Dirichlet spectrum and transference inequalities

Antoine MARNAT

July 11, 2022
FWF - RSF Project : Online Workshop

Theorem (Dirichlet, 1842)

Let m and n be two strictly positive integers. For $i=1, \ldots, n$ and $j=1, \ldots, m$, let $\boldsymbol{\theta}=\left(\theta_{i, j}\right)_{i, j}$ be a mn-tuple of real numbers. Let $Q>1$ be a real number. Then there exists integers $q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{n}$ such that
$1 \leq \max _{1 \leq j \leq n}\left|q_{j}\right| \leq Q$ and $\max _{1 \leq i \leq m}\left|\theta_{i, 1} q_{1}+\cdots+\theta_{i, n} q_{n}-p_{i}\right| \leq Q^{-\frac{n}{m}}$

Definition

We define the exponent $\omega_{m, n}(\boldsymbol{\theta})$ as the supremum of ω such that the system

$$
0<\|\boldsymbol{\theta} \cdot \boldsymbol{p}\| \leq Q^{-\omega}, 1 \leq \max _{1 \leq i \leq n}\left|p_{i}\right| \leq Q
$$

has an integer solution $\left(p_{1}, \ldots, p_{n}\right)$ for arbitrarily large Q.

Definition

We define the exponent $\omega_{m, n}(\boldsymbol{\theta})$ as the supremum of ω such that the system

$$
0<\|\boldsymbol{\theta} \cdot \boldsymbol{p}\| \leq Q^{-\omega}, 1 \leq \max _{1 \leq i \leq n}\left|p_{i}\right| \leq Q
$$

has an integer solution $\left(p_{1}, \ldots, p_{n}\right)$ for arbitrarily large Q. and $\hat{\omega}_{m, n}(\boldsymbol{\theta})$ such that we have solutions for all large Q.

Theorem (Khintchine Transference Principle, 1926)

The inequalities

$$
\frac{\omega_{1, n}(\boldsymbol{\theta})}{(n-1) \omega_{1, n}(\boldsymbol{\theta})+n} \leq \omega_{n, 1}\left({ }^{t} \boldsymbol{\theta}\right) \leq \frac{\omega_{1, n}(\boldsymbol{\theta})-n+1}{n}
$$

holds for every point $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ in \mathbb{R}^{n} with $1, \theta_{1}, \ldots, \theta_{n}$ linearly independant over \mathbb{Q}.

Theorem (Khintchine Transference Principle, 1926)

The inequalities

$$
\frac{\omega_{1, n}(\boldsymbol{\theta})}{(n-1) \omega_{1, n}(\boldsymbol{\theta})+n} \leq \omega_{n, 1}\left({ }^{t} \boldsymbol{\theta}\right) \leq \frac{\omega_{1, n}(\boldsymbol{\theta})-n+1}{n}
$$

holds for every point $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ in \mathbb{R}^{n} with $1, \theta_{1}, \ldots, \theta_{n}$ linearly independant over \mathbb{Q}.

Theorem (Dyson, 1947)

Let $A \in M_{m \times n}(\mathbb{R})$. Write $\omega=\omega_{m, n}(A)$ and ${ }^{t} \omega=\omega_{n, m}\left({ }^{t} A\right)$. Then,

$$
{ }^{t} \omega \geq \frac{n \omega+m-1}{(n-1) \omega+m}, \quad \text { and } \quad \omega \geq \frac{m^{t} \omega+n-1}{(m-1)^{t} \omega+n} .
$$

Improving Jarnik and Apfelbeck, German showed that for uniform exponents,

Theorem (German, 2011)

$$
\begin{gathered}
\hat{\omega}_{n, m}(\boldsymbol{\theta}) \geq \frac{n-1}{m-\hat{\omega}_{m, n}\left({ }^{t} \boldsymbol{\theta}\right)} \text { if } \hat{\omega}_{m, n}\left({ }^{t} \boldsymbol{\theta}\right) \leq 1 \\
\hat{\omega}_{n, m}(\boldsymbol{\theta}) \geq \frac{n-\hat{\omega}_{m, n}\left({ }^{t} \boldsymbol{\theta}\right)^{-1}}{m-1} \text { if } \hat{\omega}_{m, n}\left({ }^{t} \boldsymbol{\theta}\right) \geq 1
\end{gathered}
$$

Question A: Show optimality for $m, n>1$ of Dyson and German transference inequalities and their respective splitting via intermediate exponents.
Idea : play with systems in the frame of parametric geometry of numbers.

For each $t \in \mathbb{R}$ and for each matrix A, let

$$
g_{t}=\left[\begin{array}{cc}
e^{t / m} \mathrm{I}_{m} & \\
& e^{-t / n} \mathrm{I}_{n}
\end{array}\right], \quad u_{A}=\left[\begin{array}{cc}
\mathrm{I}_{m} & A \\
& \mathrm{I}_{n}
\end{array}\right]
$$

where I_{k} denotes the k-dimensional identity matrix. Finally, let $d=m+n$, and for each $j=1, \ldots, d$, let $\lambda_{j}(\Lambda)$ denote the j th successive minimum of a lattice $\Lambda \subset \mathbb{R}^{d}$ (with respect to some fixed norm on \mathbb{R}^{d})
We consider the function
$\boldsymbol{\Lambda}_{\mathbf{A}}:[0, \infty) \rightarrow \mathbb{R}^{n+m}$

$$
t \quad \mapsto \quad\left(\operatorname { l o g } \left(\lambda_{1}\left(g_{t} u_{A} \mathbb{Z}^{n}\right), \ldots, \log \left(\lambda_{n+m}\left(g_{t} u_{A} \mathbb{Z}^{n}\right)\right) .\right.\right.
$$

Proposition

With the previous notation, we have

$$
\liminf _{t \rightarrow \infty} \frac{-1}{t} \log \lambda_{1}\left(g_{t} u_{A} \mathbb{Z}^{d}\right)=\frac{1}{n} \frac{\omega_{m, n}-\frac{m}{n}}{\omega_{m, n}+1} .
$$

Definition (Das - Fishman - Simmons - Urbański, 2019)

An $m \times n$ template is a continuous piecewise linear map $\boldsymbol{P}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ with the following properties:
(I) $P_{1} \leq \cdots \leq P_{d}$.
(II) $-\frac{1}{m} \leq P_{i}^{\prime} \leq \frac{1}{n}$ for all i.
(III) For all $j=1, \ldots, d$ and for every interval I such that $P_{j}<P_{j+1}$ on I, the function $P_{j}=\sum_{i \leq j} P_{i}$ is convex and piecewise linear on $/$ with slopes in $Z(j)$.

$$
\begin{equation*}
Z(j)=\left\{\frac{k}{m}-\frac{l}{n}: k+l=j, \quad 0 \leq k \leq m, \quad 0 \leq I \leq n\right\} \tag{1}
\end{equation*}
$$

We use the convention that $P_{0}=-\infty$ and $P_{d+1}=+\infty$.

Figure: The joint graph of a 1×2 partial template $f=\left(f_{1}, f_{2}, f_{3}\right)$, where the joint graph of a template is the union of the graphs of its comnonent functions

For a template \boldsymbol{P} on $\left[T_{0}, \infty\right)$, we define the local contraction rate $\delta(\boldsymbol{P}, t)$ by
$\delta(P, t)=\#\left\{\right.$ indices $(k, l), \quad k<I, \quad P_{k}$ goes up and P_{l} goes down
We then consider the average contraction rate defined by

$$
\Delta(\boldsymbol{P}, T)=\frac{1}{T-T_{0}} \int_{T_{0}}^{T} \delta(\boldsymbol{P}, t) d t
$$

Consider the lower average contraction rates $\underline{\delta}(\boldsymbol{P})$ defined by

$$
\underline{\delta}(\boldsymbol{P})=\liminf _{T \rightarrow \infty} \Delta(\boldsymbol{P}, T),
$$

Theorem (Variational principle, Das - Fishman - Simmons Urbański, 2019)

Be \mathcal{P} a set of templates on $\left[T_{0}, \infty\right)$ closed under finite perturbation. Let

$$
\mathcal{M}(\mathcal{P})=\left\{A \in \mathbb{R}^{m \times n} \mid \exists P \in \mathcal{P}, C \in \mathbb{R},\left\|\Lambda_{A}-P\right\| \leq C\right\} .
$$

Then,

$$
\operatorname{dim}_{H}(\mathcal{M}(\mathcal{P}))=\sup _{\boldsymbol{P} \in \mathcal{P} \underline{\delta}}(\boldsymbol{P})
$$

Question B: determine the spectrum of the 4 exponents

$\omega_{n, 1}, \omega_{1, n}, \hat{\omega}_{n, 1}, \hat{\omega}_{1, n}$.

Question B: determine the spectrum of the 4 exponents $\omega_{n, 1}, \omega_{1, n}, \hat{\omega}_{n, 1}, \hat{\omega}_{1, n}$.

Theorem (Bugeaud, Laurent, 2009)

For all n-tuple $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ with $1, \theta_{1}, \ldots, \theta_{n} \mathbb{Q}$-linearly independent, we have the following transference inequalities.

$$
\begin{gathered}
\frac{\left(\hat{\omega}_{n, 1}(\boldsymbol{\theta})-1\right) \omega_{n, 1}(\boldsymbol{\theta})}{\left((n-2) \hat{\omega}_{n, 1}(\boldsymbol{\theta})+1\right) \omega_{n, 1}(\boldsymbol{\theta})+(n-1) \hat{\omega}_{n, 1}(\boldsymbol{\theta})} \leq \omega_{1, n}(\boldsymbol{\theta}) \\
\leq \frac{\left(1-\hat{\omega}_{1, n}(\boldsymbol{\theta})\right) \omega_{n, 1}(\boldsymbol{\theta})-n\left(2-\hat{\omega}_{1, n}(\boldsymbol{\theta})\right)}{n-1}
\end{gathered}
$$

Question B: determine the spectrum of the 4 exponents $\omega_{n, 1}, \omega_{1, n}, \hat{\omega}_{n, 1}, \hat{\omega}_{1, n}$.

Theorem (Bugeaud, Laurent, 2009)

For all n-tuple $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ with $1, \theta_{1}, \ldots, \theta_{n} \mathbb{Q}$-linearly independent, we have the following transference inequalities.

$$
\begin{gathered}
\frac{\left(\hat{\omega}_{n, 1}(\boldsymbol{\theta})-1\right) \omega_{n, 1}(\boldsymbol{\theta})}{\left((n-2) \hat{\omega}_{n, 1}(\boldsymbol{\theta})+1\right) \omega_{n, 1}(\boldsymbol{\theta})+(n-1) \hat{\omega}_{n, 1}(\boldsymbol{\theta})} \leq \omega_{1, n}(\boldsymbol{\theta}) \\
\leq \frac{\left(1-\hat{\omega}_{1, n}(\boldsymbol{\theta})\right) \omega_{n, 1}(\boldsymbol{\theta})-n\left(2-\hat{\omega}_{1, n}(\boldsymbol{\theta})\right)}{n-1}
\end{gathered}
$$

Idea: Start with $n=3$.

Question B: determine the spectrum of the 4 exponents $\omega_{n, 1}, \omega_{1, n}, \hat{\omega}_{n, 1}, \hat{\omega}_{1, n}$.

Theorem (Bugeaud, Laurent, 2009)

For all n-tuple $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ with $1, \theta_{1}, \ldots, \theta_{n} \mathbb{Q}$-linearly independent, we have the following transference inequalities.

$$
\begin{aligned}
& \frac{\left(\hat{\omega}_{n, 1}(\boldsymbol{\theta})-1\right) \omega_{n, 1}(\boldsymbol{\theta})}{\left((n-2) \hat{\omega}_{n, 1}(\boldsymbol{\theta})+1\right) \omega_{n, 1}(\boldsymbol{\theta})+(n-1) \hat{\omega}_{n, 1}(\boldsymbol{\theta})} \leq \omega_{1, n}(\boldsymbol{\theta}) \\
& \leq \frac{\left(1-\hat{\omega}_{1, n}(\boldsymbol{\theta})\right) \omega_{n, 1}(\boldsymbol{\theta})-n\left(2-\hat{\omega}_{1, n}(\boldsymbol{\theta})\right)}{n-1}
\end{aligned}
$$

Idea: Start with $n=3$. For general n, Schleischitz showed that $B L$ is reached when the ratio $\omega_{n, 1} / \hat{\omega}_{n, 1}$ is large. One could try to decompose the spectrum in parts depending on this ratio. See recent work with Moshchevitin.

For a given norm consider the distance to a nearest integer $\|$.$\| . Given \theta \in \mathbb{R}^{n}$, define

$$
\psi_{\theta}(Q):=\min _{1 \leq q \leq Q}\|q \theta\|
$$

and consider the associated Dirichlet constant

$$
d(\theta):=\limsup _{Q \rightarrow \infty} Q^{1 / n} \psi_{\theta}(Q)
$$

The Dirichlet spectrum is the set of all values that the Dirichlet constant takes.

In recent work, Schleischitz shows that for $n \geq 2$ and the sup norm, the Dirichlet spectrum is $[0,1]$ for both simultaneous approximation and approximation by one linear form.

In recent work, Schleischitz shows that for $n \geq 2$ and the sup norm, the Dirichlet spectrum is $[0,1]$ for both simultaneous approximation and approximation by one linear form. Question C: can this construction be adapted for other norms ? Can it be extended to n systems in m linear forms ?

In recent work, Schleischitz shows that for $n \geq 2$ and the sup norm, the Dirichlet spectrum is $[0,1]$ for both simultaneous approximation and approximation by one linear form.
Question C: can this construction be adapted for other norms ? Can it be extended to n systems in m linear forms ?

For simultaneous approximation, Schleischitz constructs Liouville numbers. For approximation by one linear form, he explains that it does not need to be the case. This may be refined.
Question D: For $d \in[0,1]$ and θ such that $d(\theta)=d$, how large can be $d^{*}:=\liminf _{Q \rightarrow \infty} Q^{1 / n} \psi_{\theta}(Q)$? Can we have badly approximable numbers ?
Question E: What do we know about Hausdorff dimension of point with given d (and d^{*}) ? This relates to the (difficult) open problem of the Hausdorff dimension of ϵ - Dirichlet improvable numbers $D I_{n}(\epsilon):=\left\{\theta \mid \psi_{\theta}(Q) \leq \epsilon Q^{1 / n}\right\}$.

