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Introduction: Hurwitz theorem

A classical theorem by A.Hurwitz states that

Theorem

For any irrational number α the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

has infinitely many integer solutions for (p, q) = 1.

√
5 cannot be replaced by a greater constant. Indeed, denote

ϕ =
√
5+1
2 . Then ∀ε > 0 the inequality∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

(
√

5 + ε)q2

has only finitely many solutions.
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The Lagrange spectrum - Diophantine approach

Consider an arbitrary irrational number α = [0; a1, . . . , an, . . .],
such that the partial quotients ai are uniformly bounded from
above i.e. ∀i ai < C for some C . Then there exists a constant
L(α) s.t. ∀ε > 0∣∣∣∣α− p

q

∣∣∣∣ < 1

(L(α)− ε)q2
has ∞ solutions.∣∣∣∣α− p

q

∣∣∣∣ < 1

(L(α) + ε)q2
has <∞ solutions.

(1)

L(α) is called the Lagrange constant of α, particularly L(ϕ) =
√

5.
In other words,

L(α) =

(
lim inf
p,q∈Z

q2

∣∣∣∣α− p

q

∣∣∣∣)−1.
The Lagrange spectrum L is by definition the set of all values
taken by Lagrange constants. L = {L(α)|α ∈ R \Q}.
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The Markoff and Lagrange spectra

Denote pn
qn

= [0; a1, . . . , an]. A classical lemma states that∣∣∣∣α− pn

qn

∣∣∣∣ =
1

λn+1(α)q2
n

,

where

λi (α) = [ai ; ai−1, ai−2, . . . , a1] + [0; ai+1, ai+2, . . .]. (2)

Hence L(α) = lim sup
i→∞

λi (α). It is convenient to use the

”symmetric” form of (2). Consider

A = (. . . a−1, a0, a1, . . .), ai > 1

and
L(A) = lim sup

i→∞
λi (A), M(A) = sup

i∈Z
λi (A).

The set of values taken by L(A) and M(A) is called respectively
the Lagrange and Markoff spectrum, L and M.
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The discrete part of M and L

Hurwitz theorem implies that the minimal element of the Lagrange
spectrum is

√
5. It is easy to show that the same statement is true

for the Markoff spectrum.

Theorem (Markoff (1879, 1880))

The set of elements less than 3 in L and M is countable and
discrete, with 3 as its only limit point. Every sequence A such that
λi (A) < 3 for all i ∈ Z is periodic.

As M(A) = L(A), for periodic A, the least statement implies that
L and M coincide below 3.
More precisely, the elements of the discrete part of the spectra are

exactly the numbers of the form
√

9− 4
z2

, where z is a Markoff

number i.e. positive integer such that there exist 0 < x 6 y 6 z
and x2 + y2 + z2 = 3xyz .
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10 smallest numbers in M and L.

The bar over the number or the sequence of numbers denotes the
period. an = (a, a, . . . , a︸ ︷︷ ︸

n times

).

Sequence Markoff Number Element of M and L
1 1

√
5 ≈ 2.23607

2 2
√

8 ≈ 2.82843

2, 2, 1, 1 5
√
221
5 ≈ 2.973214

2, 2, 1, 1, 1, 1 13
√
1517
13 ≈ 2.996053

2, 2, 2, 2, 1, 1 29
√
7565
29 ≈ 2.999207

2, 2, 16 34
√
2600
17 ≈ 2.999423

2, 2, 18 89
√
71585
89 ≈ 2.999916

26, 1, 1 169
√
257045
169 ≈ 2.999977

2, 2, 1, 1, 2, 2, 14 194
√
84680
97 ≈ 2.999982

2, 2, 110 233
√
488597
233 ≈ 2.999988
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Hall’s ray

Theorem (M. Hall, 1947; Vinogradov, Delone, Fuchs, 1958)

The Lagrange spectrum, and so the Markoff spectrum, contains
every number greater than 5 +

√
2.

Denote by µ1 the minimal real number such that [µ1,+∞) ⊂M.

Improvements
µ1 estimation Author Year

µ1 6 5.102939 Freiman, Judin 1966

µ1 6 5.09406 Bumby 1973

µ1 6
√

21 ≈ 4.5825757 Freiman, Schecker 1973,1977

µ1 = 4.527829566 Freiman 1975
The Freiman‘s theorem also states that [µ1,+∞) ⊂ L.
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Some properties of M \ L.

One can easily see that L ⊂M. However,

Theorem (Freiman, 1968)

σ = M(22, 1, 22, 12, 22, 12, 22, 12, 22, 1, 22) ≈ 3.11812 ∈M \ L

Several examples were constructed since 1968. It is known that
0.537 < HD(M \ L) < 0.796.
Open problem: find minimal and maximal element in M \L. It was
shown (Moreira, Santos) that there are elements over

√
12 in

M \ L.

Conjecture

There exists a decreasing sequence mn s.t. lim
n→∞

mn = 3 and

∀n ∈ N one has mn ∈M \ L.
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Attainable numbers

The irrational number α is called attainable if the inequality∣∣∣∣α− p

q

∣∣∣∣ 6 1

L(α)q2

has infinitely many solutions.

As∣∣∣∣α− pn

qn

∣∣∣∣ =
1

λn+1(α)q2
n

,

one can easily see that α is attainable if and only if λn(α) > L(α)
for infinitely many indices n.
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Admissible numbers

We call the Lagrange spectrum element λ admissible if there exists
an attainable irrational number α such that L(α) = λ.

The problem

Are all elements of the Lagrange spectrum admissible?

The answer is

Theorem (D.G., 2016)

The quadratic irrationality

λ0 = [3; 3, 3, 2, 1, 1, 2] + [0; 2, 1, 1, 2] = 62976−1498
√
3

16357 ≈ 3.6914708
belongs to L, but is not admissible.

Note that λ0 = M(2, 1, 1, 2, 3, 3, 3, 2, 1, 1, 2).
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Gaps in the Lagrange spectrum

The Lagrange spectrum (as well as M) is closed set. The
complement of L is a countable union of intervals called maximal
gaps of the spectrum.

Theorem (D.G., 2016, 2017)

(i) If λ ∈ L is not a left endpoint of some maximal gap in the
Lagrange spectrum then λ is an admissible number.
(ii) A left endpoint of maximal gap in the Lagrange spectrum a is
admissible if and only if there exists a quadratic irrationality α such
that  L(α) = a.

The following theorem gives the description of left endpoints of
maximal gaps in L.

Theorem (D.G., 2016)

If (a, b) is a maximal gap in L then a can be represented by a sum
of two quadratic irrationalities.
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Pictures

Figure: Lagrange specrtum

Figure: Lagrange specrtum: gaps
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Some other unsolved questions

Conjecture 1

Are all right endpoints of maximal gaps in L and M represented by
a sum of two quadratic irrationalities?

Conjecture 2

Are all endpoints of maximal gaps in L also endpoints of gaps in
M?

Conjecture 3 (Berstein)

Does M contain the interval [4.1, 4.52]?

Conjecture 4

Find the maximal number µ2 such that λ

(
(−∞, µ2) ∩M

)
= 0.

The best known lower estimate is µ2 > 3.3343 (Bumby, 1982).
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Dirichlet theorem

A classical theorem by P.Dirichlet states that

Theorem

For any irrational number α for all t > 1 there exists a pair
(p, q) ∈ Z× Z+ such that q 6 t and

|qα− p| < 1

t
.

It is well-known fact that 1 in the numerator cannot be replaced by
any smaller constant. However, for some α it is possible.
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Dirichlet spectrum

Denote by ψx(t) the irrationality measure function of
x = [0; a1, a2, . . . , an, . . .] ∈ R \Q i.e.

ψx(t) := min
0<q6t

min
p∈Z
|qx − p|.

Define
c(x) := lim sup

t→∞
t · ψx(t)

An equivalent (Perron-type) definition: denote

dn(x) = [an+1; an+2, . . .] · [an; an−1, . . . , a1]

and D(x) = lim sup
n→∞

dn(x).

It was shown by Davenport and Schmidt that

D(x) =
c(x)

1− c(x)
.

The set D of all values taken by D(x) is called the Dirichlet
spectrum.
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Some properties of D

Once again, the smallest element of D corresponds to the golden

section and equals 3+
√
5

2 . The discrete part of D is exactly the
sequence D(xn), where x1 = [1; 1] and xn = [2; 12n−1]. The limit
point of D(xn) is 2 +

√
5.

There exists an analogue of Hall‘s ray in D, but the exact value of
the origin µ1 of the ray is an open question. The best known

estimate is 5+3
√
5

2 < µ1 < 10 + 6
√

2.
The Dirichlet spectrum also has a complicated fractal structure
with countable number of gaps. But very few facts are known
about their structure. Another open question – find the supremum
of µ such that (0, µ) ∩ D has Lebesgue measure zero.
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about their structure. Another open question – find the supremum
of µ such that (0, µ) ∩ D has Lebesgue measure zero.
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Minkowski spectrum: Legendre theorem

A classical theorem by A.Legendre states that

Theorem

If for any irrational number α there exist coprime integers p, q such
that ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
, (3)

then p/q is a convergent fraction of the continued fraction
expansion of α.

The converse statement is not true. However, if we consider two
consecutive convergent fractions, for at least one of them the
inequality (3) holds.

Let us consider the infinite sequence of
denominators Q1,Q2, . . . ,Qn, . . . that satisfy (3).
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Minkowski spectrum: definition

For all t > Q1 define the function

µα(t) =
Qn+1 − t

Qn+1 − Qn
‖Qnα‖+

t − Qn

Qn+1 − Qn
‖Qn+1α‖, Qn 6 t 6 Qn+1.

One can show that the plot of µα(t) is the convex hull of the
points (qn, ‖qnα‖), here qn is the set of all convergent fractions to
x .
Similarly to c(x) define

M(α) = lim sup
t→∞

tµα(t)

and we call the Minkowski spectrum M the set of all values taken
by M(α) for α ∈ R \Q.
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Minkowski spectrum: properties

One can easily see that M ⊂ [0, 12 ]. The following statement was
proved by N. Moshchevitin:

Theorem

minM =
1

4
, maxM =

1

2
.

Open questions – everything about the structure: gaps, Hall‘s ray,
isolated points etc.
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The end

Thank you for your attention!
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