then by Lagrange’s theorem there exists Ag, . . ., Aj such that (zg,...,25_;)
satisfies the system of equations

af =

9u; —logz} +1—|—/\0+;)\kak3—0 (0<j<q).

SUBMITTED ARTICLE : DRMOTA-MAUDUIT-AIF. TEX



12 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

Hence, if we set zj, = e, we have
K
x5 = et H 2%,
k=1
and since (3.4) and (3.3) imply that

q—1 qg—1
Z akéfg =Nk Z‘Tga
=0 =0

it directly follows that (3.4) is satisfied for z, = e**. This is also the unique
solution since every solution of (3.4) can be reinterpreted as a maximum

of fon Z. O

In what follows, we will denote by Q the (open) set of (n1,...,nx) for
which (3.4) has a unique solution zx(n1,...,mx) (1 < k < K) in the above
sense. In fact, this is also a multivariate saddle point as the proof of the
following theorem shows.

Recall that we always assume that ay ¢ = 0, which implies that F'(z1, ..., 2x) >
1 for all positive real numbers zq,..., zx.

THEOREM 3.2. — Suppose that E is a compact subset of 2. Then uni-
formly for all integer vectors m = (my, ..., mg_1) € Z? with

mo mg—1
sy ek
(logqN logqN>

and as N — oo we have

(3.5)
H(El,...,gK,IOg N) 1 N ~— _
cardVim(N) = = Biyoo ER) BT BT B
(V) = o e T Grneees 2050 5 P
1
1
<(1+0(w))
where
~ mo mg—1
= 1<k<K
Zk 2k (10gq Na 9 Iqu N) ( )
and

~ 2 3 ot 3 ti
A — det 0%log F(Z1e™,. .., Zget™)
Ot 0t

tl‘°v~¢K‘°> 1<, <K

Proof. — Our starting point is the representation (3.1), where we will
use the circles of integration

Vi = {2k : |2k| = 2k} (I1<k<K).

ANNALES DE L’INSTITUT FOURIER
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Due to the upper bound (2.4) we thus get an upper bound for those parts
of the integral where | arg(zy)| > € (for some k) of the form

C- F(él, .. .,ZK)(l_n)IquN.

Hence, these parts of the integral can be neglected.

For the remaining parts we use standard saddle point approximation on
powers of functions (see [8]). Note that (Z1,...,2k) is the saddle point of
the function

—m

)logq Nzl—ml L. ZK

(z1,-.-,2K) — F(z1,...,2K
K

= exp <10gqN log (F(z1,...,2K)) — ka logzk> .
k=1

Hence, we directly obtain (3.5). O

Remark 3.3. — Theorem 3.2 has a slight extension. We also have
(3.6)

H(El,...,éK,IquN)

(2mlog, N)K/2A1/2

- (1 v (loglzv)>

Ze =2k (M-, NK) (1<k<K)
and my — ng log, N = O(1). This means that we can vary my, a little bit

without changing the saddle points Zj, that only depends on n1,...,nxk.
This property will be frequently used in the sequel.

~—Mmg

cardVip(N) = V3 )8 N ZrmL

(21,... z

where

Remark 3.4. — If we do not use the saddle point (21, ..., 2Zx) but any
point ((1,...,Cx) of positive real numbers we get an upper bound of the
form
(3.7)

H(Clv"'a(K;lquN) ) N o B
< F(¢,. .., 84 mi, L DMK
(2mlog, N)K/2A1/2 (G (k) G §%

(o (),

2 tq i
A = det 0 logF(Cle ,...7<K6K)
ot:0t,

cardVim (V)

with
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14 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

This follows from the fact that the absolute value of F({ye®, ... (xetx)
can be estimated by

(3.8)
. > 1 K K
PG )| € PGt - 3 2utits +0 (L) |
i,j= =
where
A = 8210gF(C16t17"'7CK6tK)
v 8151-815]- t1=0,...,t x =0

Of course, the constant implied by the term O(1/log N) depends (contin-
uously) on (1, ...,(k.
The case 71 = -+ = ng = 0 is now easy to deal with. The corresponding

asympototic formula for the numbers card{n € N : n < N} is an immediate
corollary of the above remark.

COROLLARY 3.5. — Suppose that n; = --- =ng =0 and let p1, ..., uK
be given (fixed) integers. Then (0,...,0) € Q and we have

card{n € N :n < N} = card{n < N : Li(|n|o, ..., |nlq—1) = pr, 1 <k < K}

H(z,..., 2k, log, N) oz N —— _ 1
- F(a,... 2) N zmm s (140
(27T10gq N)K/2A1/2 (21; aZK) 21 2K + IOgN )

where Zj, = z(0,...,0) > 0 satisfy
q—1 K
a [[z =0, (1<k<K).
=0 =1

The next step is a little bit more involved. Suppose that there exist k
with 7 > 0 and consider the set

S = U {q(m*’“c)/”’“ cm € Z,(m — pg)/ne > 0}
k:nip#0
that is the union of geometric sequences.
Let s < s1 < --- be a an ordered version of the elements of S =
{s0,51,...}. Observe that if n > 0 is an integer with s; < n < s;41 then
for all k with 7, > 0 there exists m; € Z with

Mg —HE m]-.’kﬁ»l—uk

g ™ <n<qg

For those k with n = 0 we set m;; = . If fact, this means that for all
ke{l,2,...,K}and n € {s;,s; +1,...,sj41 — 1} we have

[ log, n] + pug = My g
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WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS 15

Let m; = (mj1,...,m; k) denote the multiindex that collects these m; .
More precisely this shows that

card{n € N': s; <n < s;y1} = cardVi, (s511) — cardVim, (s5).
Thus, we have proved the following lemma.

LEMMA 3.6. — Assume that there exists k with n, > 0 and suppose
that N is a positive integer with N = [s;] for some s; € S. Then we have

card{n e N :n < N} = Z (cardVim, (sj+1) — cardVim, (s;)) -
j<J

Proof of Theorem 1.6

Lemma 3.6 can be used to determine the asymptotic order of magnitude
of the numbers card{n € N : n < N}. We will actually prove that there
are two positive constants C', Cy with

ol (F(zl,...,zK

(log, N2 \ "] 2

) log, N
) Scard{n e N:n < N}
..ZK

02 (F(Elw'ng))logqN

< = =
(log, N)F72 \ 2 2%

where
gkizk(nl,...,n[() (lgkgK)
Thus, v from Theorem 1.6 is explicitly given by
g (i)
Proof. — If ;1 = ... = ng = 0 then this estimate follows from Corol-
lary 3.5.
If there is k with 7 > 0 then by Lemma 3.6 and (3.6) we get the upper
bound:

card{fn e N :n < N} < Z card (Vim, (sj41))
jisj_1<N

< Z Z card (V([(m*llk)m/ﬁk]Jerhgng(q(m_#k)/nk)l

k>0 m<ny log, N+pk

1 F(z,...,2 (i)
<> 5 m (el
m Zl ...ZK

k>0 m<ny logy N+pug

- 1 F(z,...,55)\ %"
(1qu N)K/2 5{71 . EWKK ’

SUBMITTED ARTICLE : DRMOTA-MAUDUIT-AIF. TEX



16 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

On the other hand we have

card{n € N :n < N} > card (Vim, (sj41)) — card (Vi (s;))
+ card (Vin,., (s542)) — card (Vi (5j41))

for every j with s;12 < IN. Let ko be chosen such that 7y, is largest. By
obvious reasoning there exists a constant C' such that s; = q(m—tno) kg
sj11 = qUtImrro)/ Mk and s; > N/C. Further we have mj; = [(m —
Lko )M/ Mo + 111 Hence we can use the saddle point Z = zk (01, ..., 1K)
(1 € k < K) and obtain by (3.6):

card(Vim, (sj41)) — card (ij (sj))

:H('glv"'véK,Iqustrl)F(21a~'~72K)logqu+1 <1+O< 1 ))

(27 log, s;11)"/2A1/2 e 2N log IV
,H(gl,...,gKvlogqu)F(glv""gK)logqu 1+0 !
orloe. s:)EK/2A1/2 EM - ERE log N
gq J ! K
> 1 F(21a72K) IquN
(1qu N)K/2 27171 .. .277KK

5 )logq sj+1—logg s;

X (H(Zh...,ZK,IquSjJrl)F(él,...,ZK

—H(il,---ngJquSj) +O(10;N)>.

Similarly we get

card(Vin,,, (5j42)) — card(Vin,,, (5j41))

. 1 F(z,...,55)\ %"
(logq N)K/2 5171 R g?{K
% (H(gla ey gKv 1qu Sj"r?) F (217 L) ZK)Iqu si+2 7108, 851

- - 1
—H(z,...,%K,log, sj41) + O(logN))'
Since card(Vim, (sj41)) — card(Vm, (s;)) = 0 and card(Vm,_, (sj12))—
card(Vim,,, (sj41)) = 0, it follows that

H(él, ey ZK,Iqu Sj+2) F (21, A ,ZK)IOg‘I sjta—logg sj41 _ H(Zl, ey ZK,lqu Sj)
C’
>
~ logN
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WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS 17

for some constant C’ > 0. Hence we get

card{fn e N:n < N} >

1 (F(él,...,ZK))logqN

(log, N)&/2 \ 21" .- 23K

“ ((F (1., 2x) ™0 — 1) +0 (loglN)>

. 1 F (... 5k)\ &Y
(logq N)K/Q gfl .. .g?(K ’
This completes the proof of the Theorem 1.6. g

4. Uniform Distribution Modulo 1 of the Sequence (an),cy

As we remark at the end of section 1 proving Theorem 1.7 is equivalent
to prove that for any irrational o we have

W= Z e(an) =o(card{n e N :n < N}).

neN ,n<N
For this purpose we introduce the function
U(zo, ... Tg—15t0,- .. tq—1) = xoe(to) + - - + Tg_1€6(tg—1)-
We will also use the short hand notation U(x,t).
LEMMA 4.1. — Suppose that xg,...,xq—1 are positive real numbers

Then there exists a constant ¢ > 0 that depends continuously on x =
(x0,...,2q—1) such that for all real vectors t = (to,...,tq—1) and to =

(to,05-- - toq-1)
|U(x,t)U(x,t +t0)| < U(x,0)*exp | —c Z lto.: — to il |
0<i<j<q

where ||z|| = mingez |x — k| denotes the distance to the nearest integer.

SUBMITTED ARTICLE : DRMOTA-MAUDUIT-AIF. TEX



18 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

Proof. — We first consider |U(x, t)|?. By using the inequality |sin(rt)| >
2||t[| we obtain
|U(x,t)|? = U(x, t)U(x, —t)
—1
xf +2 Z xix; cos(2m(t; — tj))

Q

7=0 0<i<j<q
=U(x,0)% -4 Z wirysin(m(t; —t5))?
0<i<j<q
16 ,
<U(x,0)* - - > gt —t]
0<i<j<q

< U(x,0)%exp | —c1 Z 1t — 5112 |

0<i<j<q
where
16 O<z<1§l<qx i
AT U(x,0)?

is a positive constant depending continuously on x. Since ||t||* + ||t +¢||* >
[|'||? for any real numbers ¢ and ¢’ it immediately follows that

|U(x,t)U(x,t + to)]

C
< U(x,0)%exp _51 > (It =t + It — t5 + toq — to]I%)

0<i<j<q

C1
< U(x,0)% exp v > o —to,ll?

0<i<j<q

This proves the lemma for ¢ = ¢; /4. |

Next we set
U(21,y .y 2K 815 -5 8K 8) 1=

K K K K

(H lek o H zgk’“_l; Z ak,05k, Zak’lsk +5,..., Zak,q,lsk + (¢ — 1)3) ,
that is, we substitute z, = Hk 0% a" “and t, = Zf:o agesk +0s (1 <<
K).

Note that

(4.1) Ul(z1,. .. 2551, .- ,8K;0) = F(z1e(s1), ..., zre(s5K)).

Furthermore, we have the following upper bound.
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LEMMA 4.2. — Suppose that xg, ..., xq—1 are positive real numbers and
to,...,tq—1 and « are real numbers. Then there exists a constant C3 > 0
(that depends continuously on o, ..., Zq—1) With

|SN(I()€”15 v axq—leitq71 ) eia)|

< C5 Z HU(xo,...,xq_l;to,tl+oij,...,tq_1+(q71)aqj) .
KglogqN j<t

Consequently, we have for positive real numbers z1, ..., zx and real num-
bers s1,...,sKk and
| Py (216", ..., 2z 5 ')

< C5 Z HU(zl,...,zK;sl,...,sK;aqj).

t<log, N |j<t

Proof. — The estimate for Sy follows immediately from the represen-
tations given in Lemma 2.1. The upper bound for Py is just a rewritten
version of the upper bound for Sy. O

This estimate shows that if we are interested in upper bounds for

Wm(N) = Z e(an)

n€EVm(N)
1 1
_ / . ‘/PN(Zl@iSl, . -,ZKeiSK,eia) (Zlei51)fm1 L. (ZKeisK)me ds - ~~dSK,
0 0

then it is sufficient to get proper upper bounds for integrals of the form

1 1
(4.2) / / H|U(zl,...,zK;sl,...,sK;an)’dsl--~dsK.
0 0

J<v
Following this idea we prove upper bounds for (4.2) in Lemma 4.3 and 4.5

which will lead to upper bounds for Wy, (N) in Lemma 4.6.
We have the following estimates.

LEMMA 4.3. — Suppose that z1, ..., zx are positive real numbers. Then
there exists a constant Cy > 0 (that depends continuously on zi,..., zk)
such that for all integers v > 1 and all real numbers «

1 1
_ Cy
// |U(zl,...,zK;sl,...,sK;a)rdsl---dsKng(zl,...,zK)”.
0 0
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20 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

Proof. — Observe that Lemma 4.1 also implies that

U, t)| SUx,0)exp [ —c > [t — 1]

0<i<j<q
Hence, we also get
U (21,55 2K 815 - - -5 8K Q)]
X 2
<U(z1,---,2K;0,...,0;0)exp [ —¢ Z Z(a’” —ag,j)sk+ (i — j)o
0<i<j<q llk=1

By the linear independence assumption on the forms L, and by Defi-
nition 1.1.(ii) there exist jo < j1 < -+- < ji such the matrix C =
(ak,j, — Qk jo ) 1<k o<k is regular and, thus, has determinant det C' = d # 0.
Further, there exist d; with

K

> (akj, — arjo)dk = (e —Go)a (1 <L K).
k=1

Hence, there exit integers d;, with

K
d(s; +6;) Zdﬂ (Z k,jp — Ak,jo ) (Sk + Jk)> .
k=1

Hence, for all j we have

K

Z k,j, = k,jo ) (Sk + Ok)
k=

ld(s; +8;)II* < Z

2

< >

K
E Ak, — agj)sk + (1 — j)a
0<z<j<q k=1

Consequently, there exists a constant ¢’ > 0 with

|U (21, 253 815+ -5 5K Q)|

K
T,y 230, 0;0) exp <c’2 ld(sx + (W)

k=1

K
F(z1,...,2) exp (—C/Z ld(sx + 5k)||2> ;

k=1
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so that

1 1
/ / |U(Zl7...,ZK5817...,SK;Q)‘Ddsl...dSK
0 0

1 1 K
<F(217~--7Zk)y/ / exp (c/u2|d(sk+5k)||2> dsy -+ -dsk
0 0 Pt

1 K
’ 2
< F(z1,..0,21)" (/ e—cvlids| ds)
0
Cy

S mF(Zl, ey Zk)y.
This completes the proof of the lemma. O
Remark 4.4. — Alternatively we can prove Lemma 4.3 by using prop-

erty (4.1) and previous estimates for F'. Namely, by using (3.8) for |s;| < ¢
(where € > 0 is chosen sufficiently small) and the property that

|F(z1e(51), ..., zve(sk))| < F(z1,...,25) "

for some n > 0 if there is some j with |s;| > € (compare with (2.4)) the
upper bound follows.

The next lemma is crucial for proving upper bound on Weyl sums.

LEMMA 4.5. — Suppose that z1, ..., zx are positive real numbers. Then
there exists a constant Cs > 0 (that depends continuously on z1,...,2K)
such that for all integers v > 1 and all real number «

1 1
/ / H|U(Zla~'~vZK;Sl,-..,SK;an)|dsl...dSK
0 0

J<v

Cs c 112
< mF(Zh .oy 2K)V exp ~1 Z lla(g —1)¢’ ||
Jj<v
Proof. — For simplicity we assume that v is a multiple of 4. The other
cases can be handled in the same way.
We split the product of the integrand into two part:

H |U(z1, e 2K ST .,SK;aqj)U(zl,...,zK;sl,...7sK;aqj+1)|
j<v,7=0 mod 4

X H |U(z1, ... 2k 81, - - - s aq?)|
Jj<v,j=2,3 mod 4
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22 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

By applying Lemma 4.1 with t9, = ¢(¢ — 1)¢’ o we get

H |ﬁ(213"'32K;513" y SK; g )U('Zlv"'7ZK;517"'75K;aqj+1)|
j<v,j=0 mod 4

< F(z1,...,25)" % exp | —c Z Z (i — ) (g — D¢’ a?

Jj<v,j=0 mod 4 0<i<j<q

< F(z1,...,25)" % exp | —c Z (g —1)¢"a?

j<v,j=0 mod 4
Furthermore, by applying the inequality
m ... m
P O e Rl (01

‘/Ul... m|\ m 5

we obtain (by applying Lemma 4.3):

/ / H |U(Zl7"'7ZK;51,...,SK;O[qj)|dsl...dsK

Jj<v,j=2,3 mod 4

1
<1/7/2 Z / /|U21,.. JZK; 81, sK,aq)| /2d51~~d5K

j<v,j=2,3 mod 4

1
< ViF(zl, .. .,ZK)V/2.

K/2
Hence,
/ /H‘Uzl,.. V2K STy ..oy SK; ) |d31
I<v
<S5 Pl k) e | —e la(a - e’ |
vK/

j<v,j=0 mod 4

Similarly we can deal with the other residue classes modulo 4. Combining
these 4 estimates finally proves the lemma. O

We set )
v) =72 llala=1d'|”
j<v
For irrational « it is clear that E(a,v) — oo as v — oo (compare with
[12]).

Next we prove an upper bound for

Wm(N) = Z e(an).

nEVm (N)
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LEMMA 4.6. — Suppose that my = [y log, N] + px. Then, there ex-
ists a constants Cg > 0 and Cy; > 0 (that depends on 7y,...,nKx and on
U1, -, k) such that as N — oo

[Win(N)| < C - card (Vi (N)) - (e—cE(a,[logq N1/2) 4 o~Crlog, N) .

Proof. — We first fix positive numbers z1, ..., zx. Recall that F'(z1,...,2x) >
1. Hence, by Lemma 4.2 and Lemma 4.5 we have

11
= / . / Py(z1€™1, ... zcetK 1) (21€11) 7™ L (2 €K T dsy - dsg
0o 0
11
< / . / |Pn(z1€71, ..., zet5 ™)) 2y "z dsy - ds i
0 0

11
< Z /---/H|U(21,...,zK;sl,...,sK;aqj)f dsy---dsg

t<log, N{ ) i<t

1 —-m —-m
< Y Pl ) 2 exp (—eB((g — D)o )
N

(<log,
1 S -
<<WF(217"'?ZK)qu Z1 1-..ZK K
- exp (*CE((q —1)a, [log, N]/Q))
! lio0 N _—m i
+WF(21,...7ZK)2 og, 2] 1 2 ®
1 T -
< WF(Zlv"wZK)Og’I 2™
. (e—cE(a,[logq N1/2) 4 o=Crlog, N) 7
where C7 > 0 depends on z1,...,2x. Now, if we choose z, = 2, =
zk(M,...,nKx) we, thus, obtain the proposed estimate. 0
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24 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT
Proof of Theorem 1.7

We are now ready to prove the final step of Theorem 1.7, i.e., that for
all irrational numbers o we have, as N — oo,

Z e(an) = o(card{n € N': n < N}).

neN ,n<N
Proof. — First assume that n; = --- = nxg = 0. Here we have with
= (M17"'7MK)

W = Z e(an) = W(N)
neN ,n<N
and we can directly apply Lemma 4.6.
Now suppose that there exists k with n; > 0. With the same reasoning
as in Lemma 3.6 we have (if N = [s] for some s; € 5)

W = Z e(an)

neN ,n<N
= Z m; SJ+1 ij (Sj))
jed

and consequently
W1 <D (W, (s500)] + [Win, (55)])
j<J
Now, with help of Lemma 4.6 we get the upper bound
Z |ij (SjJrl)‘ < Z Z ‘W([(m*#k)w/m]vLuehgegK(q(m_uk)/nk)

i<J k>0 m<ny log, N+pk

1 [(F(3,...,5)\ ™ He)/m
< Z Z mK/2< 2{11._.2}7(;(

k>0 m<ng log, N+pk

x (echm,(m—ﬂk)/(znk)) i efcvm/mc)

=0 1 F(EhagK) o8a N
(logq N)K/2 5171 .. g?{K

=o(card{n e N : n < N}).

Similarly we can estimate the second sum »;_; W, (s;). This proves the
lemma if N = [s;] for some s; € S. If N is not of that form we just have
to add

WmJ (N) - WmJ (SJ)
which can be handled with help of Lemma 4.6. ]
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5. Generalizations
5.1. Missing digits

A first generalization of Theorem 1.7 is to assume that some digits D C
{0,1...,¢ — 1} do not appear, that is, we additionally assume that

(5.1) Inle =0 for¢eD

(compare also with [19]). Formally this condition could be included into

(1.1) without any change of notation. However, then there is no positive

solution of the corresponding system of equations Ly (xzo,...,Tq—1) = M

(1 £ k < K) since (5.1) forces xp = 0 for all £ € D. Nevertheless, we can

work with in the missing-digit-case almost in the same way as above.
First, it is clear that the generating function

SR(@)sgpw) = 3 [[ 2w
n<N j¢D

is just obtained by using Sy(z1,...,zn,y) and setting z, = 0 for £ €
D. In particular, we directly use Lemma 2.1 and, hence, all subsequent
considerations directly transfer.

After all we get precisely the same as Theorem 1.7. The only difference is
that we have to consider linear forms in the remaining variables x;, j & D.
More precisely we have to assume that the system £P = (LkD) k=1, K

LD = Z Ak 0Ty
£¢D
is complete (compare with Definition 1.1) and that the system

Zaijg:’l]k kil,...,K
L¢D

Zl‘gil

(gD

has a positive solution. Then the sequence (an), e is uniformly distributed
modulo 1, where N is the set of positive integers with |n|; = 0 for j € D
and

> ardnle = [pplogyn] + e, k=1,... K.
gD
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26 MICHAEL DRMOTA AND CHRISTIAN MAUDUIT
5.2. Non-integer coefficients

The restriction that the coefficients aj ¢ of the linear forms L;, are inte-
gers was natural in the context of Theorem 1.7. Nevertheless we can also
consider general linear forms

Lk(xo,.-.,%q):zak,ﬂe (1<k<K)

and fix intervals Iy = [a1,b1],...,Ix = [ak,bk] contained in the positive
real line. A corresponding set N can be then defined by the set of non-
negative integers n with

Li(Inlos---,[nlg—1) —mklogyn € I, (1 <k < K),

where 71, ...,nK are given real numbers.
Instead of Cauchy’s formula we can then use the inverse Laplace trans-
form. For example, if we set (similarly to the above)

V(N) ={n < N : Ly(|nlo, . .., [n|g—1) — mi € Ii},

where m = (mq,...,mg) is any vector of real numbers, then we have for
all real numbers sg 1,. .., S0,k
sp,1—111 so,k —iTK
E y" = o lim <o+ lim
eV (N) 27T’L) Ty —o0 s0,1—4Ty Tk —o00 so.x —iTx
—(lkgk _ e—bksk

X Pn(e®t, ... e°K y)e  Ms1T T TMKSK H —ds1 - dsSg.

In particular, we can use so = log Z, where Z; = zx(m1/log, N, ..., mg/log, N)

are the saddle points from above. Then these integrals can be asymptoti-
cally evaluated by a usual saddle point approximation, in particular if y = 1
and also if y = e(a).

Of course, there are some technical difficulties that might occur. First
note that the above integrals are not absolutely convergent. This is due to
the factor 1/s; of the Laplace transform

b e~ akSk _ o—bksk
e_sx d.’I} = -
ag Sk

As usual, this can be handled by smoothing the characteristic functions of
the itervals Iy, = [ag, bx].

Second, if there are rational relations between the coefficients of the linear
forms Lj then we have to deal with infinitely many saddle points on the
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lines R(sy) = so.x. For example, if the coefficients ay » and my, are integers
then

]3]\’(651—1-27‘171'1’7 el esK-l-QTKﬂ'i7 y)e—m1(sl +2r17i)—-—mi (SK+2rkmi)
= Py (e, ..., eK y)e M T TIMKSK
for all integers r1, ..., 7, . However, it is possible to deal with all these kinds
) ) ) p

of problems. We again observe that the sequence (an),ecn is uniformly
distributed modulo 1.
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