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Abstract—Sequential probability assignment and universal
compression go hand in hand. We propose sequential probability
assignment for non-binary (and large alphabet) sequences with
empirical distributions whose parameters are known to be
bounded within a limited interval. Sequential probability assign-
ment algorithms are essential in many applications that require
fast and accurate estimation of the maximizing sequence prob-
ability. These applications include learning, regression, channel
estimation and decoding, prediction, and universal compression.
On the other hand, constrained distributions introduce interest-
ing theoretical twists that must be overcome in order to present
efficient sequential algorithms. Here, we focus on universal com-
pression for memoryless sources, and present precise analysis for
the maximal minimax and the average minimax for constrained
distributions. We show that our sequential algorithm based on
modified Krichevsky-Trofimov (KT) estimator is asymptotically
optimal up to O(1) for both maximal and average redundancies.
This paper follows and addresses the challenge presented in [10]
that suggested “results for the binary case lay the foundation to
studying larger alphabets”.

I. INTRODUCTION

Universal coding and universal modeling (probability as-
signments) are two driving forces of information theory, model
selection, and statistical inference. In universal coding one
is to construct a code for data sequences generated by an
unknown source from a known family such that, as the
length of the sequence increases, the average code length
approaches the entropy of whatever processes in the family
has generated the data. In seminal works of Davisson [2],
Rissanen [6], Krichevsky and Trofimov [4], and Shtarkov [7]
it was shown how to construct such codes for finite alphabet
sources. Universal codes are often characterized by the average
minimax redundancy which is the excess over the entropy of
the best code from a class of decodable codes for the worst
process in the family.

As pointed out by Rissanen [6], over years universal coding
evolved into universal modeling where the purpose is no
longer restricted to just coding but rather to learn optimal
models [6]. The central question of interest in universal mod-
eling seems to be in universal codes achievable for individual
sequences. The burning question is how to measure it. The
worst case minimax redundancy became handy since it mea-
sures the worst case excess of the best code maximized over
the processes in the family. Unfortunately, low-complexity

universal codes that are optimal for the worst case minimax are
not easily implementable. Therefore, we design a sequential
algorithm based on the KT-estimator that is asymptotically
optimal on average (i.e., for the average minimax redundancy),
and show that both redundancies differ by a small constant.

In this paper we focus on universal compression and prob-
ability assignment/learning for a class of memoryless sources
with constrained distributions. Let us start with some defini-
tions and notation. We define a code Cn : An → {0, 1}∗ as a
mapping from the set An of all sequences xn = (x1, . . . , xn)
of length n over the finite alphabet A = {1, . . . ,m} of size m
to the set {0, 1}∗ of all binary sequences. Given a probabilistic
source model, we let P (xn) be the probability of the message
xn; given a code Cn, we let L(Cn, x

n) be the code length
for xn. However, in practice the probability distribution (i.e.,
source) P is unknown, and one looks for universal codes for
which the redundancy is o(n) for all P ∈ S where S is a class
of source models (distributions). It is convenient to ignore the
integer nature of the code length and replace it by its best
distributional guess, say Q(xn). In other words, we just write
L(Cn, X

n
1 ) = − logQ(xn) and use it throughout the paper.

The question is how well Q approximates P within the class S.
Minimax redundancy enters. Usually, we consider two types of
minimax redundancy, namely average and maximal or worst
case defined, respectively, as

Rn(S) = min
Q

sup
P∈S

E[logP (Xn)/Q(xn)], (1)

R∗n(S) = min
Q

sup
P∈S

maxxn [logP (Xn)/Q(xn)]. (2)

In this paper we analyze precisely both redundancies for
memoryless sources over m-ary alphabet A = {1, . . . ,m}
with restricted symbol probability θi, that is, we assume that
θ ∈ S, where S is a proper subset of

Θ = {θ : θi ≥ 0 (1 ≤ i ≤ m), θ1 + · · ·+ θm = 1}.

We will assume that S is a convex polytope. As a special
case we have the interval restriction 0 ≤ ai ≤ θi ≤ bi ≤ 1
for i = 1, . . .m − 1, where

∑
i bi ≤ 1. Here, we present

a sequential algorithm that estimates asymptotically optimal
probability P (xn) for all xn. It turns out that restricting the
set of parameters is important from practical point of view and



at the same time introduces new interesting theoretical twists
that we explore in this paper. We first prove in Theorem 1 that
(for fixed m that can still be large)

Rn(S) = R∗n(S) +O(1) =
m− 1

2
log(n) +O(1)

where the constant implied by the O-term depends on m and
on the constrains. Second we provide in Theorem 2 precise
asymptotics for Rn(Θ) and R∗n(Θ) if m = o(n). While
these results are not new [5], [8], [9], [12], we derive precise
asymptotics up to O(m/

√
n) term in a uniform manner that

can be used to extend our analysis to the constrained case in
this regime. Finally, we present in Theorem 3 a sequential
add-1/2 KT-like estimator to compute P (xn+1|xn) for the
constrained distributions that is asymptotically optimal up to
a constant for both the maximal and average redundancy.

II. MAIN RESULTS

In this section we present our main results including asymp-
totically optimal probability estimation for the class S ⊂ Θ of
memoryless sources with constrained distributions.

We start with the worst case redundancy defined in (2). We
recall that the empirical distribution is of the following form

P (xn) =

m∏
i=1

θkii , θi ≥ 0,

m∑
i=1

θi = 1,

where ki is the number of symbol i ∈ A in the sequence xn.
The probabilities θi are unknown to us except that we restrict
them to the subset S ⊆ Θ. Following Shtarkov [7] and [3] we
can re-write the worst case redundancy for S, by noting that
max and sup commute, as

R∗n(S) = min
Q

sup
P∈S

max
xn
1

(− logQ(xn1 ) + logP (xn1 ))

= min
Q

max
xn
1

[− logQ(xn1 ) + sup
P∈S

logP (xn1 )]

= min
Q

max
xn
1

[logQ−1(xn1 ) + logP ∗(xn1 ) + log
∑
zn1

sup
P
P (zn1 )]

= log
∑
xn
1

sup
P
P (xn1 ) =: logSn

where

P ∗(xn1 ) :=

sup
P∈S

P (xn1 )∑
zn1

supP P (zn1 )
(3)

is the maximum-likelihood distribution and we choose
Q(xn1 ) = P ∗(xn1 ).

To estimate the sum Sn =
∑
xn
1

supP P (xn1 ) we need first
to find sup

∏m
i=1 θ

ki
i when θ ∈ S . For the unrestricted case

(S = Θ) we know that the optimal θi = ki/n. The situation is
more complicated in the constrained case. For example, if we
assume an interval restriction ai ≤ θi ≤ bi, i = 1, . . . ,m− 1,
then for ki < nai or ki > nbi the optimal θi may be ai or bi,
respectively. Fortunately, we are able to prove that the main
contribution to Sn comes from those k = (k1, . . . , km) for
which k/n ∈ S. So we are led to analyze the following sum

S(S)
n =

∑
k∈nS

(
n

k1, · · · km

) m∏
i=1

(
ki
n

)ki

which is of order n
m−1

2 . The contribution of the remaining
terms only is of order O(n

m−2
2 ).

We need to introduce one more notation element. Let us
define the Dirichlet density as

Dir(x1, . . . , xm;α1, . . . αm) =
1

B(α1, . . . , αm)

m∏
i=1

xαi−1
i ,

where
∑m
i=1 xi = 1 and

B(α1, . . . , αm) =
Γ(α1) · · ·Γ(αm)

Γ(α1 + · · ·αm)

is the beta function. We shall write α = (α1, . . . αm) and
x = (x1, . . . xm) with

∑m
i=1 xi = 1. Finally, we set for S ⊂ Θ

Dir(S;α) =
1

B(α)

∫
S
xα−1 dx.

It is our goal to present a sequential low-complexity algo-
rithm for the probability assignment, that is, an iterative proce-
dure to compute P (xn+1|xn). Unfortunately, the maximum-
likelihood distribution (3) is not well suited for it. To find
one, we switch to the average minimax redundancy (1) and
we re-cast in the Bayesian framework.

Let S ⊆ Θ. Then the average minimax problem is then

Rn(S) = inf
Q

sup
θ∈S

Dn(P θ‖Q)

where D(p‖Q) is the Kullback-Leibler divergence. In the
Bayesian framework, one assumes that the parameter θ is
generated by the density w(θ) and the mixture Mw

n (xn) is

Mw
n (xn) =

∫
P θ(xn1 )w(dθ).

Observe now

inf
Q

Ew[Dn(P θ‖Q)] = inf
Q

∫
S
Dn(P θ‖Q)dw(θ)

=

∫
S
Dn(P θ‖Mw

n )dw(θ)

where we use the fact that minQ
∑
i Pi log 1/Qi =∑

i Pi log 1/Pi. As pointed out by Gallager, and Davisson the
minimax theorem of game theory entitles us to conclude that

Rn(S) = inf
Q

sup
θ∈S

Dn(P θ‖Q) = sup
w

inf
Q

Ew[Dn(P θ‖Q)]

leading to our final formula

Rn(S) =

∫
S
D(P θ‖Mw

n )dw∗(θ) (4)

where w∗(θ) is the maximizing prior distribution. For the
unconstrained case (i.e., S = Θ) Bernardo [1] proved that
asymptotically the maximizing density is Dir(θ;1/2). For the
constrained case we modified it to

w∗(θ) =
1

C(S) ·B(1/2)

1√
θ1 · · · θm

(5)

where C(S) defined as

C(S) = Dir(S;1/2) =
1

B(1/2)

∫
S

dx
√
x1 · · ·xm

(6)



is the probability that the Dirichlet distribution with αi = 1/2
falls into the subset S .

Now, the mixture distribution Mw∗
(xn) can be calculated

as follows

Mw∗
(xn) =

1

C(S) ·B(1/2)

∫
S

m∏
i=1

θ
ki−1/2
i

=
1

C(S) ·B(1/2)
B(k1 + 1/2, · · · , km + 1/2)

· 1

B(k1 + 1/2, · · · , km + 1/2)

∫
S

m∏
i=1

θ
ki−1/2
i

=
1

C(S) ·B(1/2)
B(k1 + 1/2, · · · , km + 1/2)

·Dir([S : k + 1/2). (7)

Observe that for the unconstrained case Dir(Θ : k+1/2) = 1.
In summary

D(P θ‖Mw∗
) = log (C(S)B(1/2)) + (8)

+
∑
k

(
n

k

) m∏
i=1

θkii log

∏m
i=1 θ

ki
i

B(k + 1/2)Dir(S : k + 1/2)

and
Rn(S) =

∫
S
D(pθ‖Mw∗

)dw∗(θ).

We are now ready to formulate our first main result that
reads as follows.

Theorem 1. Consider a memoryless constrained source S ⊂
Θ with fixed but arbitrarily large m ≥ 2 where S is a convex
polytope. Then the worst case redundancy for S is

R∗n(S) =
m− 1

2
log(n/2)− log Γ(m/2) + logC(S)

+
1

2
log π +O(1/

√
n) (9)

and the corresponding average redundancy is

Rn(S) =
m− 1

2
log(n/2e)− log Γ(m/2) + logC(S)

+
1

2
log π +O(1/

√
n) (10)

where C(S) is defined above in (6).

In Theorem 1 we assumed that m is fixed to avoid compli-
cations with constrains Sm that may depend of m. We handle
it in the forthcoming paper, but here we present our results for
large m = o(n). While they are not completely new (see [5],
[8], [9], [12]), our novel derivations will allow us to consider
more general constrained sources.

Theorem 2. Consider a memoryless unconstrained source Θ
with m = o(n). Then the unconstrained maximal redundancy
is

R∗n(Θ) =
m− 1

2
log
(e n
m

)
+

1

2
(1− log 2) (11)

+O(1/m) +O(m/
√
n).

and the unconstrained average redundancy becomes

Rn(Θ) =
m− 1

2
log
( n
m

)
+

1

2
(1− log 2) (12)

+O(1/m) +O(m/
√
n). (13)

We observe that R∗n(Θ)−Rn(Θ) = O(m). This fact should
be compared with a general results of [3] (see Theorem 6)
where it was proved that for a large class sources

R̃n(S)− R̃∗n(S) = O(cn(S))

where

cn(S) = sup
P∈S

∑
xn
1

P (xn1 ) lg

sup
P∈S

P (xn1 )

P (xn1 )
.

Actually, for binary memoryless sources cn(S) = O(1) and
cn(S) = O(m) for m-ary memoryless sources.

Now, we are ready to present our probability assignment
algorithm. We start with formula (7) on the mixture M(xn).
Then we observe that M(xn+1|xn) = M(xn+1)/M(xn). For
example, if assume that xn+1 symbol is i ∈ A. Thus

M(xn+1) =
B(k1 + 1/2, · · · , ki + 3/2, · · · , km + 1/2)

C(S) ·B(1/2)

·Dir(S : k1 + 1/2, · · · , ki + 3/2, · · · , km + 1/2).

Using the functional equation of the gamma function, namely
Γ(x + 1) = xΓ(x) allows us to write a simple sequential
update algorithm that we present next.

Theorem 3. Suppose that m is fixed and that S ⊆ Θ is a
convex polytope. Let Ni(xn) be the number of symbol i in
xn. Then

M(xn+1|xn) =
Nxn+1(xn) + 1/2

n+m/2
· (14)

·Dir(S;Ni(x
n) + 1/2 + 1(xn+1 = i), i = 1 · · ·m)

Dir(S;Ni(xn) + 1/2, i = 1 · · ·m)
.

Observe that for the unconstrained case Dir(Θ;Ni(x
n) +

1/2+1(xn+1 = i), i = 1 · · ·m) = Dir(Θ;Ni(x
n)+1/2, i =

1 · · ·m) = 1, and then our estimation algorithm reduces to the
KT-estimator, that is,

M(xn+1|Xn) =
Nxn+1(xn) + 1/2

n+m/2
. (15)

III. ANALYSIS AND PROOFS

In this section we sketch proofs of our main results. We
start with Theorem 2.

A. Proof of Theorem 2

By definition he have R∗n(Θ) = logSn, where

Sn =
∑
k

(
n

k

) m∏
i=1

(
ki
n

)ki
= (2π)−

m−1
2

∑
k

√
n√

k1 · · · km

(
1 +O

(
m∑
i=1

1

ki + 1

))
.



By a standard but tedious analysis we have∑
k

1√
k1 · · · km

= n
m
2 −1B(1/2) +O

(
mn

m
2 −

3
2

)
(16)

and ∑
k

1√
k1 · · · km

1

ki + 1
= O

(
B(1/2)n

m
2 −

3
2

)
. (17)

Then (16) and (17) imply

Sn = (2π)−
m−1

2 n
m−1

2 B(1/2)

(
1 +O

(
m√
n

))
.

Since

logB(1/2) = m log Γ(1/2)− log Γ(m/2)

we directly obtain the proposed representation (11) for
R∗n(Θ) = logSn.

Our starting point for the analysis of Rn(Θ) is

Rn(Θ) =
1

B(1/2)

∫
Θ

∑
k

(
n

k

)
θk−1/2 log

(
θkB(1/2)

B(k + 1/2)

)
(18)

where we write θk−1/2 :=
∏
i θ
k1−1/2
i . We need to estimate

different parts of the above sum. We first observe that∑
k

(
n

k

)
B(k + 1/2) =

∫
Θ

∑
k

(
n

k

)
θk−1/2dθ

=

∫
Θ

θ−1/2dθ = B(1/2).

More importantly we notice that∫
Θ

∑
k

(
n

k

)
θk−1/2 log θkdθ =

=
∑
k

(
n

k

) m∑
i=1

ki
∂

∂ki
B(k + 1/2)

and ∫
Θ

∑
k

(
n

k

)
θk−1/2 logB(k + 1/2) =

=
∑
k

(
n

k

)
B(k + 1/2) logB(k + 1/2).

Thus

Rn(Θ) = logB(1/2) +
1

B(1/2)

∑
k

(
n

k

)
B(k + 1/2)

·

(
m∑
i=1

ki
∂

∂ki
B(k + 1/2)− logB(k + 1/2)

)
. (19)

To deal with such sums we use the relation between the beta
function, the gamma function, and the psi function [11]. For
example

∂

∂ki
B(k + 1/2) = Ψ(ki + 1/2)−Ψ(n+m/2)

where Ψ(x) = Γ′(x)/Γ(x). Using these and Stirling’s formula

log Γ(x+ 1/2) = x log x− x+ log
√

2π − 1

24x
+O(1/x2),

log Γ(x+m/2) = x log x− x+
m− 1

2
log(x+m/2)

+ log
√

2π +

(
1

12
− m2

8

)
1

x
+O(m3/x2)

and we find
m∑
i=1

ki
∂

∂ki
B(k + 1/2)− logB(k + 1/2) = O(m2/n)

m− 1

2
(log(n+m/2)− 1− log(2π)) +O

(∑
i

k−1
i

)
.

Now we obtain similarly to (17)
m∑
i=1

(
n

k

)
B(k + 1/2)

ki + 1
= O

(
B(1/2)√

n

)
.

Summing up we arrive at

Rn(Θ) =
m− 1

2
log(n/2πe) + log

Γm(1/2)

Γ(m/2)
+O(m/

√
n).

We now use Stirling’s formula for Γ(m/2) when m is large
and o(n).

B. Proof of Theorem 1

As above our starting point is R∗n(S) = logSn where

Sn =
∑
k

(
n

k

)
sup
θ∈S

m∏
i=1

θkii .

The problem is now that we have to distinguish between the
case, where k/n ∈ S and the case, where k/n 6∈ S. If k/n ∈
S then we have

sup
θ∈S

m∏
i=1

θkii =

m∏
i=1

(
ki
n

)ki
as in the unconstrained case. If k/n 6∈ S then we have

sup
θ∈S

m∏
i=1

θkii =

m∏
i=1

θkii,opt

where (θi,opt) is on the boundary of S. For example, for m =
2 and S = {(θ, 1− θ) : θ ∈ [a, b]} we have for 0 ≤ k1 < an

sup
0≤θ≤1

θk1(1− θ)n−k1 = ak1(1− a)n−k1

and similar for bn < k1 ≤ n. Hence, as above we obtain

S(S)
n =

∑
k/n∈S

(
n

k

) m∏
i=1

(
ki
n

)ki
=
( n

2π

)m−1
2

C(S)B(1/2)
(
1 +O(1/

√
n)
)
.

The sum over k for which k/n 6∈ S is more difficult to handle.
But if S is a convex polytope we obtain after some (involved)
algebra

Sn − S(S)
n = O

(
n

m
2 −1

)
.



For example, if m = 2 and S = {(θ, 1− θ) : θ ∈ [a, b]} then

Sn − S(S)
n =

∑
0≤k1<an

(
n

k1

)
ak1(1− a)n−k1

+
∑

bn<k1≤n

(
n

k1

)
bk1(1− b)n−k1

= 1 +O(1/
√
n) = O(1)

Finally by using B(1/2) = Γ(1/2)m/Γ(m/2) and Γ(1/2) =√
π we directly arrive at (9).
Our starting point for the average redundancy is (8), how-

ever, we rewrite it in terms of S ⊆ Θ as follows

Rn(S) =
1

BS(1/2)

∫
S

∑
k

(
n

k

)
θk−1/2 log

(
θkBS(1/2)

BS(k + 1/2)

)
(20)

where we use the short hand notation

BS(α) =

∫
S
xα−1 dx = Dir(S;α)B(α).

As above we obtain

Rn(S) = logBS(1/2) +
∑
k

(
n

k

)
BS(k + 1/2)

BS(1/2)

·

(
m∑
i=1

ki
∂

∂ki
BS(k + 1/2)− logBS(k + 1/2)

)
.

Again we split the summation over k into several parts. If
k/n ∈ S−, where S− denotes all points in the interior of S
with distance ≥ n−1/2+ε to the boundary (for some ε > 0),
then the saddle point θi = ki/n of the integrand θk of the
integral of BS(k + 1/2) or ∂

∂ki
B(k + 1/2), respectively, is

contained in S−. Consequently we find for any L > 0

BS(k + 1/2) = BS(k + 1/2) +O(n−L),

∂

∂ki
BS(k + 1/2) =

∂

∂ki
B(k + 1/2) +O(n−L).

Hence ∑
k/n∈S−

(
n

k

)
BS(k + 1/2)

·

(
m∑
i=1

ki
∂

∂ki
BS(k + 1/2)− logBS(k + 1/2)

)

=
∑

k/n∈S−

(
n

k

)
B(k + 1/2)

·

(
m∑
i=1

ki
∂

∂ki
B(k + 1/2)− logB(k + 1/2)

)

=
∑

k/n∈S−

(
n

k

)
B(k + 1/2)·

(
m− 1

2
log

n

2πe
+O

(
m∑
i=1

1/(ki + 1)

))

=

(
m− 1

2
log

n

2πe
+O

(
1/
√
n
))

BS(1/2).

The other parts of the summation over k are more difficult to
handle. As an example we indicate the difficulties that appear
for m = 2 and S = {(θ, 1 − θ) : θ ∈ [a, b]}. Suppose that
|k1 − nb| ≤ n1/2+ε, that is (k1/n, 1 − k1/n) is at distance
≤ n−1/2+ε from the boundary of S. Here we have

BS(k1 +1/2, n−k1 +1/2) =

√
2π

n

(
k1

n

)k1 (n− k1

n

)n−k1
·

(
Φ

(
nb− k1√
nb(1− b)

)
+O(1/

√
n)

)
,

where Φ(u) denotes the normal distribution function. A similar
representation holds for the derivatives ∂

∂ki
BS(k+1/2). After

some algebra it follows that∑
|k1−nb|≤n1/2+ε

(
n

k

)
BS(k + 1/2)·

(
m∑
i=1

ki
∂

∂ki
BS(k + 1/2)− logBS(k + 1/2)

)
=

= O(1/
√
n).

The summation for nb + n1/2+ε < k1 ≤ n is much easier to
handle, so we skip it. This completes the proof of Theorem 1.
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