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Sudler products I

For α 6∈ Q, consider the product

PN(α) =
N∏

n=1

2 |sin(πnα)| .

How large is PN(α) as N →∞?
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Sudler products II

Let φ denote the Golden Mean.

Theorem (Mestel and Verschueren, 2016)

There is a constant C such that

PFm(φ)→ C

as m→∞.

Alternatively: PFm−1(φ)→ C̃Fm as m→∞.

Compare:
∏M−1

n=1 2| sin(πn/M)| = M.

Keyword: cotangent sums.
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Sudler products III

Theorem (Grepstad, Kaltenböck, Neumüller, 2020)

lim inf
N→∞

PN(φ) > 0.
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Sudler products IV

Assume N = F100 + F98.

PN(φ) =
N∏

n=1

2| sin(πnφ)|

=

F100∏
n=1

2| sin(πnφ)| ×
F100+F98∏
n=F100+1

2| sin(πnφ)|

=

F100∏
n=1

2| sin(πnφ)| ×
F98∏
n=1

2| sin(π(F100 + n)φ)|

=

F100∏
n=1

2| sin(πnφ)| ×
F98∏
n=1

2| sin(π(nφ+ F100φ︸ ︷︷ ︸
the “shift”

)|.
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Sudler products V

Generally:

PN(α, x) =
N∏

n=1

2| sin(π(nα + x))|.

It turns out:
Pqk (α, (−1)kx/qk)

converges to a function.
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Sudler products VI
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Sudler products VII
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Sudler products VIII

Theorem (A.–Technau–Zafeiropoulos, 2022)

Let α = [0; ā]. Then

lim inf
N→∞

PN(α) > 0 and lim sup
N→∞

PN(α)

N
<∞

if and only if a ∈ {1, 2, 3, 4, 5}.
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Sudler products - the quantum connection I

Let

J41,0(q) =
∞∑
n=0

∣∣(1− q)(1− q2) . . . (1− qn)
∣∣2 =

∞∑
n=0

|(q; q)|2.

If q = e2πia/Q , then

J41,0(q) = J41(a/Q) =
Q∑

N=1

P2
N(a/Q).
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Sudler products - the quantum connection I

Note that trivially PN(x) = PN(x + 1), and so J41(x) = J41(x + 1).

Zagier considered

h(x) = log
J41(x)

J41(1/x)
.
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Sudler products - the quantum connection II
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Sudler products - the quantum connection III

Theorem (A.–Borda, 2021)

The function h(x) is continuous at all irrationals x that have
unbounded partial quotients.

Connection with value distribution of quantum modular forms
(Bettin–Drappeau).
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The Duffin–Schaeffer conjecture I

Theorem (Khintchine, 1924)

Assume that ψ is decreasing. The equation∣∣∣∣α− p

q

∣∣∣∣ ≤ ψ(q)

q

has finitely resp. infinitely many solutions for almost all α, if the
series

∞∑
q=1

ψ(q)

converges resp. diverges.

The conclusion fails without the monotonicity assumption
(Duffin–Schaeffer, 1942).
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The Duffin–Schaeffer conjecture II

Theorem (Koukoulopoulos–Maynard, 2020)

Assume that ψ is decreasing. The equation∣∣∣∣α− a

q

∣∣∣∣ ≤ ψ(q)

q

has finitely resp. infinitely many solutions with a, q co-prime for
almost all α, if the series

∞∑
q=1

ψ(q)ϕ(q)

q
.

converges resp. diverges.
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The Duffin–Schaeffer conjecture III

Let

Eq :=
⋃

1≤a≤q,
(a,q)=1

(
a

q
− ψ(q)

q
,
a

q
+
ψ(q)

q

)
.

Pollington–Vaughan:

λ(Eq ∩ Er )� λ(Eq)λ(Er )
∏

p| qr

(q,r)2
,

(q,r) “large”

(
1 +

1

p

)
.
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The Duffin–Schaeffer conjecture IV

Theorem (Koukoulopoulos–Maynard, 2020)

Let Q be a set of integers. If∑
q∈Q

λ(Eq) ≥ 1,

then ∑
q,r∈Q λ(Eq ∩ Er )(∑

q∈Q λ(Eq)
)2 � 1.
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The Duffin–Schaeffer conjecture V

Christoph Aistleitner
Metric Diophantine approximation, trigonometric products, and continued fraction statistics



The Duffin–Schaeffer conjecture VI
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The Duffin–Schaeffer conjecture VII

Theorem (A.–Borda–Hauke, 2022)

If ∑
q∈Q

λ(Eq) = Ψ(Q),

then ∑
q,r∈Q λ(Eq ∩ Er )(∑

q∈Q λ(Eq)
)2 ≤ 1 + O

(
1

(log Ψ(Q))C

)
.
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The Duffin–Schaeffer conjecture VIII

Theorem (A.–Borda–Hauke, 2022)

Let
Q∑

q=1

λ(Eq) = Ψ(Q).

Then for almost all α the number of co-prime solutions [of the
inequality] is of order

Ψ(Q) + O

(
Ψ(Q)

(log Ψ(Q))C

)
.
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Normal numbers I

A number x is normal in base b if the sequence (bnx)n≥1 is u.d.
mod 1.

If x is normal in base b, then x + p/q and p/q · x are also normal
in base b.
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Normal numbers II

There is a characterization of those y for which

x normal in base b ⇒ x + y normal in base b

(Rauzy 1976; keyword: entropy).

Q1: This set depends on b. Are there numbers y which preserve
normality under addition in all bases?
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Normal numbers III

Q2: Is there an irrational y such that

x normal in base b ⇒ x · y normal in base b.

Q3: Same question in all bases.
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Normal numbers IV

Q4: What is the minimal order of the discrepancy of (bnx)?
(Korobov’s problem; Levin 1999).

Q5: What is the minimal order of the discrepancy of (bnx) in all
bases? (A.–Becher–Scheerer–Slaman, 2017).
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Continued fractions I

Let S(a/N) denote the sum of partial quotients of a/N.
Let M(a/N) denote the maximal partial quotient.

Theorem (Zaremba, 1974)

For all N there is a reduced fraction a/N with M(a/N)� logN.

Theorem (Larcher, 1986)

For all N there is a reduced fraction a/N with

S(a/N)� logN log logN
N

ϕ(N)
.

Theorem (Rukavishnikova, 2011)

Let g(N)→∞. For all N there is a reduced fraction a/N with

S(a/N)� logN log logN g(N).
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Continued fractions II

Theorem (Bettin and Drappeau, 2020)

There is a limit distribution of

S(a/N)− 12
π2 log logQ

logQ

w.r.t. the normalized counting measure on the Farey fractions of
order Q.

Similar results for the distribution of the length (Baladi–Vallee),
the maximal partial quotient (Hensley), etc.
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Continued fractions III

Q: In which way are different partial quotients of reduced fractions
a/N “independent”?
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