
Transference inequalities
Dirichlet spectrum

Dirichlet spectrum and transference
inequalities

Antoine MARNAT

July 11, 2022
FWF - RSF Project : Online Workshop

A. Marnat Dirichlet spectrum and transference inequalities



Transference inequalities
Dirichlet spectrum

Theorem (Dirichlet, 1842)

Let m and n be two strictly positive integers. For i = 1, . . . , n
and j = 1, . . . ,m, let θ = (θi ,j)i ,j be a mn-tuple of real
numbers. Let Q > 1 be a real number. Then there exists
integers q1, . . . , qm, p1, . . . , pn such that

1 ≤ max
1≤j≤n

|qj | ≤ Q and max
1≤i≤m

|θi ,1q1 + · · ·+θi ,nqn−pi | ≤ Q−
n
m
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Definition
We define the exponent ωm,n(θ) as the supremum of ω such
that the system

0 < ‖θ · p‖ ≤ Q−ω , 1 ≤ max
1≤i≤n

|pi | ≤ Q

has an integer solution (p1, . . . , pn) for arbitrarily large Q .

and ω̂m,n(θ) such that we have solutions for all large Q.
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Theorem ( Khintchine Transference Principle, 1926)

The inequalities

ω1,n(θ)

(n − 1)ω1,n(θ) + n
≤ ωn,1(tθ) ≤ ω1,n(θ)− n + 1

n

holds for every point θ = (θ1, . . . , θn) in Rn with 1, θ1, . . . , θn
linearly independant over Q.

Theorem (Dyson, 1947)

Let A ∈ Mm×n(R). Write ω = ωm,n(A) and tω = ωn,m(tA).
Then,

tω ≥ nω + m − 1
(n − 1)ω + m

, and ω ≥ mtω + n − 1
(m − 1)tω + n

.
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Improving Jarńik and Apfelbeck, German showed that for
uniform exponents,

Theorem (German, 2011)

ω̂n,m(θ) ≥ n − 1
m − ω̂m,n(tθ)

if ω̂m,n(tθ) ≤ 1

ω̂n,m(θ) ≥ n − ω̂m,n(tθ)−1

m − 1
if ω̂m,n(tθ) ≥ 1
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Question A : Show optimality for m, n > 1 of Dyson and
German transference inequalities and their respective splitting
via intermediate exponents.
Idea : play with systems in the frame of parametric geometry
of numbers.
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For each t ∈ R and for each matrix A, let

gt =

[
et/mIm

e−t/nIn

]
, uA =

[
Im A

In

]
,

where Ik denotes the k-dimensional identity matrix. Finally, let
d = m + n, and for each j = 1, . . . , d , let λj(Λ) denote the jth
successive minimum of a lattice Λ ⊂ Rd (with respect to some
fixed norm on Rd)
We consider the function
ΛA : [0,∞) → Rn+m

t 7→ (log(λ1(gtuAZn), . . . , log(λn+m(gtuAZn)).

Proposition
With the previous notation, we have

lim inf
t→∞

−1
t

log λ1(gtuAZd) =
1
n

ωm,n − m
n

ωm,n + 1
.
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Definition (Das – Fishman – Simmons – Urbański, 2019)

An m × n template is a continuous piecewise linear map
P : R+ → Rd with the following properties:
(I) P1 ≤ · · · ≤ Pd .
(II) − 1

m
≤ P ′i ≤ 1

n
for all i .

(III) For all j = 1, . . . , d and for every interval I such that
Pj < Pj+1 on I , the function Pj =

∑
i≤j Pi is convex and

piecewise linear on I with slopes in Z (j).

Z (j) =
{

k
m
− l

n
: k + l = j , 0 ≤ k ≤ m, 0 ≤ l ≤ n

}
,

(1)
We use the convention that P0 = −∞ and Pd+1 = +∞.
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Figure: The joint graph of a 1× 2 partial template f = (f1, f2, f3),
where the joint graph of a template is the union of the graphs of its
component functions.
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For a template P on [T0,∞), we define the local contraction
rate δ(P, t) by

δ(P, t) = #{indices(k , l), k < l , Pk goes up and Pl goes down}

We then consider the average contraction rate defined by

∆(P,T ) =
1

T − T0

∫ T

T0

δ(P, t)dt,

Consider the lower average contraction rates δ(P) defined by

δ(P) = lim inf
T→∞

∆(P,T ),
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Theorem (Variational principle, Das – Fishman – Simmons –
Urbański, 2019)

Be P a set of templates on [T0,∞) closed under finite
perturbation. Let

M(P) = {A ∈ Rm×n | ∃P ∈ P ,C ∈ R, ‖ΛA − P‖ ≤ C}.

Then,

dimH(M(P)) = supP∈P δ(P),
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Question B : determine the spectrum of the 4 exponents
ωn,1, ω1,n, ω̂n,1, ω̂1,n.

Theorem (Bugeaud, Laurent, 2009)

For all n-tuple θ = (θ1, . . . , θn) with 1, θ1, . . . , θn Q-linearly
independent, we have the following transference inequalities.

(ω̂n,1(θ)− 1)ωn,1(θ)

((n − 2)ω̂n,1(θ) + 1)ωn,1(θ) + (n − 1)ω̂n,1(θ)
≤ ω1,n(θ)

≤
(1− ω̂1,n(θ))ωn,1(θ)− n(2− ω̂1,n(θ))

n − 1
.

Idea: Start with n = 3. For general n, Schleischitz showed
that BL is reached when the ratio ωn,1/ω̂n,1 is large. One
could try to decompose the spectrum in parts depending on
this ratio. See recent work with Moshchevitin.
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For a given norm consider the distance to a nearest integer
‖.‖. Given θ ∈ Rn, define

ψθ(Q) := min
1≤q≤Q

‖qθ‖

and consider the associated Dirichlet constant

d(θ) := lim sup
Q→∞

Q1/nψθ(Q).

The Dirichlet spectrum is the set of all values that the
Dirichlet constant takes.
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In recent work, Schleischitz shows that for n ≥ 2 and the sup
norm, the Dirichlet spectrum is [0, 1] for both simultaneous
approximation and approximation by one linear form.

Question C : can this construction be adapted for other
norms ? Can it be extended to n systems in m linear forms ?

For simultaneous approximation, Schleischitz constructs
Liouville numbers. For approximation by one linear form, he
explains that it does not need to be the case. This may be
refined.
Question D : For d ∈ [0, 1] and θ such that d(θ) = d , how
large can be d∗ := lim infQ→∞Q1/nψθ(Q) ? Can we have
badly approximable numbers ?
Question E : What do we know about Hausdorff dimension
of point with given d (and d∗) ? This relates to the (difficult)
open problem of the Hausdorff dimension of ε- Dirichlet
improvable numbers DIn(ε) := {θ | ψθ(Q) ≤ εQ1/n}.
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