The Sarnak conjecture and related questions on the Fibonacci-Thue-Morse sequence

Michael Drmota
Institut für Diskrete Mathematik und Geometrie Technische Universität Wien
Russian-Austrian Joint Meeting, July 11-12, 2022

Summary

(1) Thue-Morse Sequence
(2) Fibonacci-Thue-Morse Sequence
(3) Sarnak conjecture
(4) Results on Sarnak conjecture
(5) Proof Methods
(6) Open Problems

Digital Expansions

- q-adic expansion

$$
n=\sum_{j \geqslant 0} \varepsilon_{q, j}(n) q^{j}, \quad \varepsilon_{q, j}(n) \in\{0,1, \ldots, q-1\}
$$

Sum-of-digits function

$$
s_{q}(n)=\sum_{j \geqslant 0} \varepsilon_{q, j}(n)
$$

- Zeckendorf expansion ($F_{0}=0, F_{1}=1, F_{k+1}=F_{k}+F_{k-1}$ Fibonacci numbers)

$$
n=\sum_{j \geqslant 2} \varepsilon_{Z, j}(n) F_{j}, \quad \varepsilon_{Z, j}(n) \in\{0,1\}, \varepsilon_{Z, j}(n) \varepsilon_{Z, j+1}(n)=0
$$

Zeckendorf Sum-of-digits function

$$
s_{Z}(n)=\sum_{j \geqslant 2} \varepsilon_{Z, j}(n)
$$

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:
0

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:
01

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:
0110

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:
01101001

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:
0110100110010110

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:
01101001100101101001011001101001

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$

$$
t_{0}=0, \quad t_{2^{n}+k}=1-t_{k} \quad\left(0 \leqslant k<2^{n}\right)
$$

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:
$011010011001011010010110011010011001011001101 \ldots$

$$
t_{0}=0, \quad t_{2^{n}+k}=1-t_{k} \quad\left(0 \leqslant k<2^{n}\right)
$$

$$
t(n)=s_{2}(n) \bmod 2
$$

Multiplicative version:

$$
T(n)=(-1)^{s_{2}(n)}=(-1)^{t(n)}
$$

\star Thue-Morse sequence

Thue-Morse sequence $(t(n))_{n \geqslant 0}$:

$011010011001011010010110011010011001011001101 \ldots$

$$
t_{0}=0, \quad t_{2^{n}+k}=1-t_{k} \quad\left(0 \leqslant k<2^{n}\right) \quad \text { or } \quad t_{2 k}=t_{k}, t_{2 k+1}=1-t_{k}
$$

$$
t(n)=s_{2}(n) \bmod 2
$$

Multiplicative version:

$$
T(n)=(-1)^{s_{2}(n)}=(-1)^{t(n)}
$$

\star Thue-Morse sequence

- TM sequence is not periodic and cubeless.
- TM sequence is almost periodic:

Every appearing consecutive block appears infinitely many times with bounded gaps.

- Subword complexity is linear: $p_{k} \leqslant \frac{10}{3} k$
$p_{k} \ldots$ subword complexity (number of different consecutive blocks of length k that appear in the TM sequence).
- Zero topological entropy of the corresponding dynamical system:

$$
h=\lim _{k \rightarrow \infty} \frac{1}{k} \log p_{k}=0
$$

- Linear subsequences $\left(t_{a n+b}\right)_{n \geqslant 0}$ have the same properties.
- The TM sequence and its linear subsequences are automatic sequences.

\star Thue-Morse sequence

Substitution that generates the Thue-Morse sequence

Consider the substitution

$$
\sigma: \quad a \mapsto a b, \quad b \mapsto b a
$$

and the projection

$$
\pi: \quad a \mapsto 0, \quad b \mapsto 1
$$

Then the Thue-Morse-sequence $t(n)=s_{2}(n) \bmod 2$ is just the fixed point of σ that starts with $a(=a b b a a b b a b a a b \ldots)$ followed by the projection π.

\star Thue-Morse sequence

Substitution that generates the Thue-Morse sequence

Consider the substitution

$$
\sigma: \quad a \mapsto a b, \quad b \mapsto b a
$$

and the projection

$$
\pi: \quad a \mapsto 0, \quad b \mapsto 1,
$$

Then the Thue-Morse-sequence $t(n)=s_{2}(n) \bmod 2$ is just the fixed point of σ that starts with $a(=a b b a a b b a b a a b \ldots)$ followed by the projection π.

Remark. Every sequence that can be generated in such a way by a constant length substitution (followed by a projection) is a so-called automatic sequence.

\star Fibonacci-Thue-Morse Sequence

Substitution that generates the Fibonacci-Thue-Morse sequence

Consider the substitution

$$
\sigma: \quad a \mapsto a b, \quad b \mapsto c, \quad c \mapsto c d, \quad d \mapsto a
$$

and the projection

$$
\pi: \quad a \mapsto 1, \quad b \mapsto-1, \quad c \mapsto-1, \quad d \mapsto 1
$$

Then the sequence $T_{F}(n)=(-1)^{s_{Z}(n)}$ is just the fixed point of σ (that starts with a) followed by the projection $\pi . T_{F}(n)$ is a morphic sequence (but not an automatic one).

\star Fibonacci-Thue-Morse Sequence

Substitution that generates the Fibonacci-Thue-Morse sequence

Consider the substitution

$$
\sigma: \quad a \mapsto a b, \quad b \mapsto c, \quad c \mapsto c d, \quad d \mapsto a
$$

and the projection

$$
\pi: \quad a \mapsto 1, \quad b \mapsto-1, \quad c \mapsto-1, \quad d \mapsto 1
$$

Then the sequence $T_{F}(n)=(-1)^{s_{Z}(n)}$ is just the fixed point of σ (that starts with a) followed by the projection $\pi . T_{F}(n)$ is a morphic sequence (but not an automatic one).

Remark. Every sequence that can be generated by a substitution followed by a projection is a morphhic sequences. Automatic sequences are special morphic sequences.

* Sarnak Conjecture

A bounded complex valued sequence $u(n), n \in \mathbb{N}$, is said to be deterministic if for every $\epsilon>0$ the set
$\{(u(n+1), \ldots, u(n+m)): n \in \mathbb{N}\}$ can be covered by $O(\exp (o(m)))$ balls of radius ϵ (as $m \rightarrow \infty$).

For example, if $u(n):=f\left(T^{n} x\right)$ for a minimal topological dynamical system (X, T) with zero topological entropy (and a continuous function f) then $u(n)$ is deterministic.

太 Sarnak Conjecture

A bounded complex valued sequence $u(n), n \in \mathbb{N}$, is said to be deterministic if for every $\epsilon>0$ the set
$\{(u(n+1), \ldots, u(n+m)): n \in \mathbb{N}\}$ can be covered by $O(\exp (o(m)))$ balls of radius ϵ (as $m \rightarrow \infty)$.

For example, if $u(n):=f\left(T^{n} x\right)$ for a minimal topological dynamical system (X, T) with zero topological entropy (and a continuous function f) then $u(n)$ is deterministic.

In particular automatic sequences and morphic sequences are deterministic.

\star Sarnak Conjecture

Conjecture (Sarnak conjecture)

Every deterministic bounded complex valued sequence $u(n), n \in \mathbb{N}$ is orthogonal to the Möbius function:

$$
\sum_{n \leq N} \mu(n) u(n)=o(N) \quad(N \rightarrow \infty) .
$$

丸 Sarnak Conjecture

Conjecture (Sarnak conjecture)

Every deterministic bounded complex valued sequence $u(n), n \in \mathbb{N}$ is orthogonal to the Möbius function:

$$
\sum_{n \leq N} \mu(n) u(n)=o(N) \quad(N \rightarrow \infty)
$$

Problem (Prime Number Theorem)

For which bounded complex sequences $u(n)$ do we have a relation of the form

$$
\sum_{n \leq N} \Lambda(n) u(n) \sim c N \quad(N \rightarrow \infty) ?
$$

$\left(\Lambda(n)\right.$ denotes the Von-Mangoldt-function given by $\Lambda\left(p^{k}\right)=\log p$ and 0 else.)

* Sarnak Conjecture

Theorem (Müllner 2017)
Every automatic sequences a(n) satisfies the Sarnak conjecture:

$$
\sum_{n \leq N} \mu(n) a(n)=o(N) \quad(N \rightarrow \infty) .
$$

* Sarnak Conjecture

Theorem (Müllner 2017)

Every automatic sequences a(n) satisfies the Sarnak conjecture:

$$
\sum_{n \leq N} \mu(n) a(n)=o(N) \quad(N \rightarrow \infty) .
$$

It is also known, when a PNT holds (Müllner, Adamczewski+D+Müllner)

* Sarnak Conjecture

Theorem (Müllner 2017)

Every automatic sequences a(n) satisfies the Sarnak conjecture:

$$
\sum_{n \leq N} \mu(n) a(n)=o(N) \quad(N \rightarrow \infty) .
$$

It is also known, when a PNT holds (Müllner, Adamczewski+D+Müllner)
Partial results by Dartyge+Tenenbaum, Mauduit+Rivat, Tao (Thue-Morse sequence, Rudin-Shapiro sequence). The methods introduded by Mauduit+Rivat were a breakthrough (solution of the Gelfond problem for primes).

\star Sarnak Conjecture

The Thue-Morse-sequence $T(n)$ satisfies $T\left(a 2^{k}+b\right)=T(a) T(b)$ (for $0 \leqslant b<2^{k}$). Such sequences are called strongly 2-multiplicative. Similarly strongly q-multipliciative functions are defined.
Martin+Mauduit+Rivat proved a PNT and the Sarnak conjecture for general strongly q-multipliciative functions, e.g. for $f(n)=\mathrm{e}\left(\alpha s_{q}(n)\right)$.

\star Sarnak Conjecture

The Thue-Morse-sequence $T(n)$ satisfies $T\left(a 2^{k}+b\right)=T(a) T(b)$ (for $\left.0 \leqslant b<2^{k}\right)$. Such sequences are called strongly 2-multiplicative. Similarly strongly q-multipliciative functions are defined.
Martin+Mauduit+Rivat proved a PNT and the Sarnak conjecture for general strongly q-multipliciative functions, e.g. for $f(n)=\mathrm{e}\left(\alpha s_{q}(n)\right)$.

Theorem (D.+Mauduit+Rivat 2020)

If f is a strongly q_{1}-multiplicative function and g a strongly q_{2}-multiplicative function such that $\operatorname{gcd}\left(q_{1}, q_{2}\right)=1$, then we have uniformly for $\vartheta \in \mathbb{R}$

$$
\left|\sum_{n \leq N} \mu(n) f(n) g(n) \mathrm{e}(\vartheta n)\right|=o(N)
$$

Furthermore, a PNT holds if f or g is non-periodic.

* Sarnak Conjecture

Theorem (D.+Mauduit+Rivat+Spiegelhofer 2022)
Let $t(n)$ denote the Thue-Morse sequence. Then we have, as $N \rightarrow \infty$,

$$
\sum_{n<N} \mu(n) t\left(n^{2}\right)=o(N) .
$$

* Sarnak Conjecture

Theorem (D.+Mauduit+Rivat+Spiegelhofer 2022)

Let $t(n)$ denote the Thue-Morse sequence. Then we have, as $N \rightarrow \infty$,

$$
\sum_{n<N} \mu(n) t\left(n^{2}\right)=o(N) .
$$

The sequence $t\left(n^{2}\right)$ is not deterministic. It is actually a normal sequence (by a result of D+Mauduit+Rivat).

Recently Andrei Shubin extended this result to the subsequences $t\left(\left\lfloor n^{c}\right\rfloor\right)$ for $1<c<2$.

\star Sarnak Conjecture

Theorem (D.+Müllner+Spiegelhofer 2018)
We have for non-integers α

$$
\sum_{n<N} \mu(n) e\left(\alpha s_{Z}(n)\right)=o(N)
$$

* Sarnak Conjecture

Theorem (D.+Müllner+Spiegelhofer 2018)
We have for non-integers α

$$
\sum_{n<N} \mu(n) e\left(\alpha s_{Z}(n)\right)=o(N)
$$

Theorem (D.+Müllner+Spiegelhofer 2021+)
We have for non-integers α

$$
\sum_{n \leqslant N} \Lambda(n) \mathrm{e}\left(\alpha s_{Z}(n)\right) \ll(\log N)^{5} N^{1-c\|\alpha\|^{2}}
$$

for some c > 0 .

* Sarnak Conjecture

Theorem (D.+Müllner+Spiegelhofer 2018)
We have for non-integers α

$$
\sum_{n<N} \mu(n) e\left(\alpha s_{Z}(n)\right)=o(N)
$$

Theorem (D.+Müllner+Spiegelhofer 2021+)
We have for non-integers α

$$
\sum_{n \leqslant N} \Lambda(n) \mathrm{e}\left(\alpha s_{Z}(n)\right) \ll(\log N)^{5} N^{1-c\|\alpha\|^{2}}
$$

for some c>0.
This implies in particular for $\alpha=\frac{1}{2}: \mathrm{e}\left(\frac{1}{2} s_{Z}(n)\right)=(-1)^{s_{Z}(n)}=T_{F}(n)$.

* Local Result

Theorem (D.+Müllner+Spiegelhofer 2021+)

For each $\varepsilon>0$, we have
$\#\left\{p \leqslant x: s_{Z}(p)=k\right\}=\frac{\pi(x)}{\sqrt{2 \pi \sigma^{2} \log _{\gamma} x}}\left(e^{-\frac{\left(k-\mu \log _{\gamma} x\right)^{2}}{2 \sigma^{2} \log _{\gamma} x}}+O\left((\log x)^{-\frac{1}{2}+\varepsilon}\right)\right)$
uniformly for all integers $k \geqslant 0$, where

$$
\mu=\frac{1}{\gamma^{2}+1} \quad \text { and } \quad \sigma^{2}=\frac{\gamma^{3}}{\left(\gamma^{2}+1\right)^{3}},
$$

$\pi(x)$ denotes the number of primes $\leqslant x$, and $\log _{\gamma} x=\log x / \log \gamma$.

* Local Result

Theorem (D.+Müllner+Spiegelhofer 2021+)

For each $\varepsilon>0$, we have
$\#\left\{p \leqslant x: s_{Z}(p)=k\right\}=\frac{\pi(x)}{\sqrt{2 \pi \sigma^{2} \log _{\gamma} x}}\left(e^{-\frac{\left(k-\mu \log _{\gamma} x\right)^{2}}{2 \sigma^{2} \log _{\gamma} x}}+O\left((\log x)^{-\frac{1}{2}+\varepsilon}\right)\right)$
uniformly for all integers $k \geqslant 0$, where

$$
\mu=\frac{1}{\gamma^{2}+1} \quad \text { and } \quad \sigma^{2}=\frac{\gamma^{3}}{\left(\gamma^{2}+1\right)^{3}},
$$

$\pi(x)$ denotes the number of primes $\leqslant x$, and $\log _{\gamma} x=\log x / \log \gamma$.
In particular, for every sufficiently large integer k there exists a prime number p with

$$
s_{z}(p)=k .
$$

\star Proof Methods

- Daboussi-Kátai-criterion
- Vaughan's method
- Discrete Fourier techniques
- Level of distribution and Gowers norm estimates
- Exponential sum estimates
- Diophantine approximation (Baker's theorem, p-adic subspace theorem)
- Discrepancy estimates
- Digit detection techniques

\star Daboussi-Kátai-criterion

Lemma

Let $f(n)$ be a bounded sequence such that

$$
\sum_{n \leqslant N} f(p n) \overline{f(q n)}=o(N)
$$

for all distinct prime numbers p, q. Then

$$
\sum_{n \leqslant N} \mu(n) f(n)=o(N) .
$$

There is a similar criterion by Bourgain-Sarnak-Ziegler.

\star Vaughan's method

Lemma

Let $f: \mathbb{N} \rightarrow \mathbb{C}$ such that $|f(n)| \leqslant 1$ for all $n \geq 1$. For all $N, U, V \geqslant 2$ such that $U V \leq N$ we have
$\sum_{n \leq N} f(n) \wedge(n) \ll U+(\log N) \sum_{t \leq U V} \max _{w}\left|\sum_{w \leq r \leq N / t} f(r t)\right|$
$+\sqrt{N}(\log N)^{3} \max _{\substack{\leq \leq M \leq N / V \\ V \leq q_{2} \leq N / M}}\left(\sum_{V<q_{1} \leq N / M}\left|\sum_{\substack{M<m \leq 2 M \\ m \leq \min \left(N / q_{1}, N / q_{2}\right)}} f\left(m q_{1}\right) \overline{f\left(m q_{2}\right)}\right|\right)^{1 / 2}$
with an absolute implied constant.

\star Level of distribution and Gowers norm

Level of distribution of the Thue-Morse sequence: For all $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq x^{1-\varepsilon}} \max _{\substack{y-z \geq 0 \\ z-y \leq x}} \max _{\substack{0<a<d}}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{s_{2}(n)}\right|=\mathcal{O}\left(x^{1-\eta}\right)
$$

for some $\eta>0$ depending on ε; the level of distribution equals 1 .

\star Level of distribution and Gowers norm

Level of distribution of the Thue-Morse sequence: For all $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq x^{1-\varepsilon}} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{s_{2}(n)}\right|=\mathcal{O}\left(x^{1-\eta}\right)
$$

for some $\eta>0$ depending on ε; the level of distribution equals 1 .
Gowers norm of the Thue-Morse sequence:

$$
\sum_{0 \leq n, r_{1}, \ldots, r_{m}<2^{\rho}} \mathrm{e}\left(\alpha \sum_{\varepsilon \in\{0,1\}^{m}} s_{\rho}(n+\varepsilon \cdot r)\right) \ll 2^{(m+1) \rho \cdot\left(1-c\|\alpha\|^{2}\right)}
$$

for all $\rho \geq 0$, where $\varepsilon \cdot r=\sum_{1 \leq i \leq m} \varepsilon_{i} r_{i}$ and s_{ρ} is the truncated sum-of-digits function in base 2 .

* Open Problems

- Sarnak conjecture for Tribonacci-sum-of-digits function
- PNT for Tribonacci-sum-of-digits function
- Extension to β-sum-of-digits function for Pisot numbers β
- Sarnak conjecture for general morphic sequences
- Distribution of $(-1)^{s_{Z}\left(n^{2}\right)}$
- Möbius orthogonality for $(-1)^{s_{Z}\left(n^{2}\right)}$
- ...

Thank you very much for your attention!

Thank you very much for your attention!

Reference:

Michael Drmota, Clemens Müllner, Lukas Spiegelhofer Primes as sums of Fibonacci numbers
https://arxiv.org/abs/2109.04068

