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Abstract

We derive asymptotic approximations to the correlation coefficients of two level sizes in random
recursive trees and binary search trees, which undergo sharp sign-changes when one level is fixed and
the other one is varying. An asymptotic estimate for the expected width is also derived.

1 Introduction

This paper is a sequel to Drmota and Hwang (2004) and Fuchs et al. (2004)1 in which we addressed
the limit distributions of profiles (number of nodes at the levels) in random recursive trees and binary
search trees. In addition to the many intriguing phenomena unveiled there, we show in this paper that the
correlation coefficients of two level sizes in both classes of trees exhibit sharp sign-changes. The method
of proof for deriving the uniform estimates for covarianceswill be useful in obtaining asymptotics of the
expected widths for which only almost-sure results but no moment estimates were previously known.

Random recursive trees. Recursive trees ofn nodes are non-plane, rooted, labelled trees with labels
{1, . . . , n} (at nodes) such that the labels along any path from the root form a strictly increasing sequence.
By random recursive trees, we assume that all recursive treesof n nodes are equally likely. An alternative
way of constructing a random recursive tree ofn nodes is as follows. We start from a single node with
label 1; then at thei-th insertion step, the new labeli chooses any of the previousi − 1 nodes equally
likely to be its parent (and link them by an edge), and the sameprocedure continues until the tree contains
n nodes. This procedure also implies that there are(n − 1)! such trees.

Recursive trees (following Meir and Moon, 1974) also appeared in other fields under different names:
“concave node-weighted trees” in Tapia and Myers (1967), “growing trees” in Na and Rappoport (1970),

1Partially supported by a Research Award of the Alexander vonHumboldt Foundation and by National Science Council
under the GrantNSC-92-2118-M-001-019.

1This paper will be referred to as FHN throughout this paper due to frequent reference.
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“pyramid scheme” in Gastwirth (1977), “heap-ordered trees” in Grossman and Larson (1989). They have
been introduced as simple growing models for several real-life networks like social systems (Na and
Rapoport, 1970), sales-distribution networks (Moon, 1974), and the Internet; see FHN for more references.
Their simple tree representations also found applicationsin many linear tree algorithms; see Mitchell et al.
(1979).

Profile of random recursive trees. We consider the number of nodes, denoted byYn,k, at distancek
from the root in a random recursive tree ofn nodes. Many properties ofYn,k are known. We briefly
summarize the interesting phenomena exhibited byYn,k as follows; see Drmota and Hwang (2004) and
FHN for more information.

– For large, fixedn, the mean ofYn,k is asymptotically unimodal ink, but the variance is asymptotically
bimodal.

– The normalized random variablesYn,k/E(Yn,k) converges in distributionto some limit lawY (α) when
k ≥ 1 andα := limn→∞ k/ log n ∈ [0, e).

– Convergence of all momentsof Yn,k/E(Yn,k) to Y (α) holds only forα ∈ [0, 1] but not forα outside the
unit interval.

– If α = 0 (andk ≥ 1), then the sequence of the centered and normalized random variables(Yn,k −
E(Yn,k))/

√

V(Yn,k) converges in distribution to the standard normal law.

– If α = 1 and|k − log n| → ∞, then(Yn,k − E(Yn,k))/
√

V(Yn,k) converges in distribution (and with all
moments) toY ′(1), the same limit law as the total path length

∑

k kYn,k.

– If k = log n + O(1), then(Yn,k − E(Yn,k))/
√

V(Yn,k) does not converge to a fixed limit law.

Covariance ofYn,k and Yn,h. The results derived in our previous papers dealt with stochastic behaviors
of a fixed level size. We examine in this paper the asymptoticsof the correlation coefficient of two level
sizes, which turns out to undergo a sharp sign-change atα = 1 (when the other level is fixed and not near
log n).

To state our results, we first introduce some notation. Define

f(u, v) :=
1

Γ(u + v)(u + v − uv)
− 1

Γ(u + 1)Γ(v + 1)
, (1)

whereΓ is the Gamma function and

p(s, t) := c2st + c1(s + t) + c0, (2)

with the coefficients given by






c2 := f ′′
uv(1, 1) = 2 − π2

6
,

c1 := −1
2
f ′′′

uv2(1, 1) = c2(1 − γ) − ζ(3) + 1,

c0 := 1
4
f

(4)

u2v2(1, 1) = c2 (1 + 2γ − γ2) + 2c1(1 − γ) − π4

360
.

(3)

Also define
{

c3 := f ′
y(α, 1) = −ψ(α+1)+γ−α

Γ(α+1)
,

c4 := −1
2
f ′′

y2(α, 1) = − (ψ(α+1)+1−α)2+(α−1)2−(1−γ)2−ψ′(α+1)−1+π2/6
2Γ(α+1)

.
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Let k, h ≥ 1, αn,k := k/ log n, βn,h := h/ log n andα andβ be their limit ratio, respectively, if exists
(whenn tends to infinity).

Theorem 1. If α, β ∈ [0, 2), then the correlation coefficient ofYn,k andYn,h satisfies

ρ(Yn,k, Yn,h) ∼























































√

(2k − 1)(2h − 1)

k + h − 1
, if α = β = 0;

0, if α = 0, β 6= 0;
f(α, β)

√

f(α, α)f(β, β)
, if α, β 6= 1;

c3tn,h + c4
√

f(α, α)p(tn,h, tn,h)
, if α 6= 1, β = 1;

p(sn,k, tn,h)
√

p(sn,k, sn,k)p(tn,h, tn,h)
, if α = β = 1,

(4)

wheresn,k := k − log n andtn,h := h − log n.

By symmetry, all cases whenα, β ∈ [0, 2) are covered. In particular, the result here also implies the
estimates we derived forV(Yn,k) in previous papers. A comparison of the different approaches used so far
for V(Yn,k) is given in the last section.

Corollaries and intuitive interpretations.

Corollary 1. The correlation coefficient ofYn,k andYn,h is asymptotic to zero ifk = o(log n) andk = o(h),
where0 ≤ β < 2.

Thus the sizes at the first few levels (k = o(log n)) areasymptotically independentof those at levels
that are≫ k.

Corollary 2. The correlation coefficient ofYn,k andYn,h is asymptotic to1 if (i) α = β 6= 1 (0 ≤ α, β <
2); or (ii) bothsn,k, tn,h → ∞ (not necessarily at the same rate) whenα = β = 1.

The first case is intuitively clear, but the second case less transparent.

Corollary 3. The correlation coefficientρ(Yn,k, Yn,h) exhibits asymptotically a sharp sign-change atβ = 1
whenα ∈ (0, 2) is fixed andβ is varying from0 to 2.

A few plots of the asymptotic correlation coefficient are given in Figures1, 2, 3, highlighting in partic-
ular the discontinuous sign-change at1.

Intuitively, the sizes of neighboring levels are expected to have positive correlation. The sharp sign-
change at1 is roughly because of the property thatalmost all nodes in a random tree lie at the levels
k = log n + O(

√
log n), each having aboutn/

√
log n nodes, (by the estimate

E(Yn,k) ∼
(log n)k

k!Γ(αn,k + 1)
(1 ≤ k = O(log n)),

and the bimodal behavior of the variance near these levels; see Drmota and Hwang, 2004). This implies
that if one levelk with, sayk/ log n < 1 has more nodes, then(i) levels nearlog n are likely to have more
nodes, and(ii) levels withh/ log n > 1 have fewer nodes available; this also roughly explains whyYn,k

andYn,h are negatively correlated (see Figure1).
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Figure 1:Asymptotic correlation coefficient of the number of nodes attwo levels. The discontinuity of sign
at 1 is visible from both figures. Hereα = γ/2 ≈ 0.28 (left) andα =

√
π ≈ 1.77, andβ ∈ (0, 2).
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Figure 2: 3-dimensional renderings of the limiting correlation coefficients: f(α, β)/
√

f(α, α)f(β, β)

(left) andp(s, t)/
√

p(s, s)p(t, t) (right).

Our method of proof starts from the relation

∑

k,h

E(Yn,kYn,h)u
kvh =

n

u + v − uv

((

n + u + v − 1

n

)

−
(

n + uv − 1

n

))

; (5)

see below for a self-contained proof or van der Hofstad et al.(2002). Then (4) is derived by a uniform
estimate for the function on the right-hand side in theu, v plane (by applying the singularity analysis of
Flajolet and Odlyzko, 1990) and then by extending the saddlepoint method used in Hwang (1995).

Width. Our analytic approach is also useful in deriving a uniform estimate forE ((Yn,k − Yn,h)
2), which

turns out to be the crucial step for proving an asymptotic approximation to the expected width, defined to
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Figure 3:Asymptotic correlation coefficient whenβ = 1: α = 0.1 and t varies (left) andt = γ/2 andα
varies (right).

beWn := maxk Yn,k.

Theorem 2. The widthWn satisfies
Wn

n/
√

2π log n
→ 1, (6)

almost surely, and

E(Wn) =
n√

2π log n

(

1 + O
(

(log n)−1/4 log log n
))

, (7)

for anyε > 0.

The almost sure convergence is proved by modifying the martingale arguments used in Chauvin et
al. (2001) for random binary search trees. Such arguments, based on considering the random polynomial
∑

k Yn,kz
k, also provide a natural interpretation of the result (see FHN) that the sequence of random vari-

ables(Yn,k −E(Yn,k))/
√

V(Yn,k) converges to the same limit law as the total path lengthTn :=
∑

k kXn,k

whenk ∼ log n and|k − log n| → ∞; see Section3 for more details.

Binary search trees. Binary search trees (abbreviated as BSTs) are rooted, labelled binary trees with
thesearch property: all labels in the left (right) subtree of any nodex are smaller (larger) than the label
of x. Given a sequence of numbers, one can construct the BST by placing the first element at the root,
and then by directing successively all smaller (larger) numbers to the left (right) branch. Both subtrees, if
nonempty, are recursively constructed by the same procedure and are themselves BSTs; see Figure4.

BSTs were first introduced in the early 1960’s by Windley (1960), Booth and Colin (1960), Hibbard
(1962), and are one of the simplest prototypical data structures; see Knuth (1997), Mahmoud (1992).

Random binary search trees. Assume that alln! permutations ofn elements are equally likely. Given
a random permutation, we call the BST constructed from the permutationa random BST. We distinguish
between two types of nodes:internal nodesare nodes holding labels andexternal nodesare virtual nodes
added so that all internal nodes are of outdegree two; see Figure4.
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Figure 4:The binary search tree constructed from the sequence{4, 3, 1, 6, 5, 2}. Internal nodes are marked
by circles and external nodes by squares.

Denote byXn,k (In,k) the number of external (internal) nodes at levelk in a random BST ofn internal
nodes, the root being at level zero. Distributional properties of both types of profileXn,k andIn,k are
similar to those ofYn,k; see FHN for details.

The interesting property here for the covariance of two level sizes is that while the limiting correlation
coefficients ofIn,k andIn,h exhibit a sharp sign-change atα = 2, the limiting correlation coefficients of
Xn,k andXn,h exhibit two sharp sign-changes atα = 1 andα = 2. An intuitive interpretation will be
given in Section4.

Organization of the paper. We prove in the next section Theorem1 on the asymptotic estimates of the
correlation coefficients of two level sizes in random recursive trees. The width and related quantities are
addressed in Section3. Results for random BSTs are given in Section4 without proof. We then conclude
the paper with a brief comparative discussion of the methodsof proof used to derive asymptotic estimates
for the variances.

2 Correlation of two level sizes

We prove Theorem1 in this section. Note that theL2-convergence ofYn,k/µn,k (see FHN) can also be
applied to prove (4) in the case whenα, β 6∈ {0, 2}, we give here a uniform approach applicable to all
cases.

Recurrence ofYn,k and E(Yn,k). All our results are based on the recurrence relation satisfied byYn,k

Yn,k
D
= Yuniform[1,n−1],k−1 + Y ∗

n−uniform[1,n−1],k (n ≥ 2; k ≥ 1), (8)

with the initial valuesYn,0 = δn,1, the Kronecker symbol, where the random variableuniform[1, n − 1]
takes values{1, . . . , n − 1} with equal probability, andY ∗

n,k is an independent copy ofYn,k; see FHN or
van der Hofstad et al. (2002).
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Let µn,k := E(Xn,k). From (8), it follows that the mean satisfies

µn,k = [uk]

(

n + u − 1

n − 1

)

=
(log n)k

k!Γ(αn,k + 1)

(

1 + O
(

(log n)−1
))

, (9)

where[uk]F (u) denotes the coefficient ofun in the Taylor expansion ofF and theO-term holds uniformly
for 1 ≤ k = O(log n); see Hwang (1995).

Proof of (5). We now prove (5). By (8), we have the recurrence

E(Yn,kYn,h) =
1

n − 1

∑

1≤j<n

(

E(Yj,k−1Yj,h−1) + E(Y ∗
j,kY

∗
j,h)

)

+
1

n − 1

∑

1≤j<n

(µj,k−1µn−j,h + µj,kµn−j,h−1) .

Let Fn(u, v) :=
∑

k,h E(Xn,kXn,h)u
kvh. ThenF1(u, v) = 1 and

Fn(u, v) =
1 + uv

n − 1

∑

1≤j<n

Fj(u, v) +
u + v

n − 1

∑

1≤j<n

(

j + u − 1

j − 1

)(

n − j + v − 1

n − j − 1

)

, (10)

for n ≥ 2. The last sum is equal to

u + v

n − 1
[zn]z2(1 − z)−u−v−2 =

u + v

n − 1

(

n + u + v − 1

n − 2

)

.

The recurrence (10) is then either solved by consideringnFn+1− (n−1)Fn and then iterating the resulting
first-order difference equation or solved by considering the differential equation satisfied by

∑

n Fn+1z
n.

This proves (5).

An asymptotic expansion for the covariance. We now derive an asymptotic expansion forCov(Yn,k, Yn,h).
First, by singularity analysis (see Flajolet and Odlyzko, 1990), we have

n

(

n + w − 1

n

)

= n[zn](1 − z)−w =
nw

Γ(w)

(

1 + O
(

|w|2n−1
))

,

theO-term holding uniformly for finite complexw. Thus, by (5) and (9),

Cov(Yn,k, Yn,h) = Ck,h(n)
(

1 + O
(

n−1
))

+ O

(

δk,h
(log n)k

k!

)

, (11)

uniformly for 1 ≤ k, h ≤ K log n, where

Ck,h(n) := [ukvh]f(u, v)nu+v,

with f defined in (1).
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If α + β 6= 0, we apply the saddle point method used in Hwang (1995) by firstexpandingf as follows

f(u, v) =
∑

ℓ,r≥0

fℓ,r(u − αn,k)
ℓ(v − βn,h)

r,

wherefℓ,r := f
(ℓ+r)

uℓvr (αn,k, βn,h)/(ℓ!r!); and then integrating term by term gives the formal expansion

Ck,h(n) ∼
∑

ℓ,r≥0

fℓ,rΞℓ(n, k)Ξr(n, h), (12)

where

Ξℓ(n, k) := [uk](u − αn,k)
ℓnu

=
(log n)k

k!

∑

0≤j≤ℓ

(

ℓ

j

)

(−αn,k)
ℓ−j k · · · (k − j + 1)

(log n)j
(ℓ ≥ 0).

The first few values ofΞr are as follows.

Ξ0(n, k) = 1, Ξ1(n, k) = 0, Ξ2(n, k) = − k

(log n)2
,

Ξ3(n, k) =
2k

(log n)3
, Ξ4(n, k) =

3k(k − 2)

(log n)4
.

SinceΞr(n, k) equals(log n)−r times a polynomial ink of degree⌊r/2⌋, the double sum on the right-
hand side of (12) can be regrouped and gives an asymptotic expansion whenk = O(log n). The error
analysis is similar to those in Hwang (1995, 1997), and we obtain that (12) holds uniformly for1 ≤ k, h ≤
2 log n − ωn

√
log n, ωn being any sequence tending to infinity. The error term[ukvh]Ck,h(n)O(n−1)

appearing in (11) is handled similarly and is asymptotically negligible.
By the explicit forms of theΞℓ’s, we obtain the expansion

Ck,h(n) =
(log n)k+h

k!h!

{

f0,0 −
1

log n
(f2,0αn,k + f0,2βn,h)

+
1

(log n)2

(

3(f4,0α
2
n,k + f0,4β

2
n,h) + f2,2αn,kβn,h + 2(f3,0αn,k + f0,3βn,h)

)

+ O
(

(log n)−3
)

}

, (13)

which is sufficient for our use.

Special cases. Assume that0 ≤ α, β < 2. If α, β 6∈ {0, 1}, then

f0,0 = f(αn,k, βn,h) → f(α, β) 6= 0,

and we obtain

Cov(Yn,k, Yn,h) ∼ f(α, β)
(log n)k+h

k!h!
,

uniformly for 1 ≤ k, h ≤ 2 log n − ωn

√
log n. This proves Theorem4 whenα, β 6∈ {0, 1}. It also implies

that

V(Xn,k) ∼ f(α, α)
(log n)2k

k!2
(1 ≤ k ≤ 2 log n − ωn

√

log n).
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If α = β = 1, then, by (13) and the following approximations

f0,0 ∼ c2
sn,ktn,h

(log n)2
, f0,2 ∼ −c1

sn,k

log n
, f2,0 ∼ −c1

tn,h

log n
, f2,2 ∼ c0,

wherek = log n + sn,k, h = log n + tn,h and the coefficientscj ’s are defined in (3), we obtain

Cov(Yn,k, Yn,h) ∼
p(sn,k, tn,h)

(log n)2
· (log n)k+h

k!h!
,

wherep is given in (2). This also implies thatV(Xn,k) ∼ p(sn,k, sn,k)(log n)2k−2/k!2.
If α = 0 andβ ∈ (0, 1), then, similarly as above, we have

Cov(Yn,k, Yn,h)

∼















− (log n)k+h−1

(k − 1)!h!Γ(β + 1)
(ψ(β + 1) − 1 + γ) , if β 6= 1;

(log n)k+h−2

(k − 1)!h!Γ(β + 1)

((

1 − π2

6

)

sn,h + 2 − γ − ζ(3) − π2

4
+

π2γ

6

)

, if β = 1,

so thatρ(Yn,k, Yn,h) → 0 in both cases.
The case whenβ = 1 andα 6= 1 is treated similarly.
A change of variablesu 7→ wv is useful for the remaining case whenα = β = 0; then a similar

analysis gives

Cov(Yn,k, Yn,h) ∼
(log n)k+h−1

(k − 1)!(h − 1)!(k + h − 1)
. (14)

Alternatively, we can use the exact expression (see van der Hofstad et al., 2002)

E(Yn,kYn,h) =
∑

0≤j≤k

(

2j + h − k

j + h − k

)

[wj+h+1]

(

n − 1 + w

n − 1

)

,

obtained from expanding the right-hand side of (5), and then proceed similarly as above (the two terms
with indicesj = k − 1, k suffice for obtaining (14)).

Proof of Corollary 3. Whenα, β ∈ (0, 2), α 6= 1, we have, by (4),

lim
β→1

f(α, β)
√

f(α, α)f(β, β)
= sign(1 − β)

ψ(α + 1) − α + γ
√

c2f(α, α) Γ(α + 1)
;

thus the sign-change follows. The case whenα = 1 can also be checked similarly.
The proof of other corollaries to Theorem1 is straightforward and omitted.

3 Profile and width

Profiles of trees are closely related to many other shape parameters. We discuss briefly in this section
the connection between profile and width, starting from deriving an asymptotic estimate for the expected
width, namely from the proof of (7). Then we consider the level polynomialMn(z) :=

∑

k Yn,kz
k, which

will be seen to be a convenient tool for proving (6) and for bridging the limit properties of the profile and
those of the total path length (and other weighted path lengths).

9



The expected width. Since the width is defined byWn = maxk Yn,k, we have, by the estimate (9),

E(Wn) ≥ max
k

E(Yn,k) =
n√

2π log n

(

1 + O
(

(log n)−1/2
))

.

However, it is less clear how to obtain a tight upper bound. The arguments introduced in Chauvin et al.
(2001) can be used to prove the almost sure convergence result (6) (see below for a sketch of proof), but do
not lead to an effective upper bound for the expected width. We introduce a new argument, reducing the
upper bound to estimating the mean and the variance of some differences between level sizes, and show
that the lower bound is indeed tight.

We start with a probabilistic lemma.

Lemma 1. Let Z(t) be a sequence of stochastic processes on the space of continuous functions on[0, 1].
Assume that there exist constantsλ ≥ 0 andθ > 1 such that

P (|Z(t1) − Z(t2)| ≥ δ) = O
(

|t1 − t2|θδ−λ
)

, (15)

uniformly for all t1, t2 ∈ [0, 1]. Then we have

P

(

max
|s−t|≤ε

|Z(s) − Z(t)| ≥ δ

)

= O
(

εθ−1δ−λ
)

. (16)

Proof. We modify the proof of Theorem 12.3 in Billingsley (1968). First, the assumption (15) is exactly
(12.50) from Billingsley (1968) withF (t) = t. It follows that forε > 0 (and1/ε is an integer; compare
with (12.57) there)

∑

j<1/ε

P

(

sup
jε≤s≤(j+1)ε

|Z(s) − Z(jε)| ≥ δ

)

= O
(

εθ−1δ−λ
)

.

Similarly, we obtain

∑

j<1/ε

P

(

sup
jε≤s≤(j+1)ε

|Z(s) − Z((j + 1)ε)| ≥ δ

)

= O
(

εθ−1δ−λ
)

.

Now, suppose that there exists, t ∈ [0, 1] with |s − t| ≤ ε and |Z(s) − Z(t)| ≥ δ. Then there exists
j < 1/ε with max(|s− jε|, |t− jε|) < ε andmax(|Z(s)−Z(jε)|, |Z(t)−Z(jε)|) ≥ δ/2. Consequently

P

(

max
|s−t|≤ε

|Z(s) − Z(t)| ≥ δ

)

≤
∑

j<1/ε

P

(

sup
jε≤s≤(j+1)ε

|Z(s) − Z(jε)| ≥ δ/2

)

+
∑

j<1/ε

P

(

sup
jε≤s≤(j+1)ε

|Z(s) − Z((j + 1)ε)| ≥ δ/2

)

= O
(

εθ−1δ−λ
)

.

This proves (16) for all ε such that1/ε is an integer. However, the general case also follows from the
O-estimate.

Lemma 2. Let∆ := h − k andY n,k := Yn,k − E(Yn,k). Then, uniformly fork, h = log n + o(log n),

E
(

(Y n,k − Y n,h)
2
)

= O
(

n2∆2(log n)−3
)

. (17)

10



Proof.We may apply the results in previous section for the covariance ofYn,k andYn,h in some ranges, but
they do not lead to a uniform estimate in terms of|k − h|2 in the whole range whenα = β = 1.

We give here a self-contained proof of (17). Assume, without loss of generality, thath ≥ k. By (11),
we have

E
(

(Y n,k − Y n,h)
2
)

=
(

[ukvk] − 2[ukvh] + [uhvh]
)

f(u, v)nu+v
(

1 + O(n−1)
)

+ O
(

δk,hn(log n)−1/2
)

.

It suffices to find upper bounds for the dominant term

J :=
(

[ukvk] − 2[ukvh] + [uhvh]
)

f(u, v)nu+v

=
1

(2π)2

∫∫

D

e−ikx−iky
(

1 − 2e−i∆y + e−i∆(x+y)
)

f
(

eix, eiy
)

neix+eiy

dx dy,

whereD := [−π, π]2. Now

1 − 2e−i∆y + e−i∆(x+y) =
(

1 − e−i∆y
)2

+ e−i∆y
(

e−i∆x − 1 + i∆x
)

− e−i∆y
(

e−i∆y − 1 + i∆y
)

+ e−i∆y (i∆y − i∆x)

=: Q1 + Q2 − Q3 + Q4.

Let

Jm :=
1

(2π)2

∫∫

D

Qme−ikx−ikyf
(

eix, eiy
)

neix+eiy

dx dy (m = 1, . . . , 4).

By the elementary inequalities|eiw − 1| ≤ |w| for real w and1 − cos w ≥ c5w
2 for |w| ≤ π, where

c5 := 2/π2, we have

|J1| ≤
n2∆2

(2π)2

∫∫

D

y2
∣

∣f
(

eix, eiy
)∣

∣ n−c5(x2+y2) dx dy.

This, together with the uniform bound
∣

∣f
(

eix, eiy
)∣

∣ = O(|xy|),
for x, y ∈ D, yield

|J1| = O

(

n2∆2

∫∫

D

|x||y|3n−c5(x2+y2) dx dy

)

= O
(

n2∆2(log n)−3
)

.

Similarly, by the inequality|eiw − 1 − iw| ≤ |w|2/2 for realw, we have

|J2|, |J3| = O
(

n2∆2(log n)−3
)

.

For the last integralJ4, we use the expansion

f
(

eix, eiy
)

= c2i
2xy + O (|xy||x + y|) ,

and obtainJ4 = J5 + J6, where

J5 :=
c2∆

(2π)2

∫∫

D

i3(y − x)xye−ikx−iky−i∆yneix+eiy

dx dy,

J6 = O

(

n2|∆|
∫∫

D

|xy|(|x| + |y|)2n−c5(x2+y2) dx dy

)

= O
(

n2|∆|(log n)−3
)

.
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ForJ5, we use the expansion
e−i∆y = 1 + O(|∆||y|),

and the relation
∫∫

D

(y − x)xye−ik(x+y)neix+eiy

dx dy = 0,

(by symmetry), so that

J5 = O

(

n2∆2

∫∫

D

|x||y|2(|x| + |y|)n−c5(x2+y2) dx dy

)

= O
(

n2∆2(log n)−3
)

,

uniformly for k, h = log n + o(log n). This completes the proof of (17).

Lemma 3. Uniformly fork, h = log n + o(log n),

|E(Yn,k − Yn,h)| = O
(

n|∆|(log n)−1
)

; (18)

and uniformly fork = log n + O(1) andh = log n + o((log n)2/3),

|E(Yn,k) − E(Yn,h)| ∼
n√

2π log n

(

1 − e−(k−h)2/(2 log n)
)

. (19)

Proof.Assume that|k − log n| ≤ |h − log n|. By Cauchy’s integral formula

E(Yn,k) − E(Yn,h) =
1

2π

∫ π

−π

e−ikx
(

1 − e−i∆x
) neix

Γ(1 + eix)

(

1 + O(n−1)
)

dx.

In the first case whenk, h = log n+o(log n), we apply the the inequality|1−e−i∆x| ≤ |∆x| and the same
arguments as above, yielding

|E(Yn,k) − E(Yn,h)| = O
(

|∆|n(log n)−1
)

,

uniformly in k, h. This proves (18).
The approximation (19) follows from a straightforward application of the usual saddle-point method.

An upper bound for the expected width. Let k0 = ⌊log n⌋. Take

Λ := ⌊(log n)1/4+ξn⌋ and J :=
⌊

(log n)1/4
⌋

,

whereξn ∈ (0, 1/2) will be specified below. We use the following upper bound

Wn ≤ max
0≤|j|≤J

Yn,k0+jΛ + max
|k−h|≤Λ

|Y n,k − Y n,h|

+ max
|k−h|≤Λ

|E(Yn,k − Yn,h)| +
∑

|k−k0|≥(log n)1/2+ξn

Yn,k

=: W (1)
n + W (2)

n + W (3)
n + W (4)

n .

We show that, when taking expectation, the termYn,k0 in W
(1)
n is dominant and all other terms are asymp-

totically of smaller order thanE(Yn,k0).
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We start fromW
(4)
n . By (9),

E(W (4)
n ) = O





∑

|k−k0|≥(log n)1/2+ξn

(log n)k

k!





= O
(

ne−(log n)2ξn/2(log n)−ξn

)

;

see Hwang (1997). If we choose

ξn :=
log log log n

log log n
,

then
E(W (4)

n ) = o
(

n(log n)−1
)

.

ForW (3)
n , we have, by (18) for k, h = log n + O(JΛ) and by (9) for k, h outside this range,

max
|h−k|≤Λ

|E(Yn,h − Yn,k)| = O
(

nΛ(log n)−1
)

= O
(

n(log n)−3/4+ξn
)

.

We then apply Lemmas1 and2 to prove that

E(W (2)
n ) = O

(

n√
log n

(

Λ

(log n)3/2−ξn

)1/2
)

. (20)

We first defineYn(t), −1 ≤ t ≤ 1, by

Yn(t) = Y n,k0+t(log n)1/2+ξn

(log n)1−ξn

n
,

whent(log n)1/2+ξn is an integer, and by linear interpolation otherwise. By Lemma2, we have

E((Yn(s) − Yn(t))2) = O
(

(s − t)2
)

,

uniformly for s, t ∈ [−1, 1]. By Chebyshev inequality,

P(|Yn(s) − Yn(t)| ≥ w) = O
(

(s − t)2w−2
)

.

Takeηn := Λ(log n)−1/2−ξn . It follows, by Lemma1, that

P

(

max
|s−t|≤ηn

|Yn(s) − Yn(t)| ≥ w

)

= O
(

ηnw
−2

)

,

and, consequently,

E

(

max
|s−t|≤ηn

|Yn(s) − Yn(t)|
)

=

∫ ∞

0

P

(

max
|s−t|≤ηn

|Yn(s) − Yn(t)| ≥ w

)

dw

= O
(

η1/2
n

)

.

This and the definition ofYn(t) imply (20), which can be written as

E(W (2)
n ) = O

(

n(log n)−9/8+2ξn
)

.
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Thus it remains to find an upper bound forW
(1)
n . By Cauchy-Schwarz inequality, we obtain

E(W (1)
n ) ≤ E

∑

|j|≤J

Yn,k0+jΛ · 1
[Yn,k0+jΛ=W

(1)
n ]

≤
∑

|j|≤J

(

E(Y 2
n,k0+jΛ)

)1/2
P(Yn,k0+jΛ = W (1)

n )1/2

≤ n√
2π log n

+ O
(

n(log n)−1
)

+ O





n√
log n

∑

1≤|j|≤J

P(Yn,k0+jΛ = W (1)
n )1/2



 .

Here we used the estimates
(

E(Y 2
n,k0

)
)1/2

=
n√

2π log n
+ O

(

n(log n)−1
)

,

and
(

E(Y 2
n,k)

)1/2
= O(n/

√
log n); see Drmota and Hwang (2004).

SetDj := Yn,k0 − Yn,k0+jΛ for 1 ≤ |j| ≤ J . Then we have

P(Yn,k0+jΛ = W (1)
n ) ≤ P(Dj ≤ 0)

≤ P (|Dj − E(Dj)| ≥ E(Dj))

≤ V(Dj)

(E(Dj))2
,

by Chebyshev inequality.
By Lemma2, we have

V(Dj) = O

(

n2

(log n)3
j2Λ2

)

.

This and (19) imply that

P(Dj ≤ 0)1/2 = O

( |j|Λ
log n

(

1 − e−j2Λ2/(2 log n)
)−1

)

,

for 1 ≤ |j| ≤ J ; and it follows that

∑

1≤|j|≤J

P(Dj ≤ 0)1/2 = O

(

Λ

log n

∫ J

1

x
(

1 − e−x2Λ2/(2 log n)
)−1

dx

)

= O
(

Λ−1(log n)2ξn
)

.

Thus
E(W (1)

n ) ≤ n√
2π log n

+ O
(

n(log n)−3/4+ξn
)

.

Collecting these estimates gives

EWn ≤ n√
2π log n

(

1 + O
(

(log n)−1/4 log log n
))

,

which proves (7).
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A possible refinement of the error term in (7). If we had the estimates

E
(

(Y n,k − Y n,h)
2m

)

= O
(

n2m∆2m(log n)−3m
)

,

for m ≥ 2, then the error termO(log n)−1/4 log log n) in the approximation to the expected width would
be improved toO((log n)−1/2+ε) for someε > 0, which is, up to(log n)ε, expected to be the right-order.
A proof of these moment estimates would be to apply inductionand the approach used in FHN, but the
details would be very messy.

Asymptotics of the level polynomials. The proof of the almost sure convergence (6) follows from the
same martingale arguments introduced in Chauvin et al. (2001). Thus we only sketch a few steps of the
proof here.

We observe first that the normalized random functionM̄n(z) := Mn(z)/E(Mn(z)) (whereMn(z) :=
∑

k Yn,kz
k) is a martingale. Roughly, this reflects the construction that the new-coming key has the same

probability of being attached to any of the existing nodes. Also by (9)

E(Mn(z)) =

(

n − 1 + z

n − 1

)

.

By the martingale convergence theorem (see Hall and Heyde, 1980), M̄n(α) converges almost surely
to a limit M(α) for any finiteα > 0. Then by the recursive definition (8) of Yn,k, we deduce, similar to
contraction method (see FHN), that

M(α)
D
= αUαM(α) + (1 − U)αM(α)∗,

whereM(α)∗
D
= M(α) andM(α),M(α)∗, U are independent. This implies thatM(α)

D
= Y (α) for every

α > 0.
Interestingly, this limit relation also extends to complexvalues ofα.

Lemma 4. For any compact set in{z ∈ C : |z − 1| < 1}, the martingaleM̄n(z) converges almost surely,
uniformly and inL2 to its limit M(z) (which is also an analytic function).

The key step of the proof is to use an explicit expression forE(Mn(z1)Mn(z2)) (see (5)), and to
use Kolmogorov’s criterion, coupling with vector martingale theorems. Finally, one recoversYn,k almost
surely (and uniformly for1 − ε ≤ k/ log n ≤ 1 + ε for someε > 0) via Cauchy’s integral formula

Yn,k =
1

2πi

∮

|z|=αn,k

Mn(z)z−k−1 dz

∼ 1

2πi

∮

|z|=αn,k

M(z) E(Mn(z))z−k−1 dz

∼ M(αn,k)
1

2πi

∮

|z|=αn,k

E(Mn(z))z−k−1 dz

∼ M(α) E(Yn,k).

We omit all technical details. Note that the radiusαn,k := k/ log n in the contour integration is a natural
choice because it is the saddle point of the integrandE(Mn(z))z−k−1. SinceM(z) is almost surely an
analytic function andM(1) = 1, it follows that

Wn = max
k

Yn,k ∼ max
k

E(Yn,k) ∼
n√

2π log n
,

almost surely. This completes the proof of (6).

15



Total path length.

Corollary 4. Let Tn denote the total path length in a random recursive tree ofn nodes. ThenM̄ ′
n(1) is a

martingale and

M̄ ′
n(1) =

Tn − E(Tn)

n

D→ Y ′(1),

almost surely and inL2.

Proof. SinceTn =
∑

k kYn,k, we haveM̄ ′
n(1) = (Tn − E(Tn))/n by the definition ofMn(z). From

Lemma4, it follows that

M̄ ′
n(1) =

1

2πi

∫

|z−1|=δ<1

z−2M̄n(z) dz

→ 1

2πi

∫

|z−1|=δ<1

z−2M(z) dz

= M ′(1) = Y ′(1),

almost surely.
The result is already known; see Mahmoud (1991) and Dobrow and Fill (1999). However, our approach

also gives
M̄ (m)

n (1) → M (m)(1) (m ≥ 1),

almost surely and inL2. In particular, whenm = 2, we have

1

n

∑

k

k(k − 1)(Yn,k − µn,k) −
2

n
E(Tn)(Tn − E(Tn)) → M ′′(1).

Note thatM (m)
n (1) is also a martingale form ≥ 1.

4 Profile of random binary search trees

We give in this section the corresponding results for the profiles of random BSTs. The proofs are similar
to those for random recursive trees and are thus omitted. Recall that Xn,k andIn,k denote the number of
external nodes and internal nodes, respectively, at levelk in a random BST ofn elements.

4.1 External nodes

It is known since Lynch (1965) that

∑

k

E(Xn,k)u
k =

(

n + 2u − 1

n

)

(n ≥ 0);

see also Françon (1977) or Mahmoud (1992).

Lemma 5. For n ≥ 0

∑

k,h

E(Xn,kXn,h)u
kvh =

2uv

2u + 2v − 2uv − 1

(

n + 2u + 2v − 2

n

)

+
2u + 2v − 4uv − 1

2u + 2v − 2uv − 1

(

n + 2uv − 1

n

)

.

16



This simplifies Lemma 4 in Chauvin et al. (2001).
From this lemma, we deduce, by singularity analysis (see Flajolet and Odlyzko, 1990), that

E(Xn,kXn,h) = 2k+h[ukvh]φ(u, v)nu+v−2
(

1 + O
(

n−1
))

+ O

(

δk,h
(2 log n)k

k!n

)

,

uniformly for α, β ∈ [2 −
√

2 + ε, 2 +
√

2 − ε] for anyε > 0, where

φ(u, v) :=
uv

(2u + 2v − uv − 2)Γ(u + v − 1)
− 1

Γ(u)Γ(v)
. (21)

Theorem 3. For α, β ∈ (2 −
√

2, 2 +
√

2), the correlation coefficientρ(Xn,k, Xn,h) is asymptotic to


































φ(α, β)
√

φ(α, α)φ(β, β)
, if α, β 6∈ {1, 2};

φ′
v(α, β)tn,h − 1

2
φ′′

v2(α, β)
√

φ(α, α)p(β, β; tn,h, tn,h)
, if α 6∈ {1, 2}, β ∈ {1, 2};

p(α, β; sn,k, tn,h)
√

p(α, α; sn,k, sn,k)p(β, β; tn,h, tn,h)
, if α, β ∈ {1, 2},

where

p(j, ℓ; s, t) := φ′′
uv(j, ℓ)st −

1

2
(jφ′′′

u2v(j, ℓ)t + ℓφ′′′
uv2(j, ℓ)s) +

jℓ

4
φ

(4)

u2v2(j, ℓ).

Unlike the profile of recursive trees, the limiting correlation coefficients ofρ(Xn,k, Xn,h) undergo two
sharp sign-changes at1 and2; see Figures5 and6.
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1 1.5 2 2.5 3

b

Figure 5:Two sharp sign-changes forφ(α, β)/
√

φ(α, α)φ(β, β): α = 0.7 (left) andα = 1.5 (right).

Width. The same arguments as above lead to

E(max
k

Xn,k) =
n√

4π log n

(

1 + O
(

(log n)−1/4 log log n
))

.

This result is new. The corresponding almost sure convergence was established in Chauvin et al. (2001).
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Figure 6:3-dimensional renderings of the limiting correlation coefficients:α, β ∈ (2−
√

2, 2+
√

2)\{1, 2}
(left) andα = 1, β = 2 (right).

4.2 Internal nodes

For internal nodes, we have

E(In,k) = [uk]
1 −

(

n+2u−1
n

)

1 − 2u
= 2k[uk]

1 −
(

n+u−1
n

)

1 − u
;

see Brown and Shubert (1984) or Mahmoud (1992).

Lemma 6. For n ≥ 0

∑

k,h

E(In,kIn,h)u
kvh =

1

(1 − 2u)(1 − 2v)

(

1 −
(

n + 2u − 1

n

)

−
(

n + 2v − 1

n

))

+
2uv

(1 − 2u)(1 − 2v)(2u + 2v − 2uv − 1)

(

n + 2u + 2v − 2

n

)

− 1

2u + 2v − 2uv − 1

(

n + 2uv − 1

n

)

.

From this lemma, it follows, again by singularity analysis,that

E(Xn,kXn,h) = 2k+h[ukvh]ϕ(u, v)nu+v−2
(

1 + O
(

n−1
))

+ O

(

(2 log n)k

k!n
+

(2 log n)h

h!n

)

,

uniformly for α, β ∈ [2 −
√

2 + ε, 2 +
√

2 − ε] (for anyε > 0), where

ϕ(u, v) :=
φ(u, v)

(1 − u)(1 − v)
,

φ being defined in (21).
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Theorem 4. For α, β ∈ (2 −
√

2, 2 +
√

2), the correlation coefficientρ(Xn,k, Xn,h) is asymptotic to


































ϕ(α, β)
√

ϕ(α, α)ϕ(β, β)
, if α, β 6∈ {2};

ϕ′
v(α, 2)tn,h − 1

2
ϕ′′

v2(α, 2)
√

ϕ(α, α)q(tn,h, tn,h)
, if α 6= 2, β = 2;

q(sn,k, tn,h)
√

q(sn,k, sn,k)q(tn,h, tn,h)
, if α = β = 2,

where

q(s, t) := ϕ′′
uv(2, 2)st − (ϕ′′′

uv2(2, 2)s + ϕ′′′
u2v(2, 2)t) + ϕ

(4)

u2v2(2, 2).

Figure7depicts the single sign-change of the limiting correlationcoefficientsϕ(α, β)/
√

ϕ(α, α)ϕ(β, β);
compare Figures5 and6.

Note thatϕ(1, 1) = c2 = 2 − π2/6. Thusρ(In,k, In,h) → 1 when(i) k, h ∼ α log n whereα 6= 2 and
(ii) k, h ∼ 2 log n and|k − 2 log n|, |h − 2 log n| → ∞.
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Figure 7:Asymptotic correlation coefficients:α = 1.5 andβ varies (left), and a3-dimensional plot (right)
for α, β ∈ (2 −

√
2, 2 +

√
2).

An intuitive interpretation of the sign-change. For internal nodes, the behavior and the corresponding
intuitive interpretation of the limiting correlation coefficients are similar to those ofYn,k (of recursive
trees). The double sign-change of the limit ofρ(Xn,k, Xn,h) is roughly explained as follows. Observe first
that

E(In,k) ∼































2k − E(Xn,k)

1 − αn,k

, if 1 ≤ k ≤ log n − (log n)2/3−ε,

2kΦ

(

log n − k√
log n

)

, if |k − log n| ≤ (log n)2/3−ε,

E(Xn,k)

αn,k − 1
, if k ≥ log n + (log n)2/3−ε,
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for anyε > 0, whereΦ(x) is the standard normal distribution function; see FHN. Thissays roughly that
levels up to(1 − ε) log n are full of internal nodes (since in this rangeE(Xn,k) = o(2k)) with less room
for external nodes; outside this range, the number of internal nodes at each level is asymptotically of the
same order as that of external nodes. Thus ifXn,k with, sayα ∈ (1, 2) has more nodes, then this means
that there are also more internal nodes at this and neighboring levels, which implies that there are fewer
nodes available at levels≤ (1 − ε) log n and levels≥ (2 + ε) log n, similar to the interpretation given in
Introduction for recursive trees.

5 Conclusions

In this paper we describe the sharp sign-change phenomena inthe correlation coefficients of two level
sizes in random recursive trees and random BSTs. Such sign-changes are consistent with the bimodality
of the variance in the middle range (k ∼ log n for recursive trees andk ∼ 2 log n for BSTs).

We conclude this paper with a brief comparison of the different approaches we used for the variance
(and covariance) of profiles. In Hwang and Drmota (2004), we introduced two approaches forV(Xn,k)
andV(Yn,k), one based on explicit integral representations in terms ofBessel functions and the other on
explicit expressions in terms of Stirling numbers of the first kind. But extending the two approaches to
V(In,k) is not easy. In FHN, we used an approach based on recurrence and asymptotic transfer, which
applies well to all three profiles we discussed in this paper.But getting more terms in the asymptotic
expansions by this approach is effortful. The approach we present in this paper is not only more general
(applicable to covariance and to more profiles) but also useful in deriving asymptotic expansions if needed.
Note that by theL2-convergence of the normalized profiles (established by, say the contraction method),
the leading estimates for the variance or covariance can also be derived by the fixed-point equation of the
limit laws. But this approach fails for the ranges when the limit laws are degenerate.

The major open question here is: what is the limit distribution (if it exists) of the width? Is it the same
as the limit law of total path length (in both class of random trees considered in this paper)?
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