Mutual behaviour of irrationality measure functions

by Nikolay Moshchevitin

Austrian-Russian online workshop

$$
\text { 11-12 July } 2022
$$

Irrationality measure function

α - real irrational, $\|\cdot\|$ - distance to the nearest integer

$$
\psi_{\alpha}(t)=\min _{1 \leq q \leq t, q \in \mathbb{Z}}\|q \alpha\|, \quad t \geq 1
$$

continued fractions (Lagrange Theorem):

$$
\begin{gathered}
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}, \ldots\right], \frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right], \quad \xi_{n}=\left|q_{n} \alpha-p_{n}\right| \\
\psi_{\alpha}(t)=\xi_{n} \text { for } q_{n} \leq t<q_{n+1} .
\end{gathered}
$$

for any t we have

$$
\psi_{\alpha}(t)<t^{-1}
$$

Irrationality measure functions for two numbers

Theorem (I.D. Kan + N.M., Unif. Distr. Th. 5:2 (2010)) Suppose $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ such that $\alpha \pm \beta \notin \mathbb{Z}$. Then the difference function

$$
\psi_{\alpha}(t)-\psi_{\beta}(t)
$$

changes its sign infinitely many times as $t \rightarrow+\infty$

- Informal question: Is there other objects that behave themselves in a similar way?
- variations on multi-dimensional irrationality measure functions
- variations on one-dimensional irrationality measure functions
- many irrationality measure functions

Multidimensional irrationality measure functions: definitions

$$
\begin{gathered}
\Theta=\left(\begin{array}{ccc}
\theta_{1}^{1} & \cdots & \theta_{1}^{m} \\
\cdots & \cdots & \cdots \\
\theta_{n}^{1} & \cdots & \theta_{n}^{m}
\end{array}\right)-\text { real matrix, } \quad d=m+n \\
\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m} \mapsto\left\{\begin{array}{c}
L_{j}(\mathrm{x})=\theta_{j}^{1} x_{1}+\cdots+\theta_{j}^{m} x_{m}, \\
1 \leq j \leq n \\
M(x)=\max _{1 \leq i \leq m}\left|x_{i}\right|
\end{array}\right.
\end{gathered}
$$

$\psi_{\Theta}(t)=\min _{\mathrm{x} \in \mathbb{Z}^{m}: 0<M(\mathrm{x}) \leq t} \max _{1 \leq j \leq n}\left\|L_{j}(\mathrm{x})\right\|-$ piecewise constant function

- Minkowski: $\psi_{\Theta}(t)<t^{-\frac{m}{n}} \forall t>1$
- badly approximability: $\exists C>0 \exists \Theta$ s.t. $\psi_{\Theta}(t)>C t^{-\frac{m}{n}} \forall t>1$
- irrationality $\psi_{\Theta}(t)>0 \forall t$
- it is possible to consider different norms

Singular matricies: Khintchine-Jarník's theory, $m+n \geq 3$

$$
\Theta=\left(\begin{array}{ccc}
\theta_{1}^{1} & \cdots & \theta_{1}^{m} \\
\cdots & \cdots & \cdots \\
\theta_{n}^{1} & \cdots & \theta_{n}^{m}
\end{array}\right) \quad \mapsto \quad \psi_{\Theta}(t)
$$

Theorem (V. Jarník, 1959) Suppose that $\psi(t)$ satisfies

1. $n \geq 1$ and $m \geq 2 ; \quad \psi(t) \downarrow 0$ as $t \rightarrow+\infty$.
2. $n \geq 1$ and $m=1 ; \quad \psi(t) \downarrow 0$ as $t \rightarrow+\infty$ and $\psi(t) t \uparrow+\infty$.

Then there exists a matrix Θ such that

- numbers θ_{j}^{i} are algebraically independent,
- one has $\psi_{\Theta}(t) \leq \psi(t) \quad \forall t$.

Multidimensional irrationality measure functions: singularity

$$
\Theta \mapsto \psi_{\Theta}(t)
$$

General Proposition

Suppose that $m+n \geq 3$. Then for any Θ

$$
\text { with } \psi_{\Theta}(t)>0 \forall t
$$

there exists Θ_{1} with

$$
\psi_{\Theta}(t)>\psi_{\Theta_{1}}(t) \quad \text { for all } t \quad \text { large enough }
$$

About badly approximability

badly approximability: $\exists C>0 \exists \Theta$ s.t. $\psi_{\Theta}(t)>C t^{-\frac{m}{n}} \forall t>1$
Example $m=1, n=2, \quad \Theta=\binom{\alpha_{1}}{\alpha_{2}}$. Dirichlet spectrum

$$
\mathbb{D}=\left\{d: \exists\left(\alpha_{1}, \alpha_{2}\right) \text { such that } d=\limsup _{t \rightarrow \infty} t^{\frac{1}{2}} \cdot \psi_{\Theta}(t)\right\}
$$

$\mathbb{D}^{\text {bad }}=\left\{d: \exists\left(\alpha_{1}, \alpha_{2}\right)\right.$ - badly approximable such that

$$
\begin{gathered}
\text { with } \left.d=\limsup _{t \rightarrow \infty} t^{\frac{1}{2}} \cdot \psi_{\Theta}(t)\right\} \\
\psi_{\Theta}^{e}(t)=\min _{q \leq t} \sqrt{\left\|q \alpha_{1}\right\|^{2}+\left\|q \alpha_{2}\right\|^{2}}
\end{gathered}
$$

Theorem (Akhunzhanov+M. 2021)
For Euclidean norm $\mathbb{D}=[0, \sqrt{2 / \sqrt{3}}]$ is closure of $\mathbb{D}^{\text {bad }}$
Remark. It is likely that a similar statement is true for any $m+n \geq 3$ and for any norm. (c.f. Schleischitz arXiv:2202.04951, 2022)

Multidimensional irrationality measure functions: badly approximability

badly approximability:

$$
\exists C>0 \exists \Theta=\binom{\alpha_{1}}{\alpha_{2}} \text { such that } \psi_{\Theta}(t)>C t^{-\frac{1}{2}} \forall t>1
$$

Proposition

Suppose that $m=1, n=2$. Then for any s badly approximable Θ there exists badly approximable Θ_{1} with

$$
\psi_{\Theta}(t)>\psi_{\Theta_{1}}(t) \quad \text { for all } t \quad \text { large enough }
$$

One-dimensional settings: Minkowski function

Those denominators of convergent for which $\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{1}{2 q_{n}^{2}}$:

$$
\begin{gathered}
Q_{1}, Q_{2}, \ldots, Q_{n}, \ldots \\
\mu_{\alpha}(t)=\frac{Q_{n+1}-t}{Q_{n+1}-Q_{n}} \cdot\left\|Q_{n} \alpha\right\|+\frac{t-Q_{n}}{Q_{n+1}-Q_{n}} \cdot\left\|Q_{n+1} \alpha\right\|, \quad Q_{n} \leq t \leq Q_{n+1}
\end{gathered}
$$

Minkowski: $\mu_{\alpha}(t)$ is convex.
Example. $\quad \mu_{\sqrt{2}}(t)<\mu_{\frac{1+\sqrt{5}}{2}}(t), \quad \forall t>0$

One-dimensional settings: Second order approximation

 functions.$$
\begin{aligned}
& \psi_{\alpha}^{[2]}(t)=\quad \quad \min \quad\|q \alpha\| \\
& 1 \leq q \leq t, q \in \mathbb{Z} \\
& q \neq q_{n} \forall n=1,2,3, \ldots \\
& \psi_{\alpha}^{[2] *}(t)=\quad \min \quad|q \alpha-p| \\
& p / q \neq p_{n} / q_{n} \forall n=1,2,3, \ldots \\
& \psi_{\alpha}(t)<\psi_{\alpha}^{[2]}(t) \leq \psi_{\alpha}^{[2] *}(t)
\end{aligned}
$$

Proposition Differences

$$
\psi_{\alpha}^{[2]}(t)-\psi_{\beta}^{[2]}(t) \quad \text { and } \quad \psi_{\alpha}^{[2] *}(t)-\psi_{\beta}^{[2] *}(t)
$$

may not oscillate

Supplement to Gayfulin's lecture: \mathbb{L}_{2}^{*} spectrum

$$
\begin{gathered}
\mathfrak{k}^{*}(\alpha)=\liminf _{t \rightarrow \infty} t \cdot \psi_{\alpha}^{[2] *}(t) \\
\mathbb{L}_{2}^{*}=\left\{\lambda: \exists \alpha \text { such that } \lambda=\mathfrak{k}^{*}(\alpha)\right\}
\end{gathered}
$$

Theorem.

1. \mathbb{L}_{2}^{*} is $\sqrt{5}=$ maximal element of \mathbb{L}_{2}^{*},
$\mathfrak{k}^{*}(\alpha)=\sqrt{5}$ iff $\alpha \sim \frac{1+\sqrt{5}}{2}$.
2. If $\alpha \nsim \frac{1+\sqrt{5}}{2}$ then $\mathfrak{k}^{*}(\alpha) \leq \frac{3}{2}$, so $\left(\frac{3}{2}, \sqrt{5}\right)$ is a gap in \mathbb{L}_{2}^{*}.
3. For $e=\sum_{k=0}^{\infty} \frac{1}{k!}$ one has $\mathfrak{k}^{*}(e)=\frac{3}{2}$.
4. $\frac{3}{2}$ is a limit point for \mathbb{L}_{2}^{*}.
5. \mathbb{L}_{2}^{*} is $\frac{1}{2}$ is the minimal element of \mathbb{L}_{2}^{*}.
6. $\left[\frac{1}{2}, \frac{2}{3}\right]^{2} \subset \mathbb{L}_{2}^{*}$.

A paper by Dubickas JNT 177 (2017)

Theorem 1 Under the condition $\alpha \pm \beta \notin \mathbb{Z}$ one has

$$
\limsup _{t \rightarrow+\infty}\left|\frac{1}{\psi_{\alpha}(t)}-\frac{1}{\psi_{\beta}(t)}\right|=+\infty
$$

Theorem 2 There exist irrational α, β with $\alpha \pm \beta \notin \mathbb{Z}$ and

$$
\psi_{\alpha}(n+1)<\psi_{\beta}(n) \forall n \geq 2
$$

After Dubickas 1

Theorem (N.M., Arch. Math. 2019)
Under the condition $\alpha \pm \beta \notin \mathbb{Z} \quad \exists t_{\nu} \rightarrow \infty$ such that
$\left|\psi_{\alpha}\left(t_{\nu}\right)-\psi_{\beta}\left(t_{\nu}\right)\right| \geq K \cdot \min \left(\psi_{\alpha}\left(t_{\nu}\right), \psi_{\beta}\left(t_{\nu}\right)\right), K=\sqrt{\frac{\sqrt{5}+1}{2}}-1$.
Moreover the constant K here is optimal.

As $\psi_{\alpha}(t)<1 / t$ we have
Corollary Under the conditions of Th. 1 one has
$\left|\frac{1}{\psi_{\alpha}\left(t_{\nu}\right)}-\frac{1}{\psi_{\beta}\left(t_{\nu}\right)}\right|>K \cdot t_{\nu}$ for certain $t_{\nu} \rightarrow \infty$.

After Dubickas 2

Corollary Under the condition $\alpha \pm \beta \notin \mathbb{Z}$ one has

$$
\left|\frac{1}{\psi_{\alpha}\left(t_{\nu}\right)}-\frac{1}{\psi_{\beta}\left(t_{\nu}\right)}\right|>K \cdot t_{\nu} \quad \text { for certain } \quad t_{\nu} \rightarrow \infty
$$

with $K=\sqrt{\frac{\sqrt{5}+1}{2}}-1=0.2720^{+}$
Theorem (N. Shulga, MJCNT 2022)
Under the condition specified one has

$$
\left|\frac{1}{\psi_{\alpha}\left(t_{\nu}\right)}-\frac{1}{\psi_{\beta}\left(t_{\nu}\right)}\right|>K_{1} \cdot t_{\nu} \quad \text { for certain } \quad t_{\nu} \rightarrow \infty
$$

with $K_{1}=\sqrt{5}\left(1-\sqrt{\frac{\sqrt{5}-1}{2}}\right)=0.47818^{+}$
Moreover the constant K_{1} here is optimal

Simultaneous approximation revisited

$$
\Theta=\binom{\alpha_{1}}{\alpha_{2}}, \quad \psi_{\Theta}^{e}(t)=\min _{q \leq t} \sqrt{\left\|q \alpha_{1}\right\|^{2}+\left\|q \alpha_{2}\right\|^{2}}
$$

Theorem (N.M., 202?)
$\omega(t) \uparrow, \omega(0)=0 \quad \exists \Theta=\left(\alpha_{1}, \alpha_{2}\right)$ and $\Theta_{1}=\left(\beta_{1}, \beta_{2}\right)$ such that:

1. $1, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are aigebraic independent.
2. for every t one has

$$
\left|\psi_{\Theta}(t)-\psi_{\Theta_{1}}(t)\right| \leq \psi_{\Theta}(t) \omega\left(\psi_{\Theta}(t)\right) .
$$

\mathfrak{k} - index: definition

$\alpha, \beta \in \mathbb{R}$ incommensurable if $\psi_{\alpha}(t) \neq \psi_{\beta}(t)$ for all large enough t. For n-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of pairwise incommensurable numbers consider permutation

$$
\sigma(t):\{1,2,3, \ldots, n\} \mapsto\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{n}\right\}
$$

with

$$
\psi_{\alpha_{\sigma_{1}}}(t)>\psi_{\alpha_{\sigma_{2}}}(t)>\psi_{\alpha_{\sigma_{3}}}(t)>\ldots>\psi_{\alpha_{\sigma_{n}}}(t)
$$

\mathfrak{k}-index $\mathfrak{k}(\boldsymbol{\alpha})=\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is defined by

$$
\mathfrak{k}(\boldsymbol{\alpha})=\max \left\{k: \text { there exist different pemutations } \boldsymbol{\sigma}_{1}, \ldots, \boldsymbol{\sigma}_{k}\right.
$$

with the following property: $\forall j \forall t_{0}>0 \exists t>t_{0}$ such that $\left.\sigma(t)=\sigma_{j}\right\}$

Kan-Moshchevitin Theorem states that $\mathfrak{k}\left(\alpha_{1}, \alpha_{2}\right)=2$ if $\alpha_{1} \pm \alpha_{2} \notin \mathbb{Z}$
From Dubickas' approach it follows that there exists a incommensurable n-tuple $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=n$

\mathfrak{k} - index results: Manturov-M. arXiv:2108.08778 (2021)

Theorem 1 For an n-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of pairwise incommensurable numbers one has

$$
\mathfrak{k}(\boldsymbol{\alpha}) \geq \sqrt{\frac{n}{2}}
$$

Theorem 2 Let $k \geq 3$ and $n=\frac{k(k+1)}{2}$. Then there exists a pairwise incommensurable n-tuple $\boldsymbol{\alpha}$ with

$$
\mathfrak{k}(\boldsymbol{\alpha})=k
$$

\mathfrak{k} - index results: V. Rudykh, arXiv:2204.05769 (2022)

Theorem 2 Let $k \geq 3$ and $n=\frac{k(k+1)}{2}$. Then there exists a pairwise incommensurable n-tuple $\boldsymbol{\alpha}$ with

$$
\mathfrak{k}(\boldsymbol{\alpha})=k
$$

Theorem 1' (Viktoria Rudykh, April 2022)
The size of an n-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of pairwise independent numbers with $\mathfrak{k}(\boldsymbol{\alpha})=k$ is

$$
n \leq \frac{k(k+1)}{2}
$$

Main lemma

this never happens infinitely often for $\alpha \pm \beta \in \mathbb{Z}$:

Main lemma

$$
\begin{aligned}
& \alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], \frac{p_{\nu}}{q_{\nu}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{\nu}\right] \\
& \alpha_{\nu}^{*}=\left[0 ; a_{\nu}, a_{\nu-1}, \ldots, a_{1}\right], \quad \xi_{\nu}=\left|q_{\nu} \alpha-p_{\nu}\right| \\
& \beta=\left[b_{0} ; b_{1}, b_{2}, \ldots\right], \frac{s_{\mu}}{r_{\mu}}=\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{\nu}\right] \\
& \beta_{\mu}^{*}=\left[0 ; b_{\mu}, b_{\mu-1}, \ldots, b_{1}\right], \quad \eta_{\mu}=\left|r_{\nu} \beta-s_{\mu}\right|
\end{aligned}
$$

Lemma Let $d \geq 1$. Suppose that $q_{\nu+2}=r_{\mu+d}$ and

$$
\begin{gathered}
\xi_{\nu} \leq \eta_{\mu}, \\
\xi_{\nu+1} \leq \eta_{\mu+d-1}, \\
q_{\nu+1} \leq r_{\mu+1}
\end{gathered}
$$

Then everywhere we have equalities and

$$
d=2 \text { und } \alpha_{\nu+2}^{*}=\beta_{\mu+2}^{*}
$$

Example $k=3, n=6$

Thank you for your attention!

