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Abstract

We derive asymptotic approximations to the correlation coefficients of twé $&es in random
recursive trees and binary search trees, which undergo sharplsapges when one level is fixed and
the other one is varying. An asymptotic estimate for the expected width is aisedler

1 Introduction

This paper is a sequel to Drmota and Hwang (2004) and Fuchls €084) in which we addressed
the limit distributions of profiles (number of nodes at theels) in random recursive trees and binary
search trees. In addition to the many intriguing phenomenailed there, we show in this paper that the
correlation coefficients of two level sizes in both classesees exhibit sharp sign-changes. The method
of proof for deriving the uniform estimates for covarianeahl be useful in obtaining asymptotics of the
expected widths for which only almost-sure results but noneiat estimates were previously known.

Random recursive trees. Recursive trees of nodes are non-plane, rooted, labelled trees with labels
{1,...,n} (at nodes) such that the labels along any path from the rowt &ostrictly increasing sequence.
By random recursive trees, we assume that all recursive tfeesodes are equally likely. An alternative
way of constructing a random recursive treenofiodes is as follows. We start from a single node with
label 1; then at thei-th insertion step, the new labgkchooses any of the previods- 1 nodes equally
likely to be its parent (and link them by an edge), and the garmeedure continues until the tree contains
n nodes. This procedure also implies that there(are 1)! such trees.

Recursive trees (following Meir and Moon, 1974) also appgarether fields under different names:
“concave node-weighted trees” in Tapia and Myers (196 4pWang trees” in Na and Rappoport (1970),
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1This paper will be referred to as FHN throughout this paper turequent reference.
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“pyramid scheme” in Gastwirth (1977), “heap-ordered tteessrossman and Larson (1989). They have
been introduced as simple growing models for several reakketworks like social systems (Na and
Rapoport, 1970), sales-distribution networks (Moon, 19&AJl the Internet; see FHN for more references.
Their simple tree representations also found applicaiiongany linear tree algorithms; see Mitchell et al.
(1979).

Profile of random recursive trees. We consider the number of nodes, denotedy, at distance:
from the root in a random recursive tree wfodes. Many properties df, , are known. We briefly
summarize the interesting phenomena exhibited’py as follows; see Drmota and Hwang (2004) and
FHN for more information.

— For large, fixedr, the mean ot’,, ;, is asymptotically unimodal ik, but the variance is asymptotically
bimodal

— The normalized random variabl&$ . /E(Y,, ) converges in distributioto some limit lawY (o) when
k> 1landa :=lim, . k/logn € [0,¢).

Convergence of all moment$Y,, ;. /E(Y,,x) to Y («) holds only fora: € [0, 1] but not fora outside the
unit interval.

—Ifa=0 (andk > 1) then the sequence of the centered and normalized randoabbes (Y,, ., —
E(Y.x))/+/ V(Y. ) converges in distribution to the standard normal law.

If « =1and|k —logn| — oo, then(Y, , —E(Y,.x))/\/ V(Y. ) converges in distribution (and with all
moments) td’”'(1), the same limit law as the total path length, kY, ;.

— If K =logn + O(1), then(Y,, — E(Y,x))//V(Y,) does not converge to a fixed limit law.

Covariance ofY,, , andY,,,. The results derived in our previous papers dealt with ststahbehaviors
of a fixed level size. We examine in this paper the asymptati¢be correlation coefficient of two level
sizes, which turns out to undergo a sharp sign-change-atl (when the other level is fixed and not near
log n).

To state our results, we first introduce some notation. Define

1 1

flu,v) = T(u+v)(u+v—uw) Du+1)D(v+1) @)

wherel is the Gamma function and

p(s,t) == cast + c1(s +t) + co, (2)
with the coefficients given by
¢y = ( =2-2,
€= — 542(1 1) =co(1—7) —¢(3) +1, (3)
Co = 7 u2 2(17 1) =cp (1427~ 7)+201(1_7)_§Tﬁ‘

Also define

{ cs 1= fyla,1) = —Heriee,
C

a+1)4+1—a)24(a—1)2—(1—7)2 =y’ 1)—1472/6
::—%f”(a 1):_(¢(+)+ )2 +( 2)1“(04(4-1)7) Y (at1)—1+ /‘



Letk,h > 1, a = k/logn, B, := h/logn anda and g be their limit ratio, respectively, if exists
(whenn tends to infinity).

Theorem 1. If o, 5 € [0, 2), then the correlation coefficient &f, , andY;, ;, satisfies

. ¢(21211h)(_2/;_1>7 o
' e
o I o
\/f(a7ajp(tnih’t;’h)7 ifa#1,0=1;
\ \/p(snii::);(’;h, ) ifa=0=1,

wheres,, , ;== k — logn andt,, ; := h — logn.

By symmetry, all cases when, 5 € [0,2) are covered. In particular, the result here also implies the
estimates we derived f&#(Y,, x) in previous papers. A comparison of the different approacised so far
for V(Y,,) is given in the last section.

Corollaries and intuitive interpretations.

Corollary 1. The correlation coefficient &f, ,, andY,, , is asymptotic to zero if = o(log n) andk = o(h),
where0 < 3 < 2.

Thus the sizes at the first few levels £ o(logn)) areasymptotically independenf those at levels
that are> k.

Corollary 2. The correlation coefficient df,, , andY,, ,, is asymptotictd if (i) a =5 # 1 (0 < o, <
2); or (ii) boths,, x, t,, — oo (not necessarily at the same rate) when- 3 = 1.

The first case is intuitively clear, but the second case tassparent.

Corollary 3. The correlation coefficient(Y,, x, Y. ») exhibits asymptotically a sharp sign-changesat 1
whena € (0, 2) is fixed and3 is varying fromo to 2.

A few plots of the asymptotic correlation coefficient areaygiun Figuredl, 2, 3, highlighting in partic-
ular the discontinuous sign-changelat

Intuitively, the sizes of neighboring levels are expectthave positive correlation. The sharp sign-
change atl is roughly because of the property trainost all nodes in a random tree lie at the levels
k =logn + O(y/log n), each having about/+/log n nodes (by the estimate

(logn)*

E(Y, ) ~ el
(Yor) KD (a g, + 1)

(1 <k=0(ogn)),

and the bimodal behavior of the variance near these leveésPsmota and Hwang, 2004). This implies
that if one levelk with, sayk/logn < 1 has more nodes, thén) levels neatog n are likely to have more
nodes, and::) levels withh/logn > 1 have fewer nodes available; this also roughly explains Why
andY;, , are negatively correlated (see Figdje
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Figure 1:Asymptotic correlation coefficient of the number of noddwatlevels. The discontinuity of sign
at 1 is visible from both figures. Here = v/2 = 0.28 (left) anda = /7 =~ 1.77, andg € (0, 2).
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Figure 2: 3-dimensional renderings of the limiting correlation cogénts: f(a, 3)/+/f(a, @) f(8, 3)

(left) andp(s,t)/+/p(s, s)p(t, t) (right).

Our method of proof starts from the relation

ZE(Y Y, ubyh = n nt+ut+v—1\ (ntuw—1\), 5)
— mkSnh Cut+v—w n n ’

see below for a self-contained proof or van der Hofstad €2@02). Then 4) is derived by a uniform
estimate for the function on the right-hand side in the plane (by applying the singularity analysis of
Flajolet and Odlyzko, 1990) and then by extending the saplollet method used in Hwang (1995).

Width.  Our analytic approach is also useful in deriving a unifortineate forE ((Y,, x — Y,.»)?), which
turns out to be the crucial step for proving an asymptotic@xmation to the expected width, defined to
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Figure 3: Asymptotic correlation coefficient wheh= 1: « = 0.1 andt¢ varies (left) andt = /2 and «
varies (right).

beW, = max; Y, .

Theorem 2. The widthlV,, satisfies

_ W (©)
n/v/2mwlogn
almost surely, and
n
E(W,) = ——— (1+ O ((logn) *log1 7
(W) \/W(Jr ((logn)~*loglogn)) (7)

foranye > 0.

The almost sure convergence is proved by modifying the ngate arguments used in Chauvin et
al. (2001) for random binary search trees. Such argumeasgdoon considering the random polynomial
>, Y,x2", also provide a natural interpretation of the result (se&lJFtHat the sequence of random vari-
ables(Y, » —E(Y,.x))// V(Y. ) converges to the same limit law as the total path lefigth= >, kX,
whenk ~ logn and|k — logn| — oo; see Sectiol for more details.

Binary search trees. Binary search trees (abbreviated as BSTs) are rooted, lddahary trees with
the search property all labels in the left (right) subtree of any nodeare smaller (larger) than the label
of x. Given a sequence of numbers, one can construct the BST binglte first element at the root,
and then by directing successively all smaller (larger) bers to the left (right) branch. Both subtrees, if
nonempty, are recursively constructed by the same proeethd are themselves BSTs; see Figure
BSTs were first introduced in the early 1960’s by Windley (I9@&both and Colin (1960), Hibbard
(1962), and are one of the simplest prototypical data sirast see Knuth (1997), Mahmoud (1992).

Random binary search trees. Assume that alk! permutations of. elements are equally likely. Given
a random permutation, we call the BST constructed from thenpttiona random BSTWe distinguish
between two types of nodesiternal nodesare nodes holding labels aedternal nodesre virtual nodes
added so that all internal nodes are of outdegree two; serdg



Figure 4:The binary search tree constructed from the sequénce 1,6, 5, 2}. Internal nodes are marked
by circles and external nodes by squares.

Denote byX, i (1, x) the number of external (internal) nodes at lev@h a random BST of: internal
nodes, the root being at level zero. Distributional prapserof both types of profileX,, , and I, ;, are
similar to those ot ;; see FHN for details.

The interesting property here for the covariance of twollsiaes is that while the limiting correlation
coefficients ofl,, , and I, ;, exhibit a sharp sign-change at= 2, the limiting correlation coefficients of
X, and X, , exhibit two sharp sign-changes at= 1 anda = 2. An intuitive interpretation will be
given in Sectiort.

Organization of the paper. We prove in the next section Theordnon the asymptotic estimates of the
correlation coefficients of two level sizes in random remgrérees. The width and related quantities are
addressed in Sectidh Results for random BSTs are given in Sectiwithout proof. We then conclude
the paper with a brief comparative discussion of the metlebgsoof used to derive asymptotic estimates
for the variances.

2 Correlation of two level sizes

We prove Theoreni in this section. Note that thé,-convergence ot, /... (See FHN) can also be
applied to prove4) in the case when, 3 ¢ {0,2}, we give here a uniform approach applicable to all
cases.

Recurrence ofY,, , and E(Y,, ). All our results are based on the recurrence relation satibfje’,

Ymk z Yvuniform[l,nfl],kfl + Yrj—uniform[l,n—l],k (77, 2 2a k Z 1)a (8)
with the initial valuesy,, o = 6,1, the Kronecker symbol, where the random variabiéorm[1,n — 1]
takes valued1,...,n — 1} with equal probability, and’;, is an independent copy df, »; see FHN or
van der Hofstad et al. (2002).



Let yun 1 := E(X,, x). From @), it follows that the mean satisfies
n+u—1
o = 0] )

n—1

(logn)*

- Mo, £1) (1+0 ((logn)™)), (9)

where[u*] F(u) denotes the coefficient af* in the Taylor expansion af and theO-term holds uniformly
for 1 < k = O(logn); see Hwang (1995).
Proof of (5). We now prove %). By (8), we have the recurrence

1
E(Yn,kyn,h) -

Z (E(Yj,k—lyj,h—l) + E(Y]*kyg*h))
+ — Z (k=1 + Lo ke h—1) -
n 1<j<n

Let i, (u, v) := 3"y, B(X, 1. X, n)u*o". ThenFy(u,v) = 1 and

Fn(u,v)=1+ulv Z E(u,v)+u+v Z (j+u_1><n_j+v_1), (10)

n — n—1 Jg—1 n—j3—1

1<j<n 1<j<n

for n > 2. The last sum is equal to

U+ v
n—1

[2"2%(1 — 2) "2 =

n—2

u+v/in+ut+v—1
n—1 '

The recurrencel(Q) is then either solved by considering’,, ., — (n — 1) F,, and then iterating the resulting
first-order difference equation or solved by considerirgdifferential equation satisfied By’ F,,;12".
This proves ). 1

An asymptotic expansion for the covariance. We now derive an asymptotic expansionfaw (Y, x, Y, »).
First, by singularity analysis (see Flajolet and Odlyzk&9Q@), we have

n(" * z N 1) = n["](1 - 2)" = FQ‘:;) (1+0 (lwn™),

the O-term holding uniformly for finite complex.. Thus, by b) and Q),

_ -1 (log n)k
COV(Yn’k, Yn,h) = C]“h(n) (1 + O (n )) + @] 5k7h7/{}! s (11)

uniformly for 1 < k, h < K logn, where
Crn(n) := [uPo"] f (u, )"+,

with f defined in ().



If «+ 3 # 0, we apply the saddle point method used in Hwang (1995) byesandingf as follows
f(u7 U) = Z fﬂ,r(u - Oén,ky(v - 6n,h)ra

£,r>0

wheref,, = fifjf)(amk, Bnn)/(£lr!); and then integrating term by term gives the formal expansio

Ck,h(”) ~ Z ff,rEZ(nu k)Er(n7 h)? (12)
£,r>0
where
Zi(n, k) = [uk](u — &n,k)gn“
(logn)* 3 (f) ik (k—j+1)
k! oot \J (logn)i
The first few values oE, are as follows.
_ _ _ k
\:0(71, k) = 1, :1(n, k) = O, ZQ(H, k) = _W’
2k 3k(k — 2)
= k)= ——, = k) = ———=.
3(m, k) (logn)3’ 1(n, ) (logn)*

Since=,(n, k) equals(logn)~" times a polynomial ink of degree|r/2], the double sum on the right-
hand side of 12) can be regrouped and gives an asymptotic expansion wWhenO(logn). The error
analysis is similar to those in Hwang (1995, 1997), and waialihat (2) holds uniformly forl < k, h <
2logn — w,+/logn, w, being any sequence tending to infinity. The error téuh"|Cy. ;(n)O(n=1)
appearing in11) is handled similarly and is asymptotically negligible.

By the explicit forms of the=,’s, we obtain the expansion

log n)k—i—h

C’“h("):( KAl
L1
(logn)?

+0 ((log n)*?’) }, (13)

1
{f0,0 ] ~(fo,00mk + fo20nn)
ogn

(3(fa,00h 1 + fouBrn) + fo20tniBun + 2(fs00mk + fo30mn))

which is sufficient for our use.

Special cases. Assume that < o, 5 < 2. If o, 3 ¢ {0, 1}, then
f0,0 = f(an,k’a ﬁn,h) - f(a/a ﬁ) 7& 07

and we obtain 1 b
ogn
Cov(Yok, Yar) ~ f(a, 5)%’

uniformly for 1 < k, h < 2logn — w,+/logn. This proves Theoremwhena, 3 ¢ {0, 1}. It also implies
that | o
V(Xnk) ~ f(a,a)(oig) (1 <k <2logn—wyy/logn).




If o = (=1, then, by (3) and the following approximations

S ’kt h Sn.k t h
fo,o ~ 02m7 f0,2 ~ —C lo;n’ f2,0 ~ —C lo:;Tn’ f2,2 ~ Cp,

wherek = logn + s, x, h = logn + t,,;, and the coefficients;’s are defined ing), we obtain

P(Snpstnn) (logn)kth

(logn)? kRt

Cov (Yn,k ) Yn,h) ~

wherep is given in @). This also implies thaV (X,, 1) ~ p(snk, Snx)(logn)?~2/k!2.
If « =0andg € (0, 1), then, similarly as above, we have

COV(Ymk, Yn,h)

(log n)kJrh—l

o EET GO D 1), 541,

(log n)kt+h=2 2 72 iy o
(k— DIAIT(G + 1) ((“E) ‘9””‘+2‘7‘<(3>—z+7> , ifB=1,

so thatp(Y,, k., Y,,») — 0 in both cases.

The case whepy = 1 anda # 1 is treated similarly.

A change of variables — wwv is useful for the remaining case when= 5 = 0; then a similar
analysis gives

~

(log n)kJrh—l
(k—D!(h—DYk+h—-1)
Alternatively, we can use the exact expression (see van distétl et al., 2002)
2j+h—k , n—1+w
E Yn Yn _ j+h+1
(Yea¥or) = 2 <j+h—k>[w ]( n—1 )

0<j<k

COV(Yn,k, Yn,h) ~

(14)

obtained from expanding the right-hand side B, @nd then proceed similarly as above (the two terms
with indices;j = k — 1, k suffice for obtaining14)). 1

Proof of Corollary 3. Whena, g € (0,2), « # 1, we have, by4),

lim f(e.0) = sign(1 — ) watl) -ty
-1 /F(a, ) (B, ) Vef(a,a)T(a+1)

thus the sign-change follows. The case whes 1 can also be checked similarly.l
The proof of other corollaries to Theorelms straightforward and omitted.

3 Profile and width

Profiles of trees are closely related to many other shapenateas. We discuss briefly in this section
the connection between profile and width, starting fromuilegi an asymptotic estimate for the expected
width, namely from the proof of7). Then we consider the level polynomisl,(z) := >, Y, x2*, which
will be seen to be a convenient tool for provir) &nd for bridging the limit properties of the profile and
those of the total path length (and other weighted path ke)gt
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The expected width. Since the width is defined by/,, = max; Y, ., we have, by the estimat8)(

E(W,) > maxE(Y,,) = (1+0 ((logn)™'2)).

n
V2mlogn
However, it is less clear how to obtain a tight upper bounde @lguments introduced in Chauvin et al.
(2001) can be used to prove the almost sure convergence (@giskee below for a sketch of proof), but do
not lead to an effective upper bound for the expected widtk.iMfoduce a new argument, reducing the
upper bound to estimating the mean and the variance of sdifeeetices between level sizes, and show
that the lower bound is indeed tight.

We start with a probabilistic lemma.

Lemma 1. Let Z(¢) be a sequence of stochastic processes on the space of cargifunctions or0, 1].
Assume that there exist constaity 0 andd > 1 such that

P(|Z(t1) = Z(t2)] = 6) = O (|ty — 2|6 7) (15)
uniformly for all¢,, ¢, € [0, 1]. Then we have
_ 0—1¢—X
P (m?><< Z(s) - Z(1)] > 5) — 0 (15). (16)

Proof. We modify the proof of Theorem 12.3 in Billingsley (1968). $tirthe assumptiorlLp) is exactly
(12.50) from Billingsley (1968) with¥'(¢) = t. It follows that fore > 0 (and1/¢ is an integer; compare
with (12.57) there)

S P sup  |Z(s) - Z(je)| =6 | =0 ("6
jeije  \JESs<(+1)e

Similarly, we obtain

Z P ( sup |Z(s)—Z((j + 1)e)| > 5) =0 ("6,

j<1/€ ]ESSS(]‘i’l)E

Now, suppose that there existt € [0, 1] with |s — t| < e and|Z(s) — Z(t)] > 6. Then there exists
J < 1/e with max(|s — jel, |t — je|) < e andmax(|Z(s) — Z(je)l,|Z(t) — Z(je)|) > /2. Consequently

IP’(lsmﬁicJZ( ) — \>5) ZIP’( sup ]Z(s)—Z(Jf)’E(S/Q)

jeije \Jesss(i+l)e

+ 3 P( sup  |Z(s) — Z((j + 1)e)| = 5/2)

. \desssGrne
=0 (59_15_A) .

This proves 16) for all € such thatl /< is an integer. However, the general case also follows froen th
O-estimate. 1

Lemma 2. LetA :=h — k and?n,;C = Y.r — E(Y,x). Then, uniformly fokk, h = logn + o(logn),
E ((Yog —Yan)?) =0 (n?A%(logn)~?). (17)
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Proof. We may apply the results in previous section for the covaganfy,, , andY,, , in some ranges, but
they do not lead to a uniform estimate in termg/of- |? in the whole range when = 3 = 1.

We give here a self-contained proof df7j. Assume, without loss of generality, that> k. By (11),
we have

E((YVor—Yan)?) = ([Wof] = 200" + [W"0"]) flu,v)n*" (14 0(n7))
+ O (6x,nn(log n)_l/z) :
It suffices to find upper bounds for the dominant term
J = ([ k k:] _2[ k h] +[ h h]> f(u’v)nu-i-v
// —ikz— 'ka _ 9~y +e —i (m+y)) f (eim7eiy) neiueiy dz dy,
W

(2m)2
whereD := [—x, w]*. No

1 — 26—1Ay + e—zA(I-i-y) — (1 . e—iAy)Z + e—z‘Ay (e—iA:c 14 ZA(L’)
— e Ay (e_my —1+iAy) + e Y (iAy — iAx)
= Q1+ Q2 — Q3+ Qu.
Let .
Jm = W / D Qme_ikx_ikyf (6ix? eiy) new-ﬁ-ely dz dy (m = 17 s 74)

By the elementary inequalitigs™ — 1| < |w| for realw and1 — cosw > csw? for |w| < m, where

cs = 2/m?, we have
|Ji] < // Y |f e ‘ —es(#* 4y ) dx dy.

This, together with the uniform bound

£ (e, €”) | = O(layl),

|J1|=o( //|a:||y|3 dxdy)

=0 (n*A%(logn) ™).
Similarly, by the inequalitye™ — 1 — jw| < |w|?/2 for realw, we have
[Tl | 3] = O (n*A%(10g n) %)

For the last integral,, we use the expansion

forz,y € D, yield

f (e, e") = cri’my + O (Jwyl|z + yl)
and obtainJ, = J5 + Js, where

CQA iz iy
o // y—x .Iy@ —tkx—iky— sz e'T+e dl’dy7

0 (n2|A| / /D 2yl(a] + Jyl)2n oo da dy)

= O (n*|Al(logn)~?) .

11



For J5, we use the expansion
e =1+ 0(Ally),

and the relation
// (y N x)xye—ik(x-i-y)ne”-f—ezy dz dy = 0,
D

(by symmetry), so that

o= 0 (w2 [ JallPal + ot azay
=0 (nQAQ(logZ)_S) ,
uniformly for k, h = logn + o(logn). This completes the proof ol7). |
Lemma 3. Uniformly fork, h = logn + o(logn),
[E(Yok = Yan)| = O (n|Al(logn) ™) ; (18)
and uniformly fork = logn + O(1) andh = logn + o((logn)?/?),

n 2
E(Y, 1) — E(Y, ;)| ~ —— (1 — o~ (k=h) /(210gn)> ) 19
E(Yo) = E(Vp)] ~ e (1= ¢ (19)

Proof. Assume thatk — logn| < |h — logn|. By Cauchy’s integral formula

E(Yis) — E(Yan) = — / ek (1— ) (11 0m™) de.

o /. N (

In the first case wheh, h = log n + o(log n), we apply the the inequalityt — e~*4*| < |Ax| and the same
arguments as above, yielding

[E(Yek) = E(Yan)l = O (|AIn(logn) ™) ,

uniformly in &, h. This proves 18).
The approximationX9) follows from a straightforward application of the usuatigke-point method.
I

An upper bound for the expected width. Letky, = |logn|. Take
A= |(logn)/** | and J:= |(logn)"*],
whereg,, € (0,1/2) will be specified below. We use the following upper bound

W, < max Y, jo4ja + max |Y, , — Y, 4|

~ o<ljl<J k= h|<A
E(Y,, — Y, Y,
+ kagﬁé\! (Yo = You)| + > e

|k—ko|>(logn)1/2+En

= WY+ W@+ w® 4+ wW.

We show that, when taking expectation, the téfm, in WY is dominant and all other terms are asymp-
totically of smaller order thait (Y, x, )-

12



We start fromiv,\"). By (9),

E(W®) = 0 ( 3 (10%71)’“)

|k—ko|>(log n)1/2+én
=0 <n€_(1°g")2§n/2(log n)‘f") :

see Hwang (1997). If we choose

_ logloglogn

&n = log logn

then
E(W®) =0 (n(logn)™).
ForwY), we have, by 18) for k, h = logn + O(JA) and by ) for k, h outside this range,
_ _ -1
|th3§/\ [E(Yn — Yor)| = O (nA(logn)™)

= O (n(logn)?/*t&) .

We then apply Lemmasand2 to prove that

o n A /2
E(W®) = .
We first defineY,,(¢), —1 <t < 1, by

— (logn)t=¢n
Y, (t) = Yn,ko+t(log n)l/2+én T?

whent (logn)'/?*¢ is an integer, and by linear interpolation otherwise. By Lean®ywe have
E((Ya(s) = Ya(£)?) = O ((s — 1)) .
uniformly for s, ¢ € [—1, 1]. By Chebyshev inequality,
P(|Y,(s) = Y ()] > w) = O ((s — t)’w™?).

Taken, := A(logn)~'/?=¢ It follows, by Lemmal, that

P (s 110~ V(0] 2 w) = O (),

[s—t|<nn

and, consequently,

E( max |Y,(s) — Yn(t)|> :/ IP’( max |Y,(s) — Y, (t)] > w) dw
ls—t|<nn 0 [s—t|<nn

=0 (m”?).
This and the definition oY, (¢) imply (20), which can be written as

E(W ) = O (n(logn) /5 %),

13
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Thus it remains to find an upper bound foiL". By Cauchy-Schwarz inequality, we obtain

E(Wél)) <E Z Yo kotin - 1[Yn’k0+jA:W7(L1)]
l71<J

1/2
< Z (E(YTLZ,k0+jA>) / ]P)(Yn,ko-‘rj/\ - Wn(,l))l/2

lil<J
n

R —
~ V2mlogn

n
+O0 (= > P(Yarern=W")"*].
( 10gn1§m§1

+ O (n(logn)™")

Here we used the estimates

(E(V2,,) "% = ﬁ + 0 (n(logn)™),

and(IE()ﬁfy,Q)”2 = O(n/+/logn); see Drmota and Hwang (2004).
SetD; =Y, k, — Yako+ia fOor 1 < |j| < J. Then we have
P(Y o = Wit) < P(D; < 0)
< P(|D; — E(D;)| = E(D;))
V(D;)

= [E(D;))?

by Chebyshev inequality.
By Lemma2, we have

V(D) =0 o 272
77 \(lognyr? ™ )
This and (9) imply that
) A 272 -1
< 0)1/2 = ﬂ _ ,—J§?A%/(2logn)
P(D; <0)Y2 =0 <1ogn (1 e ) ,

for 1 < |j| < J; and it follows that

A 4 272 -1
< 1/2 __ _ —xz*A*/(2logn)
E P(D; <0)/* =0 (—logn/1 x <1 e ) dx)

1<]j|<J

=0 (A '(logn)*").

Thus
E(WV) € ———+ O (n(logn) " #/**¢) .
Collecting these estimates gives

n

EW, < ————
~ V2mlogn

(140 ((logn)~"*loglogn)) .
which proves 7).

14



A possible refinement of the error term in (7). If we had the estimates
E ((Ynk — Vn,h)Qm) =0 (anAQm(log n)_3m) ,

for m > 2, then the error ternd(logn)~/*loglog n) in the approximation to the expected width would
be improved ta)((log n)~'/?*¢) for somes > 0, which is, up to(log n)°, expected to be the right-order.
A proof of these moment estimates would be to apply inducaiod the approach used in FHN, but the
details would be very messy.

Asymptotics of the level polynomials. The proof of the almost sure convergen6égfpllows from the
same martingale arguments introduced in Chauvin et al. (200ius we only sketch a few steps of the
proof here.

We observe first that the normalized random functiég(z) := M, (z)/E(M,(z)) (whereM,(z) :=
>, Yax2®) is @a martingale. Roughly, this reflects the construction the new-coming key has the same
probability of being attached to any of the existing nodelsofhy ©)

E(Mn(z)):(n—1+z).

n—1

By the martingale convergence theorem (see Hall and Hey®8) 18/, (o) converges almost surely
to a limit M («) for any finitea > 0. Then by the recursive definitio) of Y,, , we deduce, similar to
contraction method (see FHN), that

M(a) Z aUM(a) + (1 — U)*M(a)",

whereM («)* Z

a > 0.
Interestingly, this limit relation also extends to completues ofc.

M(«) and M («), M («)*, U are independent. This implies thaf(«) Z Y («) for every

Lemma 4. For any compact setifiz € C : |z — 1] < 1}, the martingalel,,(z) converges almost surely,
uniformly and inL, to its limit M (z) (which is also an analytic function).

The key step of the proof is to use an explicit expressionEa¥/,,(z1)M,(z2)) (see b)), and to
use Kolmogorov's criterion, coupling with vector martimgaéheorems. Finally, one recovers almost
surely (and uniformly foll — e < k/logn < 1 + ¢ for somes > 0) via Cauchy’s integral formula

1
Yor = M,(2)z""1 dz
270 J 2=, g
1
~— M(2)E(M,, k=14
i fo (2) E(Mn(2))z z
1
~ M, ) — E(M,, —k=1q
(Ok) g . EOGE) ds

We omit all technical details. Note that the radius;, := k/logn in the contour integration is a natural
choice because it is the saddle point of the integrBftl,, (z))z=*"!. Since M(z) is almost surely an
analytic function and\/(1) = 1, it follows that

n

W, =maxY,, ~ maxE(Y, ;) ~ ———,
Pk P (Vo) V2mlogn

almost surely. This completes the proof 6§.( 1

15



Total path length.

Corollary 4. LetT,, denote the total path length in a random recursive tree abdes. Thed/ (1) is a
martingale and
— T, —E(T,) ¢
i) = =B 2y
n
almost surely and iris.

Proof. SinceT,, = Y, kY,.x, we haveM/ (1) = (T,, — E(T,,))/n by the definition ofM,(z). From
Lemmad4, it follows that

almost surely. 1
The resultis already known; see Mahmoud (1991) and Dobral#dh(1999). However, our approach
also gives
MM (1) — ML) (m > 1),

almost surely and ii.,. In particular, whenn = 2, we have

SRk~ 1) (Vo — i) — SE(T)(T — E(T,)) — M"(1).
k

Note thatMT(Lm)(l) is also a martingale fan > 1.

4 Profile of random binary search trees

We give in this section the corresponding results for théileoof random BSTs. The proofs are similar
to those for random recursive trees and are thus omitted.|IRleab.X,, , and/, ; denote the number of
external nodes and internal nodes, respectively, at leireh random BST of. elements.

4.1 External nodes
It is known since Lynch (1965) that

;E(Xn,k)uk _ (n + 2u — 1) (n>0):

n

see also Francon (1977) or Mahmoud (1992).

Lemmab. Forn > 0

2 2 v — 2
> E(XupXup)u " = - (“ T >
" 204+ 2v —2uv — 1 n

2u+2v — 2uv — 1

2u+2@—4uv—1(n+2uv—1)
N .

16



This simplifies Lemma 4 in Chauvin et al. (2001).
From this lemma, we deduce, by singularity analysis (se@leleand Odlyzko, 1990), that

(logn

E(Xn ik Xnp) = 25 w0 p(u, 0)n* ™ (1+ O (n7")) + O <5k,h X
In

uniformly fora, 3 € 2 — V2 +¢,2 + /2 — ¢] for anys > 0, where

uv 1

(2u+20 —uv —2)T(u+v—1) T(uw)(v) (21)

B, v) =

Theorem 3. For o, 3 € (2 — v/2,2 + v/2), the correlation coefficient(X,, x, X,.) is asymptotic to

( o(a, ﬁ)

\/gbozoz )
¢y 5)nh—2¢( , )

Vol a)p(B, Bt ps tun)

n, 7tn N
p(aﬂs b tn) , ifa,Be{1,2),
\ \/p(a, Q3 S ks Sn,k)p(ﬁy B; tn,ha tn,h)

if a, 8 & {1,2};

if o ¢ {1,2},0 € {1,2};

where
- . moqo- m oy o- jﬁ @)
p(J, € 8,t) == ¢, (4, €)st — —(W o O + L8425, 0)8) + Tr P2 (7, 0)-

Unlike the profile of recursive trees, the limiting corrédat coefficients ofp(.X,, », X,, ) undergo two
sharp sign-changes ataind2; see Figure$ and6.

r\ 1 /\
0.8
0.6

0.5
0.4
0.2
o 1 15 2’5 3

o 1 15 2’5 3
-0.2
0.4 —0.51
—0.6 1 / \
-0.8

Figure 5:Two sharp sign-changes faxa, ﬂ)/\/(b(a, a)o(B,6): a = 0.7 (left) anda = 1.5 (right).

Width. The same arguments as above lead to

E(mkax Xng) = (14O ((logn)*loglogn)) .

n
VAamlogn

This result is new. The corresponding almost sure converyess established in Chauvin et al. (2001).
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Figure 6:3-dimensional renderings of the limiting correlation coeiffints: o, 5 € (2—+/2,2+v/2)\{1, 2}
(left) anda = 1, 5 = 2 (right).

4.2 Internal nodes

For internal nodes, we have

1 _ (n+t2u—1 1 _ (ntu—1
1—2u 1—u

see Brown and Shubert (1984) or Mahmoud (1992).

E(Lnk) = [u”]

Lemma6. Forn > 0

;E(Imk[mh)ukvh - 2u)l(1 — (1 B (n + 2nu — 1) B (n + 2nv - 1)>

2uv n+2u+ 2v — 2
1 —2u)(1—2v)(2u+ 2v — 2uv — 1) n

1 n—+ 2uv — 1
2u+ 2v —2uv — 1 n '

From this lemma, it follows, again by singularity analysiet

i

(2logn)k  (2log n)h>
+ Y

E(XoxXon) = 29 0 o, 0" (140 (n7")) + O ( Fin in

uniformly for ., 3 € [2 — V2 + ¢,2 4+ /2 — €] (for anye > 0), where

_ o(u)
Pluv) = AT oy

¢ being defined inZ1).
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Theorem 4. For o, 3 € (2 — /2,2 + +/2), the correlation coefficieni(X,, », X, ») iS asymptotic to

( o(a, B)

Vela,a)e(B,3)

90;;(&7 Q)tn,h - %@Zz (CY, 2)
Veela, a)q(tun: tan)

n >tn .
d(onky ) , ifa=p3=2,
\ \/q(sn,lm Sn,k)q(tn,fw tn,h)

if o, 6 & {2}

, fa#2,8=2

where

q(s,t) == @1 (2,2)st — (9"2(2,2)s + @5, (2,2)1) + ©'2,(2,2).

Figure7 depicts the single sign-change of the limiting correlatiorfficientsy(«, 8) /1/¢(a, a)p(3, B);
compare Figures and6.

Note thaty(1,1) = ¢ = 2 — 72/6. Thusp(l,. 1, I,n) — 1 when(i) k, h ~ alogn wherea # 2 and
(13) k, h ~ 2logn and|k — 2log n|,|h — 2logn| — oo.

25 2.5

Figure 7:Asymptotic correlation coefficients: = 1.5 and 3 varies (left), and &-dimensional plot (right)

fora,B € (2—v2,2+2).

An intuitive interpretation of the sign-change. For internal nodes, the behavior and the corresponding
intuitive interpretation of the limiting correlation cdielents are similar to those df,, ; (of recursive
trees). The double sign-change of the limitpo,, ., X,, ) is roughly explained as follows. Observe first
that

( E(X, .
ok _ M7 if 1<k<logn— (10gn)2/3_5,
1- On k
1 —k )
E(Lx) ~ 4 2" (Oglnm) , i [k —logn| < (logn)*/*~*,
E(X, |
\ Onk — 1
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for anye > 0, where®(x) is the standard normal distribution function; see FHN. Haigs roughly that
levels up to(1 — ¢) log n are full of internal nodes (since in this ranBéX,, ;) = o(2*)) with less room
for external nodes; outside this range, the number of iaterades at each level is asymptotically of the
same order as that of external nodes. Thus,jf, with, say«a € (1,2) has more nodes, then this means
that there are also more internal nodes at this and neigitptevels, which implies that there are fewer
nodes available at levets (1 — ¢)logn and levels> (2 + ¢) logn, similar to the interpretation given in
Introduction for recursive trees.

5 Conclusions

In this paper we describe the sharp sign-change phenometa itorrelation coefficients of two level
sizes in random recursive trees and random BSTs. Such sagmgehk are consistent with the bimodality
of the variance in the middle rangk ¢ logn for recursive trees ankl ~ 2log n for BSTS).

We conclude this paper with a brief comparison of the diffiéiggproaches we used for the variance
(and covariance) of profiles. In Hwang and Drmota (2004), méeoduced two approaches f8i( X, x)
andV (Y, ), one based on explicit integral representations in tern3estel functions and the other on
explicit expressions in terms of Stirling numbers of thetfiisd. But extending the two approaches to
V(I, ) is not easy. In FHN, we used an approach based on recurredcasgmptotic transfer, which
applies well to all three profiles we discussed in this pajgart getting more terms in the asymptotic
expansions by this approach is effortful. The approach st in this paper is not only more general
(applicable to covariance and to more profiles) but alsoulgetieriving asymptotic expansions if needed.
Note that by thel.,-convergence of the normalized profiles (established lyytlsa contraction method),
the leading estimates for the variance or covariance carb&slerived by the fixed-point equation of the
limit laws. But this approach fails for the ranges when thatliaws are degenerate.

The major open question here is: what is the limit distriboif it exists) of the width? Is it the same
as the limit law of total path length (in both class of randeees considered in this paper)?
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