Metric Diophantine approximation, trigonometric products, and continued fraction statistics

Christoph Aistleitner
aistleitner@math.tugraz.at

TU Graz, Austria
FWF RSF Workshop
July 12, 2022

Sudler products I

For $\alpha \notin \mathbb{Q}$, consider the product

$$
P_{N}(\alpha)=\prod_{n=1}^{N} 2|\sin (\pi n \alpha)|
$$

How large is $P_{N}(\alpha)$ as $N \rightarrow \infty$?

Sudler products II

Let ϕ denote the Golden Mean.
Theorem (Mestel and Verschueren, 2016)
There is a constant C such that

$$
P_{F_{m}}(\phi) \rightarrow C
$$

as $m \rightarrow \infty$.

Alternatively: $P_{F_{m}-1}(\phi) \rightarrow \tilde{C} F_{m}$ as $m \rightarrow \infty$
Compare: $\prod_{n=1}^{M-1} 2|\sin (\pi n / M)|=M$.
Keyword: cotangent sums.

Sudler products II

Let ϕ denote the Golden Mean.

Theorem (Mestel and Verschueren, 2016)

There is a constant C such that

$$
P_{F_{m}}(\phi) \rightarrow C
$$

as $m \rightarrow \infty$.

Alternatively: $P_{F_{m}-1}(\phi) \rightarrow \tilde{C} F_{m}$ as $m \rightarrow \infty$.
Compare: $\prod_{n=1}^{M-1} 2|\sin (\pi n / M)|=M$.

Keyword: cotangent sums.

Sudler products II

Let ϕ denote the Golden Mean.

Theorem (Mestel and Verschueren, 2016)

There is a constant C such that

$$
P_{F_{m}}(\phi) \rightarrow C
$$

as $m \rightarrow \infty$.

Alternatively: $P_{F_{m}-1}(\phi) \rightarrow \tilde{C} F_{m}$ as $m \rightarrow \infty$.
Compare: $\prod_{n=1}^{M-1} 2|\sin (\pi n / M)|=M$.

Keyword: cotangent sums.

Sudler products II

Let ϕ denote the Golden Mean.

Theorem (Mestel and Verschueren, 2016)

There is a constant C such that

$$
P_{F_{m}}(\phi) \rightarrow C
$$

as $m \rightarrow \infty$.

Alternatively: $P_{F_{m}-1}(\phi) \rightarrow \tilde{C} F_{m}$ as $m \rightarrow \infty$.
Compare: $\prod_{n=1}^{M-1} 2|\sin (\pi n / M)|=M$.
Keyword: cotangent sums.

Sudler products III

Theorem (Grepstad, Kaltenböck, Neumüller, 2020)

$$
\liminf _{N \rightarrow \infty} P_{N}(\phi)>0 .
$$

Sudler products IV

Assume $N=F_{100}+F_{98}$.

$$
P_{N}(\phi)=\prod_{n=1}^{N} 2|\sin (\pi n \phi)|
$$

Sudler products IV

Assume $N=F_{100}+F_{98}$.

$$
\begin{aligned}
P_{N}(\phi) & =\prod_{n=1}^{N} 2|\sin (\pi n \phi)| \\
& =\prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=F_{100}+1}^{F_{100}+F_{98}} 2|\sin (\pi n \phi)| \\
= & \prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=1}^{F_{98}} 2\left|\sin \left(\pi\left(F_{100}+n\right) \phi\right)\right| \\
& \prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=1}^{F_{98}} 2 \mid \sin (\pi(n \phi+\underbrace{F_{100 \phi}}) \mid
\end{aligned}
$$

Sudler products IV

Assume $N=F_{100}+F_{98}$.

$$
\begin{aligned}
P_{N}(\phi) & =\prod_{n=1}^{N} 2|\sin (\pi n \phi)| \\
& =\prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=F_{100}+1}^{F_{100}+F_{98}} 2|\sin (\pi n \phi)| \\
& =\prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=1}^{F_{98}} 2\left|\sin \left(\pi\left(F_{100}+n\right) \phi\right)\right| \\
& =\prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=1}^{F_{98}} 2 \mid \sin (\pi(n \phi+\underbrace{F_{100 \phi}}) \mid
\end{aligned}
$$

Sudler products IV

Assume $N=F_{100}+F_{98}$.

$$
\begin{aligned}
P_{N}(\phi) & =\prod_{n=1}^{N} 2|\sin (\pi n \phi)| \\
& =\prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=F_{100}+1}^{F_{100}+F_{98}} 2|\sin (\pi n \phi)| \\
& =\prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=1}^{F_{98}} 2\left|\sin \left(\pi\left(F_{100}+n\right) \phi\right)\right| \\
& =\prod_{n=1}^{F_{100}} 2|\sin (\pi n \phi)| \times \prod_{n=1}^{F_{98}} 2 \mid \sin (\pi(n \phi+\underbrace{F_{100 \phi}}_{\text {the "shift" }}) \mid
\end{aligned}
$$

Sudler products V

Generally:

$$
P_{N}(\alpha, x)=\prod_{n=1}^{N} 2|\sin (\pi(n \alpha+x))|
$$

It turns out:

$$
P_{q_{k}}\left(\alpha,(-1)^{k} x / q_{k}\right)
$$

converges to a function.

Sudler products V

Generally:

$$
P_{N}(\alpha, x)=\prod_{n=1}^{N} 2|\sin (\pi(n \alpha+x))|
$$

It turns out:

$$
P_{q_{k}}\left(\alpha,(-1)^{k} x / q_{k}\right)
$$

converges to a function.

Sudler products VI

ON THE ORDER OF MAGNITUDE OF SUDLER PRODUCTS

Sudler products VII

2 Shifted Sudler products

Let

$$
P_{N}(\alpha, x):=\prod_{n=1}^{N}|2 \sin (\pi(n \alpha+x))|, \quad \alpha, x \in \mathbb{R}
$$

denote a shifted form of the Sudler product. Given a non-negative integer with Ostrowski expansion $N=\sum_{k=0}^{K-1} b_{k} q_{k}$, let us also introduce the notation

$$
\begin{equation*}
\varepsilon_{k}(N):=q_{k} \sum_{\ell=k+1}^{K-1}(-1)^{k+\ell} b_{\ell}\left\|q_{\ell} \alpha\right\| \tag{12}
\end{equation*}
$$

It is then easy to see that

$$
\begin{equation*}
P_{N}(\alpha)=\prod_{k=0}^{K-1} \prod_{b=0}^{b_{k}-1} P_{q_{k}}\left(\alpha,(-1)^{k}\left(b q_{k}\left\|q_{k} \alpha\right\|+\varepsilon_{k}(N)\right) / q_{k}\right), \tag{13}
\end{equation*}
$$

which will serve as a fundamental tool in the nroof of our results. This nroduct form

Sudler products VIII

$$
\begin{aligned}
& \text { Theorem (A.-Technau-Zafeiropoulos, 2022) } \\
& \text { Let } \alpha=[0 ; \bar{a}] \text {. Then } \\
& \qquad \liminf _{N \rightarrow \infty} P_{N}(\alpha)>0 \quad \text { and } \quad \limsup _{N \rightarrow \infty} \frac{P_{N}(\alpha)}{N}<\infty \\
& \text { if and only if } a \in\{1,2,3,4,5\} \text {. }
\end{aligned}
$$

Sudler products - the quantum connection I

Let

$$
J_{4_{1}, 0}(q)=\sum_{n=0}^{\infty}\left|(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)\right|^{2}=\sum_{n=0}^{\infty}|(q ; q)|^{2}
$$

If $q=e^{2 \pi i a / Q}$, then

Sudler products - the quantum connection I

Let

$$
J_{4_{1}, 0}(q)=\sum_{n=0}^{\infty}\left|(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)\right|^{2}=\sum_{n=0}^{\infty}|(q ; q)|^{2}
$$

If $q=e^{2 \pi i a / Q}$, then

$$
J_{4_{1}, 0}(q)=J_{4_{1}}(a / Q)=\sum_{N=1}^{Q} P_{N}^{2}(a / Q)
$$

Sudler products - the quantum connection I

Note that trivially $P_{N}(x)=P_{N}(x+1)$, and so $\mathbf{J}_{4_{1}}(x)=J_{4_{1}}(x+1)$.

Zagier considered

$$
h(x)=\log \frac{\mathbf{J}_{4_{1}}(x)}{\mathbf{J}_{4_{1}}(1 / x)} .
$$

Sudler products - the quantum connection I

Note that trivially $P_{N}(x)=P_{N}(x+1)$, and so $\mathbf{J}_{4_{1}}(x)=\mathbf{J}_{4_{1}}(x+1)$.
Zagier considered

$$
h(x)=\log \frac{\mathbf{J}_{4_{1}}(x)}{\mathbf{J}_{4_{1}}(1 / x)}
$$

Sudler products - the quantum connection II

Figure 1: The function $h(x)$, evaluated at all rationals in $(0,1)$ with denominator at most 80 (black graph with jumps). For comparison, the plot also shows the function $\frac{\operatorname{Vol}\left(4_{1}\right)}{2 \pi x}-\frac{3}{2} \log x$ (thin gray solid line), which is suggested as a continuous approximation to $h(x)$ by Formula (4).

Sudler products - the quantum connection III

Theorem (A.-Borda, 2021)
The function $h(x)$ is continuous at all irrationals x that have unbounded partial quotients.

Connection with value distribution of quantum modular forms (Bettin-Drappeau).

Sudler products - the quantum connection III

Theorem (A.-Borda, 2021)

The function $h(x)$ is continuous at all irrationals x that have unbounded partial quotients.

Connection with value distribution of quantum modular forms (Bettin-Drappeau).

The Duffin-Schaeffer conjecture I

Theorem (Khintchine, 1924)

Assume that ψ is decreasing. The equation

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{\psi(q)}{q}
$$

has finitely resp. infinitely many solutions for almost all α, if the series

$$
\sum_{q=1}^{\infty} \psi(q)
$$

converges resp. diverges.

The conclusion fails without the monotonicity assumption (Duffin-Schaeffer, 1942)

The Duffin-Schaeffer conjecture I

Theorem (Khintchine, 1924)

Assume that ψ is decreasing. The equation

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{\psi(q)}{q}
$$

has finitely resp. infinitely many solutions for almost all α, if the series

$$
\sum_{q=1}^{\infty} \psi(q)
$$

converges resp. diverges.

The conclusion fails without the monotonicity assumption (Duffin-Schaeffer, 1942).

The Duffin-Schaeffer conjecture II

Theorem (Koukoulopoulos-Maynard, 2020)

Assume that ψ is decreasing. The equation

$$
\left|\alpha-\frac{a}{q}\right| \leq \frac{\psi(q)}{q}
$$

has finitely resp. infinitely many solutions with a, q co-prime for almost all α, if the series

$$
\sum_{q=1}^{\infty} \frac{\psi(q) \varphi(q)}{q}
$$

converges resp. diverges.

The Duffin-Schaeffer conjecture III

Let

$$
\mathcal{E}_{q}:=\bigcup_{\substack{1 \leq a \leq q,(a, q)=1}}\left(\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right) .
$$

Pollington-Vaughan:

The Duffin-Schaeffer conjecture III

Let

$$
\mathcal{E}_{q}:=\bigcup_{\substack{1 \leq a \leq q,(a, q)=1}}\left(\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right) .
$$

Pollington-Vaughan:

$$
\lambda\left(\mathcal{E}_{q} \cap \mathcal{E}_{r}\right) \ll \lambda\left(\mathcal{E}_{q}\right) \lambda\left(\mathcal{E}_{r}\right) \prod_{\substack{p| |_{q r}(q, r)^{2} \\(q, r)^{\prime 2} \text { "large" }^{\prime}}}\left(1+\frac{1}{p}\right) .
$$

The Duffin-Schaeffer conjecture IV

Theorem (Koukoulopoulos-Maynard, 2020)
Let \mathcal{Q} be a set of integers. If

$$
\sum_{q \in \mathcal{Q}} \lambda\left(\mathcal{E}_{q}\right) \geq 1
$$

then

$$
\frac{\sum_{q, r \in \mathcal{Q}} \lambda\left(\mathcal{E}_{q} \cap \mathcal{E}_{r}\right)}{\left(\sum_{q \in \mathcal{Q}} \lambda\left(\mathcal{E}_{q}\right)\right)^{2}} \ll 1
$$

The Duffin-Schaeffer conjecture V

nail oi me paper to demonsmate tne кey statements on proposimons ס.1-8.د.
The dependency diagram for the first half of the paper is as follows:

The second half of the paper consists of Sections 11-14, and it is devoted to proving each of

The Duffin-Schaeffer conjecture VI

tollows quickly from Lemma 14.1, which in turn relies on Lemmas 11.5-11.6. I he dependency diagram for the second half of the paper is as follows:

(We have not included the essentially trivial statement of Lemma 11.1 or Lemma 6.7 which are

The Duffin-Schaeffer conjecture VII

Theorem (A.-Borda-Hauke, 2022)

If

$$
\sum_{q \in \mathcal{Q}} \lambda\left(\mathcal{E}_{q}\right)=\Psi(\mathcal{Q})
$$

then

$$
\frac{\sum_{q, r \in \mathcal{Q}} \lambda\left(\mathcal{E}_{q} \cap \mathcal{E}_{r}\right)}{\left(\sum_{q \in \mathcal{Q}} \lambda\left(\mathcal{E}_{q}\right)\right)^{2}} \leq 1+O\left(\frac{1}{(\log \Psi(\mathcal{Q}))^{C}}\right)
$$

The Duffin-Schaeffer conjecture VIII

Theorem (A.-Borda-Hauke, 2022)

Let

$$
\sum_{q=1}^{Q} \lambda\left(\mathcal{E}_{q}\right)=\Psi(Q)
$$

Then for almost all α the number of co-prime solutions [of the inequality] is of order

$$
\Psi(Q)+O\left(\frac{\Psi(Q)}{(\log \Psi(Q))^{C}}\right)
$$

Normal numbers I

A number x is normal in base b if the sequence $\left(b^{n} x\right)_{n \geq 1}$ is u.d. $\bmod 1$.

If x is normal in base b, then $x+p / q$ and $p / q \cdot x$ are also normal in base b.

Normal numbers I

A number x is normal in base b if the sequence $\left(b^{n} x\right)_{n \geq 1}$ is u.d. $\bmod 1$.

If x is normal in base b, then $x+p / q$ and $p / q \cdot x$ are also normal in base b.

Normal numbers II

There is a characterization of those y for which

$$
x \text { normal in base } b \Rightarrow x+y \text { normal in base } b
$$

(Rauzy 1976; keyword: entropy).
Q1: This set depends on b. Are there numbers y which preserve normality under addition in all bases?

Normal numbers II

There is a characterization of those y for which

$$
x \text { normal in base } b \Rightarrow x+y \text { normal in base } b
$$

(Rauzy 1976; keyword: entropy).
Q1: This set depends on b. Are there numbers y which preserve normality under addition in all bases?

Normal numbers III

Q2: Is there an irrational y such that
x normal in base $b \Rightarrow x \cdot y$ normal in base b.

Q3: Same question in all bases.

Normal numbers III

Q2: Is there an irrational y such that x normal in base $b \Rightarrow x \cdot y$ normal in base b.

Q3: Same question in all bases.

Normal numbers IV

Q4: What is the minimal order of the discrepancy of $\left(b^{n} x\right)$? (Korobov's problem; Levin 1999).

Q5: What is the minimal order of the discrepancy of $\left(b^{n} x\right)$ in all bases? (A.-Becher-Scheerer-Slaman, 2017).

Normal numbers IV

Q4: What is the minimal order of the discrepancy of $\left(b^{n} x\right)$? (Korobov's problem; Levin 1999).

Q5: What is the minimal order of the discrepancy of $\left(b^{n} x\right)$ in all bases? (A.-Becher-Scheerer-Slaman, 2017).

Continued fractions I

Let $S(a / N)$ denote the sum of partial quotients of a / N. Let $M(a / N)$ denote the maximal partial quotient.

Theorem (Zaremba, 1974)

For all N there is a reduced fraction a/ N with $M(a / N) \ll \log N$.

Theorem (Larcher, 1986)

For all N there is a reduced fraction a/ N with

$$
S(a / N) \ll \log N \log \log N \frac{N}{\varphi(N)}
$$

Theorem (Rukavishnikova, 2011)

Let $g(N) \rightarrow \infty$. For all N there is a reduced fraction a/ N with

$$
S(a / N) \ll \log N \log \log N g(N) .
$$

Continued fractions II

Theorem (Bettin and Drappeau, 2020)

There is a limit distribution of

$$
\frac{S(a / N)-\frac{12}{\pi^{2}} \log \log Q}{\log Q}
$$

w.r.t. the normalized counting measure on the Farey fractions of order Q.

Similar results for the distribution of the length (Baladi-Vallee), the maximal partial quotient (Hensley), etc.

Continued fractions III

Q: In which way are different partial quotients of reduced fractions a/ N "independent"?

