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1. Introduction
Suppose that we have some interesting sequence an of natural
numbers. What is the first most natural question one should ask
about an in the context of analytic number theory?

Clearly, this most
basic question is “what is the asymptotics of an?” or, equivalently,
what is the asymptotics for

A(x) = #{n : an ≤ x}.

For example, we all know the answer when an = pn is the n−th prime
number and in this case it leads to more interesting questions on
behavior of ζ(s). However, in this talk I am going to concentrate more
on values of quadratic forms, so our most classical example would be
the sequence sn of all numbers that are sums of two squares. In this
case the answer to the first question is also well-known:

#{sn ≤ x} ∼ Kx√
lnx

,

where

K =
1√
2

∏
p≡3 (mod 4)

(
1− 1

p2

)−1/2

≈ 0.76422
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1. Introduction

Okay, if we already know something about asymptotics of A(x), what
is the next natural question one should ask? Of course, there are lots
of different candidates for a correct second question.

My favourite
option is the problem of estimating gaps, i.e. the function

Ga(x) = max
an+1≤x

(an+1 − an).

This problem, however, sometimes turns out to be extremely difficult.
For example, for our example above, an = sn, it is known that

Gs(x) ≪ x1/4.

The proof is completely obvious: one can approximate any number
below x by a square from below with an error O(

√
x), do this two

times and you get this estimate. Interestingly, this result is still the
best known.
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1. Introduction

As for the lower bounds for Gs(x), they are constructive in nature.
More precisely, proofs take X ≍ lnx and construct some nice residue
modulo

P = 4
∏

p≡3 (mod 4),p≤X

p[lnX/ ln p]+1.

For example, a result of P. Erdős (1951) gives

Gs(x) ≫
lnx√
ln lnx

and result of I. Richards (1982) states that

Gs(x) ≥
(
1

4
+ o(1)

)
lnx.

This was recently improved by R. Dietmann, C. Elsholtz, A.K., S.
Konyagin and J. Maynard to

(
390
449 + o(1)

)
lnx.
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2. The third question

During my visit in Austria in 2019, C. Elsholtz told me about a third
kind of question one can ask about a sequence. Namely, can one
construct values of an with anomalous binary expansions?

His
question was more particular: given ε > 0, can we prove that there are
sums of two squares with proportion of ones in binary expansion at
least 1− ε? Clearly, analogous question for zeroes is trivial, since all
powers of 2 are sums of two squares. Let us discuss several approaches
to this problem. First of all, we can emulate the proof of the bound
Gs(x) ≪ x1/4 and notice that

(22n−1−1)2+(2n−1)2 = 24n−2−22n+1+22n−2n+1+1 = 24n−2−2n+1+2.

This number has 4n+O(1) digits and 3n+O(1) of them are equal to
1, so we get ε = 1/4− o(1). Curiously, in this context one can use
current results on Gauss circle problem to achieve a somewhat better
proportion.
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2. The third question

More precisely, M. Huxley proved that if r2(n) is the number of
representations of n as a sum of two squares, then∑

n≤x

r2(n) = πx+O(x131/416+o(1)).

Since r2(n) ≪ no(1), this implies, for instance, that for n → +∞ and
b > 131/416 there are 2bn−o(n) sums of two squares between 2n − 2bn

and 2n − 1. All numbers N in this interval have binary expansions of
the form

N = 11 . . . 1︸ ︷︷ ︸
head

ε1 . . . εbn︸ ︷︷ ︸
tail

Here “head” has ≈ n(1− b) ones and “tail” has ≈ nb random digits.
Simple application of, say, central limit theorem, shows that for all
but 2(b−ε)n numbers the tail contains at least nb(1/2− δ) ones. This
approach gives the proportion 1− b+ b/2 + o(1) = (2− b)/2 + o(1),
i.e. for b → 131/416 we obtain the proportion 701/832− o(1), i.e.
ε = 131

832 ≈ 0.15745
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2. The third question

It turns out, however, that one can construct sums of two squares with
a lot of 1’s explicitly without any theorems on Gauss circle problem!

Theorem 1

For any n ≥ 1 the number 3(22
n − 1) is a sum of two squares. Also, it

has only two zeros in binary expansion.

The second part is easy to see:
3(22

n − 1) = 22
n+1 + 22

n − 3 = 22
n+1 + 22

n−1 + 22
n−2 + . . .+ 22 + 1.

As for the first part, notice that 22
n − 1 = (22

n−1

+ 1)(22
n−1 − 1).

Applying this formula repeatedly, we get

3(22
n

−1) = 3(22
n−1

+1)(22
n−1

−1) = 3(22
n−1

+1)(22
n−2

+1) . . . (22+1)(2+1).

This product contains only factors of the form x2 + 1 and also first
and last factors, which both are equal to 3. Since sums of two squares
are multiplicatively closed, we get the desired result.
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2. The third question

It feels that Theorem 1 should have a generalization to other
quadratic forms. Let us discuss such a generalization.

Theorem 2
Let D ̸= 1 be a fundamental discriminant, i.e. either D is squarefree
and D ≡ 1 (mod 4) or D/4 is squarefree and D/4 ≡ 2 or 3 (mod 4).
Then for any quadratic form Q(x, y) = Ax2 +Bxy + Cy2 with
B2 − 4AC = D and any ε > 0 there are infinitely many values x, y
such that Q(x, y) has proportion of ones in binary expansion at least
1− ε.

To prove this, notice first that it is enough to find a large number N
with large proportion of ones in binary expansion, represented by
some quadratic form of discriminant D. Indeed, by Gauss composition
law, for any two quadratic forms Q1, Q2 of discriminant D there is a
quadratic form Q3 such that for all x1, y1, x2, y2 there are x3, y3 with
Q1(x1, y1)Q2(x2, y2) = Q3(x3, y3). The set of SL(2,Z)−equivalence
classes of quadratic forms is a finite abelian group with respect to this
operation.
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2. The third question

Therefore, one can find a finite set of non-zero integers a1, . . . , ah such
that if N = Q(x, y) and Q1 is a quadratic form of discriminant D
then for some i ≤ h we have aiN = Q1(X,Y ).

This proves the claim
above, since if N has few zeros in binary expansion, then so does aiN .
First of all, let us figure out the case of prime |D|. The case D > 0 is
trivial, so we are only interested in D = −p, where p ≡ 3 (mod 4). In
this case, we have the following:

Lemma 1

Let p ≡ 3 (mod 4) be a prime, Φp(x) =
xp−1
x−1 be the cyclotomic

polynomial. Then there are polynomials Ap(x) and Bp(x) with

Φp(x) = A2
p(x) +Ap(x)Bp(x) +

p+ 1

4
Bp(x)

2.

To see this, take ζp = exp
(

2πi
p

)
and consider Z[ζp]. The polynomial

Φp(x) factors into linear factors over this ring.
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2. The third question

Next, the Gauss sum gives you an inclusion Z
[
1+

√
−p

2

]
⊂ Z[ζp].

Factorization of Φp(x) also gives a formula Φp(x) = Cp(x)Cp(x),
where Cp ∈ Z

[
1+

√
−p

2

]
and Cp is a polynomial with conjugate

coefficients.

This concludes the proof. For example, explicit
computations show that

(x3−x−1)2+(x3−x−1)(x2+x)+2(x2+x)2 = x6+x5+. . .+1 = Φ7(x).

Taking large k and considering

fk(x) = Φp(x)Φp(x
p) . . .Φp(x

pk−1

)

we notice that by Lemma 1 all values of fk(x) are represented by
X2 +XY + p+1

4 Y 2. On the other hand,

Φp(x)Φp(x
p) . . .Φp(x

pk−1

) =
xp − 1

x− 1

xp2 − 1

xp − 1
. . .

xpk − 1

xpk−1 − 1
=

xpk − 1

x− 1
.
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2. The third question
This means that fk(2) = 2p

k − 1 is always represented by
x2 + xy + p+1

4 y2, which concludes the proof for prime |D|. For
example, we get

2343 − 1 = x2 + xy + 2y2

for

x = 4220799266924942382277838118331824555994069089113755

and

y = 24083462164432519803208981310273770299704201178234.

How do we generalize such a proof? For simplicity, let us assume that
D is odd. One can notice that a number N is represented by some
quadratic form of discriminant D iff there is no odd α and prime p

with
(

D
p

)
= −1 and pα || N . One can prove this, for example, using

the factorization of Dedekind zeta-function of Q(
√
D):

ζQ(
√
D)(s) = ζ(s)L(s, χD)
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2. The third question
On the other hand, all prime factors of Φ|D|(x) for even x are either
prime factors of |D| or of the form |D|k + 1. This, together with the
quadratic reciprocity law, proves that values of Φ|D|(x) are always
represented by some quadratic form of discriminant D (much more
explicit results are known).

Therefore, we can always take products of
some numbers of the form Φ|D|(2

d). The trick is to make the resulting
number have few zeros in the binary expansion. To do so, notice first
that

Φ|D|(x) =
∏
d||D|

(xd − 1)µ(|D|/d).

Möbius inversion then gives

Φ
(2)
|D|(x) :=

∏
d||D|

Φ|D|(x
d) =

∏
d||D|

(xd2

− 1)µ(|D|/d).

Continuing this process, we can set

Φ
(k)
|D|(x) =

∏
d||D|

Φ
(k−1)
|D| (xd2k−1

)
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2. The third question

We then obtain

Φ
(k)
|D|(x) =

∏
d||D|

(xd2k

− 1)µ(|D|/d).

When k is large, this expansion has a clear dominating term:
x|D|2

k

− 1. To obtain our result we now need to get rid of the
“denominator”:∏

d|||D|:µ(|D|/d)=−1

(xd2k

− 1)2Φ
(k)
|D|(x) =

∏
d||D|

(xd2k

− 1)µ
2(|D|/d).

Since this last operation cannot produce any odd exponents in
factorization, we see that the number∏

d||D|

(2d
2k

− 1)µ
2(|D|/d)

is always represented by some quadratic form of discriminant |D|.
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2. The third question

On the other hand, if we denote the product without d = |D| term by
N , i.e.

N =
∏

d||D|,d̸=|D|

(2d
2k

− 1)µ
2(|D|/d),

then for k → +∞ we have N ≪ 2o(|D|2
k
).

If we set A = N(2|D|2
k

− 1)
and B = N − 1, then for the binary digit sums s2 we get from
subadditivity

|D|2
k

≤ s2(N2|D|2
k

−1) = s2(A+B) ≤ s2(A)+s2(B) = s2(A)+o(|D|2
k

),

which concludes the proof.
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3. Conclusion

The content of this talk gives several answers to “the third question”
for quadratic forms, but it also raises several more questions. For
instance, one can notice that for sums of two squares we produced an
example which is always divisible by 9, hence its representation is
never primitive. Can we give an example with a primitive
representation?

Same question arises for some values of |D|, since we
multiplied by some square at the end. Also, our proof gives a number
with N digits and O(Na) zeros for some a < 1. Can we always replace
it by O(1), like in the case of two squares? During some discussion on
this topic, S.V. Konyagin also asked what can be done for squarefree
integers. I gave this problem as a Master’s thesis topic to my student
K. Bobkov.
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3. Conclusion

For squarefree integers, recent result by Tsz Ho Chan states that the
interval (x, x+ Cx5/26) always contains a lot of squarefree numbers.
Therefore, the “trivial” proportion in this case is
2−5/26

2 − o(1) = 47
52 − o(1) — a bit larger than 90%.

Unfortunately,
improving this seems to be difficult. Konstantin was able to improve
upon the “trivial” exponent for the case of k-free numbers. For k-free
numbers, the trivial exponent turns out to be 1− 1

4k+2 . Using results
on moments of gaps between k-free numbers, K. Bobkov was able to
prove the following result:

Theorem 3 (K. Bobkov, 2022)

For large k, for any α < 1− 2 ln 2
k ln k there are infinitely many k-free

numbers with the proportion of ones in binary expansion greater than
α.
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3. Conclusion

This result becomes better than the trivial one for k > 258. Two
natural questions here are: “what happens for k ≤ 258?” and “can we
do better than O

(
1

k ln k

)
?”.

I would hope to improve 1/k ln k to k−1−c

for some c > 0.
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Thank you for your
attention!
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