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Chapter 1

Introduction

1.1 Preface

In mathematics and theoretical computer sciences sequences, both finite and
infinite, are ubiquitous. Hence there are numerous sequences of mathematical
interest. For example, the website

http://www.research.att.com/∼njas/sequences/index.html

gives access to more than 100, 000 such sequences. A lot of mathematical
work is devoted to the studies of sequence-related topics.

There are all kind of sequences. Some, such as periodic sequences, are
highly ordered and very easy to describe, while others, such as random se-
quences, are unordered and have no simple descriptions.

In this thesis we are especially interested in the connections of some se-
quences and number theory. We will look at the properties of numbers using
the fact that their base-k expansions or their continued fraction expansions
are sequences with certain characteristics.

It is well known that for any integer k ≥ 2 the base-k expansion of a
rational number should be ultimately periodic, but a long-standing problem,
apparently asked for the first time by Borel [18], is the following: how reg-
ular or random (depending on the viewpoint) is the base-k expansion of an
algebraic irrational number?

A general conjecture claims that it should be totally random, requiring
an algebraic irrational number to be normal in any base k ≥ 2 (i.e., each
block of length ` occurs with frequency 1

k` ). Though this conjecture has not
yet been proven and is considered as out of reach, some results have already
been known in this direction for more than 70 years [5, 17, 26, 28, 47, 48].
These results, proved with different methods, express the following idea: if
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8 CHAPTER 1. INTRODUCTION

the base-k expansion of an irrational number could be obtained by a too
regular process, then this number is transcendental. The term ‘too regular’
has various interpretations and the goal of this thesis is to study some of
those processes.

The sequences we want to study lie somewhat between periodicity (order)
and chaos (disorder). As said above, the numbers with base-k expansions
that are periodic sequences are the rational numbers. Concerning contin-
ued fractions, the rational numbers are exactly those with a finite continued
fraction expansion. The infinite continued fractions expansions that are (ul-
timately) periodic represent numbers that are quadratic irrational. So we
want to study sequences with a low complexity that are not (ultimately)
periodic.

The sequences with the lowest complexity that are still not periodic are
the Sturmian sequences. The first one to investigate what are now gener-
ally called Sturmian words was Johann Bernoulli III (1744–1807). In 1772,
he studied one particular word and found a connection with continued frac-
tions. However, he did not provide any proofs. At the end of the 19th
century Christoffel [19] and Smith [67] independently found similar results.
Markoff [50] proved Bernoulli’s assertions. The term “Sturmian” was intro-
duced by Morse and Hedlund [37] in their work on symbolic dynamics. (The
term is rather unfortunate in that Sturm apparently never worked on these
sequences.) Also see [36]. Sturmian words have also received some attention
in computer graphics and image processing literature. They appear in many
areas of mathematics. For an excellent survey of Sturmian words see [16].

Considering sequences one step higher in the complexity scale we get to
k-automatic sequences. Finite automata — a simple model for computation
similar to Turing machines — produce these sequences. The first one to
systematically study k-automatic sequences was Cobham [22]. He called
them “uniform tag sequences”. The first occurrence of the term “automatic
sequence” (in French) appears to be in a paper of Deshouillers [29]. The
review journals Mathematical Reviews and Zentralblatt für Mathematik have
assigned the classifications 11B85 to “automata sequences”.

Cobham proved that the k-automatic sequences are exactly those which
are fixed points of k-uniform morphisms. Hence they are a special case of
morphic sequences, i.e., infinite sequences that are fixed points of a morphism.

In this thesis we are going to examine the properties of numbers whose
base-k expansion or continued fraction expansion is given by one of those
sequences mentioned above.
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1.2 The Structure of This Thesis

This thesis is structured as follows. The first two sections of Chapter 2
provide us with some basic definitions and results from the fields of stringol-
ogy and number theory that we need later on. In the third section of that
chapter we give the definition of numerations system and prove that every
real number has a base-k representation. We also present a short proof of
the well-known fact that the sequence representing the fractional part of a
rational number are exactly those that are ultimately periodic. The fourth
section provides us with a deep result commonly know as Schmidt’s Subspace
Theorem and its p-adic generalization.

In chapter 3 we give a short introduction to a simple model of computation
that everyone interested in computer sciences should be familiar with, the
finite automata, and how to use these to build elementary functions called
finite-state functions.

The next chapter — number 4 — establishes the concept of the automatic
sequence and proves some basic properties of those sequences.

After the first introductory chapters have provided us with the necessary
concepts and tools we can finally start to investigate the numbers we are
interested in: chapter 5 deals with numbers whose base-k expansion is a
Sturmian sequence. We show that those numbers are all transcendental as
one might expect. This result is due to Ferenczi and Mauduit [34].

After having looked at the numbers with the ‘simplest’ base-k expansions
that are not ultimately periodic in chapter 5, we then turn to the next more
complex numbers, the k-automatic reals. A good introduction to this subject
can be found in the book of Allouche and Shallit [9]. Chapter 6 first gives
a proper definition and some basic properties like the fact that k-automatic
reals form a vector space over Q (a result that is due to Lehr [44]). Thereupon
we investigate the transcendence of these numbers. We start by proving the
transcendence of three examples: The first, the number F =

∑
n≥0B

−2n
, is

sometimes called “Fredholm number”, although Fredholm apparently never
studied it. Our proof of the transcendence of F is due to Knight [40]. For
other proofs, see for example Kempner [39], Mahler [48] or Loxton and van der
Poorten [46]. The second example is the so-called Komornik-Loreti constant.
It was introduced by Komornik and Loreti in [42] using some results by
Erdős et al. [30, 31] and its transcendence proved by Allouche and Cosnard
in [7] resting upon a result by Mahler [48, p. 363]. The third example is the
Thue-Morse number. This is the number whose binary expansion is given
by the famous Thue-Morse sequence with values 0 and 1. This sequence
was introduced in Thue [69], although it was hinted at sixty years earlier by
Prouhet [55]. The sequence itselfs appears to be somewhat ubiquitous — for
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a description of many of its apparently unrelated occurrences, see [10]. Our
proof of the transcendence of the Thue-Morse number is essentially that of
Dekking [28].

After looking at those three explicit examples we start with a general
approach. Following the work of Allouche and Zamboni [11] we prove that a
positive real number whose binary expansion is a fixed point of a morphism on
the alphabet {0, 1} that is either of constant length ≥ 2 or primitive is either
rational or transcendental. This nice result shows that some of the irrational
morphic numbers, namely those produced by this kind of morphisms, are
indeed transcendental. It is a widely believed conjecture that all irrational
morphic numbers are transcendental. This conjecture has not been proved
yet. But still, we do confirm this conjecture for a wide class of morphisms.
Namely we prove that irrational k-automatic numbers are transcendental and
that binary algebraic irrational numbers cannot be generated by a morphism.
Adamczewski and Bugeaud [2] proved this with a new transcendence criterion
derived from the Schmidt Subspace Theorem [64] (see also [63]) as formulated
by Evertse [32].

In chapter 7 we look at our numbers out of the continued fraction ex-
pansion view. Again we are interested in the differences between algebraic
and transcendent irrationals (those being the numbers with infinite continued
fraction expansions). Once more using a theorem of Schmidt [65], we prove
that if the sequence of partial quotients of the continued fraction expansion
of a positive real number takes only two values, and begins with arbitrarily
long blocks which are “almost squares”, then this number is either quadratic
or transcendental. This result applies in particular to real numbers whose
partial quotients form a Sturmian (or quasi-Sturmian) sequence, or are given
by the sequence (1 + (bnαc mod 2))n≥0, or are a “repetitive” fixed point of
a binary morphism satisfying some technical conditions. So again it is the
“not too random” sequences that lead us to transcendent numbers. This first
part of chapter 7 is due to Allouche, Davison, Queffélec and Zamboni [8]. We
further establish two more transcendence criteria for continued fractions that
also rely upon repetitions in sequences of the continued fraction expansions.
The proofs we give again rest on the Schmidt Subspace Theorem [63, 64]. It
is essentially that of Adamczewski and Bugeaud [3].
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Chapter 2

Basics

In this chapter we introduce the basic objects and concepts we will use later
on, as well as some needed fundamental results.

2.1 Stringology

2.1.1 Words

The fundamental mathematical object we will study here is here is the word.
We will start with a definition.

Definition 2.1 Let Σ be a nonempty set of symbols, or an alphabet. A word
or string is a finite or infinite list of symbols chosen from Σ.

One alphabet of special importance is the following, therefore it has its
own symbol: if k is an integer ≥ 2 , then Σk := {0, 1, 2, . . . , k − 1} .

To be more precise, a word is a map from {0, 1, . . . , n−1} or {1, 2, . . . , n}
to Σ. If n = 0, the result is the empty word , which is denoted by ε. The
set of all words made up by letters chosen from Σ is denoted by Σ∗. For
example, if Σ = {a, b}, then Σ∗ = {ε, a,b,aa,ab,ba,bb,aaa . . . }.

Let Σ+ denote the set of all nonempty words over Σ.
If w is a finite word, then its length is defined as the number of symbols it
contains and is denoted by |w|. For example, if w = two, then |w| = 3. And
always |ε| = 0.

It is also possible to count the occurrences of a particular letter in a word.
If a ∈ Σ and w ∈ Σ∗, then |w|a denotes the number of occurrences of a in w.
Thus, for example, if w = babaa, then |w|a = 3 and |w|b = 2.

13



14 CHAPTER 2. BASICS

The basic operation on words is concatenation. To concatenate two words
w and x, simply juxtapose their symbols, denoted by wx. Concatenation of
words is, in general, not commutative. However, it is associative. Nota-
tionally, concatenation is treated like multiplication, so that wn denotes the
word www · · ·w (n times). The set Σ∗ together with concatenation becomes
a monoid, with the empty word ε as the identity element.

A word y is called a subword of a word w if there are words x, z such
that w = xyz. x is called a prefix of w if there exists y such that w = xy,
and x is a proper prefix of w if y 6= ε. A suffix is defined in an analogue way.

A language over Σ is a (finite or infinite) set of words, hence a subset of
Σ∗.

And now to the introduction of infinite words (also called infinite se-
quences). Let Z denote the set of integers, Z+ denote the positive integers
and Z− the negative integers, and N the non-negative integers. Then a one-
sided right-infinite word a = a0a1a2 . . . is a map from N to Σ. An infinite
word can be formed by concatenating infinitely many finite words, e.g.∏

i≥1

wi

denotes a word w1w2w3 . . . , which is infinite if and only if wi 6= ε infinitely
often.

Sometimes it is useful to start the indices with 1 instead of 0 as the
following example shows:

Example 2.2 Define

p = (pn)n≥1 = 0110101000101 · · · ,

the characteristic sequence of the prime numbers.

The set of all one-sided right-infinite words over Σ is denoted by Σω. For
both finite and infinite words, define Σ∞ = Σ∗ ∪ Σω.

A left-infinite word · · · a−3a−2a−1 is a map from Z− to Σ. The set of all
left-infinite words is denoted by ωΣ.

A two-sided infinite word is a map from Z to Σ. Such words are denoted

· · · c−3c−2c−1c0.c1c2c3 · · ·

where the decimal point is a notational convention and not a part of the word
itself. The set of all two-sided infinite words over Σ is denoted by ΣZ.

The notions of subword, prefix, and suffix for finite words have evident
analogues for infinite words. Let w = a0a1a2 · · · be an infinite word. For
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i ≥ 0 we define w[i] = ai. For i ≥ 0 and j ≥ i − 1, we define w[i..j] =
aiai+1 · · · aj. We also define w[i..∞] = aiai+1 · · · . If

lim
n→∞

|w[0..n− 1]|b
n

exists and equals r, then the frequency of the symbol b in w is defined to be
r.

If x is a nonempty finite word, then xω is the right-infinite word xxx · · · .
Such a word is called purely periodic. An infinite word w of the form xyω for
y 6= ε is called ultimately periodic. If w is ultimately periodic, then it can be
written in the form xyω for finite words x, y with y 6= ε. Then x is called
a preperiod of w, and y is called a period. If |x|, |y| are chosen as small as
possible, then x is called the least preperiod, and y is called the least period.

The infinite word w is called recurrent when every subword of w occurs
infinitely often in w. The infinite word w is minimal when every subword of
w occurs infinitely often in w and with bounded gaps.

In conjunction with an infinite word w the language Ln(w) is the set of
all subwords of the length n of w. The language of the infinite word is the
reunion of all the Ln(w).

The complexity function of the infinite word w is the function associating
to n the cardinality of Ln(w), denoted by p(n).

An overlap is a word of the form cxcxc, where x is a word, possibly empty,
and c is a single letter. E.g. the English word alfalfa is an overlap with
c = a and x = lf. If a word w contains no overlap, it is called overlap-free.

2.1.2 Morphisms

Now we will introduce a fundamental tool when working with words, the
homomorphism, or just morphism.

Definition 2.3 Let Σ and ∆ be alphabets. A morphism is a map ϕ from Σ∗

to ∆∗ that obeys the identity ϕ(xy) = ϕ(x)ϕ(y).

It’s clear that if ϕ is a morphism, then ϕ(ε) = ε. Furthermore, if ϕ is
defined for all elements of Σ, then it can be uniquely extended to a map from
Σ∗ to ∆∗. Thus for defining a morphism, it will suffice to specify its actions
on Σ.

Example 2.4 Let Σ = {n,t,u} and ∆ = {a,c,e,k,r} and define

ϕ(n) = cra

ϕ(t) = cker

ϕ(u) = ε
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Then ϕ(nut) = cracker.

If Σ = ∆, it’s possible to iterate the application of ϕ. Define ϕ0(a) = a
and ϕi(a) = ϕ(ϕi−1(a)) for all a ∈ Σ, i ≥ 1.

Example 2.5 Let Σ = ∆ = {0,1}. Define the Thue-Morse-morphism
µ(0) = 01 and µ(1) = 10. Then µ2(0) = 0110 and µ3(0) = 01101001.

Morphisms can be classified into groups, as follows: If there is a constant
k such that |ϕ(a)| = k for all a ∈ Σ, then ϕ is called k-uniform (or just
uniform, if k is clear from the context). A 1-uniform morphism is called a
coding . A morphism is said to be expanding if |ϕ(a)| ≥ 2 for all a ∈ Σ.

A morphism ϕ : Σ∗ → Σ∗ is called primitive if there exists an integer
n ≥ 1 such that for all a, b ∈ Σ, a occurs in ϕn(b).

A finite or infinite word w is called a fixed point of the morphism ϕ if
ϕ(w) = w. If for some letter a ∈ Σ the word ϕ(a) begins with a and has
at least length 2, then the sequence of words a, ϕ(a), ϕ2(a), . . . converges, in
the limit, to the infinite word ϕ∞(a) ∈ Σω which is also a fixed point of ϕ,
i.e. ϕ(ϕ∞(a)) = ϕ∞(a). Moreover, it is easy to see that ϕ∞(a) us the unique
fixed point of ϕ which starts with a.

2.2 Number Theory & Algebra

This section is a conglomeration of some basic results from algebra and num-
ber theory we will need later on.

Let α be a real number. If α = a
b

for some integers a, b, then α is rational;
otherwise it is irrational.

A complex number is said to be algebraic if it is the root of an equation
of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

with a0, a1, . . . , an ∈ Z and an 6= 0. The set of algebraic numbers includes
all rational numbers, and other numbers as for example the complex unit i
or numbers like

√
2, 3
√

2, etc. If a complex number is not algebraic, then it is
called transcendental.

The set of all algebraic numbers is countable. Thus almost all real num-
bers are transcendental, since the real algebraic numbers, being countable,
form a set of measure 0.

If θ ∈ R, then θ is said to be approximable by rationals to order n if there
exists a constant c(θ) such that the inequality∣∣∣∣pq − θ

∣∣∣∣ < c(θ)

qn
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has infinitely many distinct rational solutions p
q
.

Theorem 2.6 A real algebraic number of degree n is not approximable to
any order greater than n.

Proof. Suppose that θ is a real number satisfying

f(θ) = anθ
n + · · ·+ a1θ + a0 = 0

with a0, a1, . . . , an ∈ Z, an 6= 0. Then there exists a number M(θ) such that

|f ′(x)| < M(θ) for θ − 1 < x < θ + 1.

Suppose that p
q

is an approximation to θ. Without loss of generality we
may assume that θ− 1 < p

q
< θ+ 1, and that p

q
is closer to θ than any other

root of f , so f
(

p
q

)
6= 0. Then∣∣∣∣f (pq

)∣∣∣∣ =
|anp

n + · · ·+ a1p+ a0|
qn

≥ 1

qn

and, by the mean value theorem, we have

f

(
p

q

)
= f

(
p

q

)
− f(θ) =

(
p

q
− θ
)
f ′(x)

for some x lying between p
q

and θ. Thus

∣∣∣∣pq − θ
∣∣∣∣ =

∣∣∣f (p
q

)∣∣∣
|f ′(x)|

>
1

M(θ)qn
.

So θ is not approximable to any order higher than n.

Corollary 2.7 (Liouville, 1844) The number θ =
∑

k≥1 10−k! = 0.110001000 . . .
is transcendental.

Proof. Define θn =
∑

1≤k≤n 10−k! = p
10n! = p

q
. Now

0 < θ − p

q
= θ − θn =

∑
k≥n+1

10−k! < 2 · 10−(n+1)! ≤ 2q−n.

Thus θ is approximable to order n for any n. Hence by Theorem 2.6, θ cannot
be algebraic.

Another useful lemma we will need later on.



18 CHAPTER 2. BASICS

Lemma 2.8 Let β be an algebraic number of degree g. For each N ≥ 1,
there exists a constant C > 0 that depends only on β and N , such that, for
every polynomial Q of degree N with integer coefficients, we have

Q(β) = 0 or |Q(β)| ≥ C
||Q||g−1 ,

where ||
∑

0≤j≤N ajX
j|| = max0≤j≤N |aj|.

Proof. Let P be the minimal polynomial of β having integer coefficients and
leading coefficient ag ≥ 1. Let β1 = β, β2, . . . , βg be the conjugates of β, i.e.,
the roots of P , taken with multiplicity. Let Q be a polynomial of degree N ,
with leading coefficient cN , such that Q(β) 6= 0, and let γ1, γ2, . . . , γN be its
roots. We note that the βi’s and the γj’s are all different. We have

0 <

∣∣∣∣∣ 1

aN
g

∏
1≤j≤N

P (γj)

∣∣∣∣∣ =

∣∣∣∣∣ ∏
1≤j≤N

∏
1≤i≤g

(γj − βi)

∣∣∣∣∣
=

∣∣∣∣∣ ∏
1≤i≤g

∏
1≤j≤N

(γj − βi)

∣∣∣∣∣ =

∣∣∣∣∣ 1

cgN

∏
1≤i≤g

Q(βi)

∣∣∣∣∣ .
Hence

0 < |Q(β)| =

∣∣∣cgN ∏1≤j≤N P (γj)
∣∣∣

aN
g

∣∣∣∏2≤i≤g Q(βi)
∣∣∣ . (2.1)

Now the expression
∏

1≤j≤N P (γj) is a symmetric polynomial in the γj’s with
integer coefficients, so the quantity |cgN

∏
1≤j≤N P (γj)| is a positive integer.

Hence we deduce from Equation (2.1) that

Q(β) ≥ 1

aN
g (sup2≤i≤g |Q(βi)|)g−1

.

Note that

sup
2≤i≤g

|Q(βi)|)g−1 ≤ ‖Q‖g−1 sup
1≤i≤g

(1 + |βi|+ · · ·+ |βi|N).

Hence

Q(β) ≥ C

‖Q‖g−1
,

where C depends only on β and N .
Two integers k, l ≥ 1 are called multiplicatively independent if log k and

log l are linearly independent over Q. Otherwise k and l are multiplicatively
dependent.
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2.3 Enumeration Systems

Now we will take a look at how numbers can be represented by strings of
finite words. First, how to represent integers.

A numeration system is a way of representing an integer n as a finite linear
combination n =

∑
0≤i≤r aiui of base elements ui. The ai are called digits

and the finite string of digits arar−1 · · · a1a0 is said to be a representation of
the number n.

For example, in the well-know decimal notation the base elements are
the powers of 10 and every non-negative integer can be expressed as a non-
negative linear combination

∑
0≤i≤r ai10i with 0 ≤ ai < 10.

A minor problem with numeration systems is the leading-zeros problem.
For example, each of the strings 101,0101,00101,. . . represents the number
5 in base 2. Unless otherwise stated we will assume that the leading digit
of a representation, if it exists, is nonzero. Hence the empty string ε is the
representation for 0 in every numeration system.

And now to a more formal Definition of a numeration system.

Definition 2.9 A numeration system for a semiring S is a triple N =
(U,D,R), where U = {u0, u1, u2, . . . } is an infinite sequence of elements
of S called the base sequence, D is a finite subset of S, called the digit set
and R ⊆ D∗ is the set of valid representations. The mapping [w]U from D∗

to S is defined as follows: if w = arar−1 · · · a1a0, then [w]U =
∑

0≤i≤r aiui.

There are two properties a numeration system N should have:

1. there is at least one valid representation for every element of the un-
derlying semiring - in this case N is complete

2. every element has no more than one valid representation - in this case
N is unambiguous

If N is both complete and unambiguous, then it is perfect. In a perfect
enumeration system the mapping [w]U is invertible.

Let k ≥ 2 be an integer. Then every non-negative integer has a unique
representation of the form N =

∑
0≤i≤r aik

i where ar 6= 0 and 0 ≤ ai < k for
0 ≤ i ≤ r. Thus for every k we get a perfect enumeration system with the
base sequence U = {k0, k1, k2, . . . }, the digit set D = Σk = {0, 1, . . . , k − 1}
and the set of valid representations R being the set which contains the empty
word ε and all elements of Σ∗ which do not start with 0.

For the unique representation of the integer N being N =
∑

0≤i≤r aik
i

the canonical base-k representation is defined as (N)k = arar−1 · · · a1a0. For
example, (23)2 = 10111.
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Here it is possible to define the inverse operation: For w = arar−1 · · · a1a0,
define [w]k =

∑
0≤i≤r aik

i. Clearly [(N)k]k = N .
Until now we only discussed how to represent integers in base k. The

following theorem deals with representations of real numbers.

Theorem 2.10 (representation of real numbers) Let k be an integer ≥
2. Every x ∈ R can be represented in the form

bxc+
∑
i≥1

aik
−i

where 0 ≤ ai < k 1. If x is not of the form b
kr for some integers b, r with

r ≥ 0, then the representation is unique. If x is of the form b
kr with r ≥ 0,

then there are two different representations, one where ai = 0 for i > r, and
another where ai = k − 1 for i > r.

Proof. The following algorithm provides one base-k representation for
x0:

RealRep(k,x0)
a0 := bx0c
i := 0
while a0 6= xi do

xi+1 := k(xi − ai)
i := i+ 1
ai := bxic
output(ai)

If the algortithm terminates on input (k, x), then it is clear that x =
a0 +

∑
1≤i≤r aik

−i for some r ≥ 0. On the other hand, if the algorithm does
not terminate, then it is easy to see that the sequence (a0 +

∑
1≤i≤r aik

−i)r≥1

tends to x from below. Hence every number has at least one representation.
Suppose there are integers b, r such that x = b

kr . Then i can write x = bxc+
{x}, where {x} = c

kr for some integer c ≥ 0. Let the base-k representation
of the integer c be w = (c)k, and let w′ = 0r−|w|w. Then if w′ = d1d2 · · · dr,
we have

x = a0 +
∑
i≥1

aik
−i = a′0 +

∑
i≥1

a′ik
−i

where a0 = bxc, and ai = di for 1 ≤ i ≤ r, and ai = 0 for i > r, and a′i = di

for 1 ≤ i < r; a′r = dr − 1, and a′i = k − 1 for i > r. Finally, a′0 = a0 unless

1bxc = max{c ∈ Z, c ≤ x}, cf. {x}, the fractional part of the real number x, {x} =
x− bxc
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r = 0, in which case a′0 = a0 − 1. Now it’s simple to verify that these two
representations are the only ones possible.
Now suppose that there exist no integers b, r sucht that x = b

kr , and assume
that x has at least two different representations, say

x = a0 +
∑
i≥1

aik
−i

and
x′ = a′0 +

∑
i≥1

a′ik
−i

where x = x′. Since these representations differ, there must exist a smallest
index j ≥ 0 such that aj 6= a′j. Without loss of generality assume aj < a′j.
Then there exists an index l > j sucht that al < k − 1; for if not, we would
have x = b

kr for some integers b, r. Then x′ − x > k−l, contradicting the
assumption that x = x′.

The following theorem shows that the rational numbers are exactly those
which base-k expansion, for every k, is ultimately periodic.

Theorem 2.11 Let k be an integer ≥ 2, and let {x} = 0.a1a2a3 . . . be the
base-k representation of the fractional part of x. Then x is a rational number
if and only if the infinite word

a = a1a2a3 . . .

is ultimately periodic.

Proof. Suppose a is ultimately periodic. Then we can write

{x} = .a1a2 . . . ar(ar+1 . . . ar+s)
ω

for some integers r, s with r ≥ 0 and s > 0. Then it is easy to verify that

{x} = k−r

(
[a1a2 . . . ar]k +

[ar+1ar+2 . . . ar+s]k
ks − 1

)
,

so x is rational.
On the other hand, if x is rational, then {x} = b

c
for some integers b, c

with b ≥ 0, c > 0. Each step of the algorithm RealRep produces a new
digit ai and an xi of the form bi

c
, with 0 ≤ bi < c. If bi = 0, the algorithm

terminates, which corresponds to an ultimately periodic representation with
period equal to the single digit 0. If the algorithm does not terminate, there
are at most c different possibilities for bi; when one occurs for the second
time, the output of the algorithm becomes ultimately periodic.
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2.4 Schmidt’s Subspace Theorem

In this section we state two versions of the Subspace Theorem of Schmidt.
We will use these deep results in the transcendence proofs in Chapter 6 and 7.
We start with the version of Schmidt.

Theorem 2.12 (W.M. Schmidt) Let m ≥ 2 be an integer. Let L1, . . . , Lm

be linearly independent linear forms in x = (x1, . . . , xm) with algebraic co-
efficients. Let ε be a positive real number. Then, the set of solutions x =
(x1, . . . , xm) in Zm to the inequality

|L1(x) . . . Lm(x)| ≤ (max{|x1|, . . . , |xm|})−ε

lies in finitely many proper subspaces of Qm.

Proof. See e.g. [63] or [64]. The case m = 3 has been established earlier
in [65].

The second version of the Schmidt Subspace Theorem we will need is
the p-adic generalization due to Schlickewei [61, 62] and Evertse [32]. Before
we state it we have to establish the terms absolute values and height in this
context.

We normalize absolute values an height as follows. Let K be an algebraic
number field of degree d. Let M(K) denote the set of places on K. For
x ∈ K and a place v ∈M(K), define the absolute value |x|v by

1. |x|v = |σ(x)| 1d if v corresponds to the embedding σ : K→ R;

2. |x|v = |σ(x)| 2d = |σ(x)| 2d if v corresponds to the pair of conjugate
complex embeddings σ, σ : K→ C;

3. (Np)
−ordp(x)

d if v corresponds to the prime ideal p of OK.

These absolute values satisfy the product formula∏
v∈M(K)

|x|v = 1 for x ∈ K∗.

Let x = (x1, . . . , xn) be in Kn with x 6= 0. For a place v ∈M(K), put

|x|v =

(
n∑

i=1

|xi|2d
v

) 1
2d

if v is real infinite;

|x|v =

(
n∑

i=1

|xi|dv

) 1
d

if v is complex infinite;

|x|v = max{|x1|v, . . . , |xn|v} if v is finite.
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Now define the height of x by

H(x) = H(x1, . . . , xn) =
∏

v∈M(K)

|x|v

We stress that H(x) depends only on x and not on the choice of the
number field K containing the coordinates of x, see e.g. [32].

The following theorem is the p-adic generalization of the Subspace The-
orem. We assume that the algebraic closure of K is Q. We choose for every
place v in M(K) a continuation of | · |v to Q, that we denote also by | · |v.

Theorem 2.13 Let K be an algebraic number field. Let m ≥ 2 be an integer.
Let S be a finite set of places on K containing all infinite places. For each
v in S, let L1,v, . . . , Lm,v be linear forms with algebraic coefficients and with
rank{L1,v, . . . , Lm,v} = m. Let ε be real with 0 < ε < 1. Then, the set of
solutions x in Km to the inequality

∏
v∈S

m∏
i=1

|Li,v(x)|v
|x|v

≤
∏
v∈S

(| det(L1,v, . . . , Lm,v)|v)H(x)−m−ε

lies in finitely many proper subspaces of Km.

A proof of Theorem 2.13 can be found in [32], where a quantitative version
is established.
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Chapter 3

Finite Automata

Now we will introduce some basic notions and facts about finite automata.
A deterministic finite automaton, or DFA, is a very simple model for

computation. It is an acceptor, i.e. strings are given as inputs and are either
accepted or rejected.

A DFA starts in an initial state and then after reading the input can be
in one of a finite number of states. It takes a word w as input and then,
reading the symbols of w from left to right, moves from state to state. If
after reading all the symbols of w the DFA is in a distinguished state called
an accepting state, then the string is accepted; otherwise it is rejected. The
language accepted by the DFA is the set of all accepted strings.

A DFA can be displayed by a directed graph called a transition diagram.
A directed edge labeled with a letter indicates the new state of the machine
if the given letter is read. By convention, the initial state is drawn with
an unlabeled arrow entering the state, and accepting states are drawn with
double circles.

0
q

q
2q

1

b

b

a, b

a
a

Figure 3.1: A DFA which accepts words with no two consecutive a’s.

Example 3.1 Figure 3.1 shows a simple DFA: It takes words made out of

25
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the alphabet {a, b} as input. A word is accepted if, and only if, it does not
contain two consecutive a’s.

And now for a more formal definition:

Definition 3.2 (deterministic finite automaton (DFA)) A DFA M is
defined to be a 5-tupel

M = (Q,Σ, δ, q0, F )

where
Q is a finite set of states,
Σ is the finite input alphabet,
δ : Q× Σ→ Q is the transition function,
q0 ∈ Q is the initial state, and
F ⊆ Q is the set of accepting states.

It is assumed that δ is defined for all pairs in its range, or in other words,
that the DFA is complete. To be able to speak of acceptance of strings the
domain of δ needs to be extended to Q × Σ∗. This is done in the natural
way: first, δ(q, ε) = q for all q ∈ Q, and then δ(q, xa) = δ(δ(q, x), a) for
all q ∈ Q, x ∈ Σ∗ and a ∈ Σ.

The language accepted by M is then the set L(M) = {w ∈ Σ∗ : δ(q0, w) ∈
F}.

A state q for which there exists some x ∈ Σ∗ such that δ(q0, x) = q is called
reachable, otherwise unreachable. Obviously, we can delete all unreachable
states without changing the language accepted by the DFA.

Until now we said that a DFA accepts or rejects a word. Mathematically
the DFA can be seen as a function f : Σ∗ → {0,1}, where 1 represents
acceptance and 0 rejection. Of course it is possible to use more general sets
than {0,1} which leads to finite automata with output. They work like this:
Given the input word w, the automaton moves from state to state according
to its transition function δ, while reading the symbols of w. As soon as the
end of w is reached, the automaton halts in a state q. Now the automaton
uses its output mapping τ to give the symbol τ(q) as the output.

Again, a formal definition:

Definition 3.3 (deterministic finite automaton with output (DFAO))
A DFAO M is defined to be a 6-tupel

M = (Q,Σ, δ, q0,∆, τ)

where Q,Σ, δ, q0 are as in the definition 3.2, ∆ is the output alphabet, and
τ : Q→ ∆ is the output function.
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A function f : Σ∗ → ∆ that uses M to be computed like this

f(w) = fM(w) = τ(δ(q0, w))

is called a finite-state function.
DFAOs can be represented with a transition diagram just like DFAs;

the only difference is that states are labeled like q/a indicating that if the
automaton halts in q the output is the symbol a.

0

1

1

0

q
0 / 0

1
q / 1

Figure 3.2: A DFAO which computes the mod-2 sum of its binary input bits.

Example 3.4 The DFAO in figure 3.2 computes the sum mod2 of the bits
of the input word w ∈ {0, 1}∗.
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Chapter 4

Automatic Sequences

Now we will introduce the concept of the automatic sequence. In the last
chapter we introduced DFAOs and finite state functions. Now we are espe-
cially interested in the case where the input is a number in base k, which
means the input alphabet Σ = Σk := {0, 1, 2, . . . , k − 1}, with k ∈ N, k ≥ 2.
The DFAO is then called a k-DFAO.

And now to the fundamental concept of the k-automatic sequence: Infor-
mally, a sequence (an)n≥0 is called k-automatic if an is a finite-state function
of the base-k digits of n. In other words, an is computed by feeding a fi-
nite automaton with the base-k representation of n, starting with the most
siginificant digit, and then applying an output mapping τ to the last state
reached. Here comes the formal definition:

Definition 4.1 (k-automatic sequence) A sequence (an)n≥0 over a finite
alphabet ∆ is called k-automatic if there exists a k-DFAO M = (Q,Σk, δ, q0,∆, τ)
such that an = τ(δ(q0, w)) for all n ≥ 0 and all w with [w]k = n.

If M is such a k-DFAO, then it is said that M generates the sequence
(an)n≥0. Definition 4.1 requires that the automaton returns the correct an-
swer even if the input possesses leading zeros; this condition is not a problem
and can be relaxed, see theorem 4.3.

There is a multitude of sequences of mathematical interest which are k-
automatic for some integer k ≥ 2, including an example we already mentioned
in section 2.1.2:

Example 4.2 (The Thue-Morse Sequence) The sequence t = (tn)n≥0

generated by the morphism that we introduced in example 2.5, t = µ∞(0),
counts the number of 1’s (mod 2) in the base-2 representation of n. Here
are the first few terms:

29
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n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
tn = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 . . .

The Thue-Morse sequence can be generated by the DFAO in figure 4.1,
hence it is 2-automatic.

0

1

1

0

q
0 / 0

1
q / 1

Figure 4.1: The DFAO Generating the Thue-Morse Sequence.

To understand that this DFAO actually generates t, consider that being
in state q0 means that the bits of the input seen so far sum to 0 (mod 2),
while being in state q1 means that the bits of the input seen so far sum to 1
(mod 2), as one can easily prove by induction.

Definition 4.1 demanded that our machine M computes an correctly no
matter which base-k representation of n is input. More precisely, M must
give the same answer even if the input has leading zeros. This is a strong
requirement, but as the next theorem shows, it is not necessary. In fact, it
suffices that the DFAO compute the correct output just for the canonical
representation of n in base k (those lacking leading zeros).

Theorem 4.3 The sequence (an)n≥0 is k-automatic if and only if there exists
a k-DFAO M such that an = τ(δ(q0, (n)k)) for all n ≥ 0. Moreover, we may
choose M such that δ(q0, 0) = q0.

Proof. =⇒: Trivial.
⇐=: Let M = (Q,Σk, δ, q0,∆, τ). Define M ′ = (Q′,Σk, δ

′, q′0,∆, τ
′) as fol-

lows:
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Q′ = Q ∪ {q′0},
δ′(q, a) = δ(q, a) for all q ∈ Q, a ∈ Σk,

δ′(q′0, a) =

{
δ(q0, a) if a 6= 0,
q′0 if a = 0,

τ ′(q′0) = τ(q0),
τ ′(q′) = τ(q) for all q ∈ Q.

Then we claim that τ ′(δ′(q′0, 0
i(n)k)) = τ(δ(q0, (n)k)) for all i ≥ 0. This

follows from the property δ′(q′0, 0
i(n)k) = δ′(q′0, (n)k) = δ(q0, (n)k) for n 6= 0.

k-automatic sequences have a lot of interesting and useful properties. For
example, one of them is stated in the following theorem.

Theorem 4.4 If a sequence (vn)n≥0 differs only in finitely many terms from
a k-automatic sequence (an)n≥0, then it is k-automatic.

Proof. The assertion follows easily from a lemma which shows that
a sequence (an)n≥0 over ∆ is k-automatic if and only if each of the sets
{(n)k : an = d} is a regular language for all d ∈ ∆ (a proof of this can be
found in [9], p. 160).

This will help us in the proof of the following theorem.

Theorem 4.5 If (an)n≥0 is an ultimately periodic sequence, then it is k-
automatic for all k ≥ 2.

Proof. From theorem 4.4 it suffices to show this is the case where (an)n≥0

is purely periodic of period t, i.e., atn+i = ai for 0 ≤ i < t and n ≥ 0. Now we
define the k-automaton M = (Q,Σ, δ, q0,∆, τ), where Σ = {0, 1, . . . , k − 1},
as follows:

Q = {0, 1, . . . , t− 1},
δ(q, b) = (kq + b) (mod t) for all q ∈ Q, b ∈ Σ
τ(q) = aq for 0 ≤ q < t.

Then it is easy to see by induction that δ(q, b0b1 · · · bj) = [b0b1 · · · bj]k (mod t)
and the result follows.

Theorem 4.6 Let u = (un)n≥0 be a k-automatic sequence, and let ρ be a
coding. Then the sequence ρ(u) is also k-automatic.
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Proof. By the definition of k-automatic, there exists a k-DFAO M =
(Q,Σ, δ, q0,Γ, τ) such that un = τ(δ(q0, (n)k)) for all n ≥ 0. Now consider
the k-DFAO M ′ = (Q,Σ, δ, q0,Γ, ρ ◦ τ). Clearly this DFAO generates ρ(u).

Theorem 4.7 Let a = (an)n≥0 and b = (bn)n≥0 be two k-automatic se-
quences with values in ∆ and ∆′, respectively. Then a× b = ([an, bn])n≥0 is
k-automatic.

Proof. LetM = (Q,Σ, δ, q0,∆, τ) generate (an)n≥0 andM ′ = (Q′,Σ, δ′, q′0,∆
′, τ ′)

generate (bn)n≥0. Then M ′′ = (Q × Q′,Σ, δ′′, [q0, q
′
0],∆ × ∆′, τ ′′) generates

a× b, where

δ′′([q, q′], c) = [δ(q, c), δ′(q′, c)] for all q ∈ Q, q′ ∈ Q′, c ∈ Σ

and
τ ′′([q, q′]) = [τ(q), τ ′(q′)].

Theorem 4.8 Let a = (an)n≥0 and b = (bn)n≥0 be two k-automatic se-
quences with values in finite sets ∆ and ∆′, respectively. Let f : ∆×∆′ → ∆′′

be any function into a finite set ∆′′. Then the sequence (f(an, bn))n≥0 is k-
automatic.

Proof. Combine the previous two theorems.



Chapter 5

Sturmian Real Numbers

5.1 Introduction

It is a well known fact that, for any integer k ≥ 2, the base-k expansion
of a rational number is ultimately periodic. If we decide to measure the
complexity of a base-k expansion by counting the number of blocks of digits
of length n which appear in it, we may then say that the complexity of the
expansion in base k of a rational number is very low. In this chapter we
consider the following problem: can there exist irrational algebraic numbers
whose expansion in some base k is of lowest complexity? This low complexity
represents in a way the opposite situation to normal numbers in base k.

Our main result here shows that if the k-adic expansion of an irrational
number has the lowest possible complexity—in that case we say it is a Stur-
mian real number—, then this number is transcendental.

For some time this result was known only in some particular cases ([5],
[26], [43] correcting [51]). The method we are proposing in this chapter uses
a combinatorial translation of a result of Ridout ([49], chap. 9, pp. 147-148),
Theorem 5.2, stating that, if the expansion of a number contains infinitely
many (2 + ε)-powers of blocks (that is, a block followed by itself and then
by its beginning of relative length at least ε), at distances from the origin
which are not too much larger than the lengths of the considered blocks,
then it is transcendental. The transcendence in the Sturmian case is then a
consequence of this criterion and of the combinatorial properties of Sturmian
sequences.

33
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5.2 Sturmian Numbers and Transcendence

We recall a famous result of Hedlund and Morse([37]): considering the infinite
sequence w and its complexity function p(n), if there exists n such that
p(n+ 1) = p(n), or such that p(n) ≤ n, then w is ultimately periodic.

We are looking at non-ultimately periodic sequences with the lowest pos-
sible complexity:

Definition 5.1 The sequence w is called Sturmian (on two letters) if p(n) =
n + 1 for every n ∈ N\{0}, or, more generally, for any integer l ≥ 2, the
sequence w is Sturmian on l letters if p(n) = n+ l− 1 for every n ∈ N\{0}.

The general definition of a Sturmian sequence is equivalent to the follow-
ing: p(1) = l (and we may then suppose the alphabet Σ has cardinality l)
and p(n + 1) − p(n) = 1 for any n ≥ 1. A Sturmian sequence cannot be
ultimately periodic, and the equation p(n+1)−p(n) = 1 is equivalent to the
following property: there exists one word in Ln(w) which is a prefix of two
different words in Ln+1(w), and each of the other words in Ln(w) is a prefix
of one and only one word in Ln+1(w).

Now we start by stating the combinatorial criterion for transcendence
used in this chapter.

Theorem 5.2 If θ is an irrational number and, for every n ∈ N, the expan-
sion of θ in base k begins by 0.UnVnVnV

′
n, where Un is a possibly empty and

Vn is a nonempty word on an alphabet Σ ⊂ {0, . . . , k − 1}, V ′
n is a prefix of

Vn, |Vn| → +∞, lim sup
(
|Un|
|Vn|

)
< +∞ and lim inf

(
|V ′

n|
|Vn|

)
> 0, then θ is a

transcendental number.

Proof. Let rn = |Un|, sn = |Vn|, and choose 0 < ε < lim inf( |V
′
n|

|Vn|). Let tn be
the number whose expansion in base k is 0.UnVn · · ·Vn · · · ; then

tn =
pn

krn(ksn − 1)

for some integer pn, while for n large enough

|θ − tn| ≤
1

krn+(ε+2)sn

Now, suppose θ were algebraic irrational. Then, from a theorem of Ridout
([49], chap. 9, pp. 147-148), if there exist infinitely many rational numbers
Pn

Qn
, with Qn = kmnQ′

n (the numbers k, mn and Q′
n being integers), such that∣∣∣∣Pn

Qn

− θ
∣∣∣∣ < c1(Qn)−ρ
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and
Q′

n < c2(Qn)µ,

where c1 and c2 are positive constants, then ρ ≤ 1+µ. Since lim inf( sn

rn+sn
) =

1
lim sup( rn

sn
+1)

> 0, and up to restricting n to a strictly increasing sequence of

integers, one can suppose that sn

rn+sn
→ η > 0. In particular, there exist two

numbers ρ and µ such that, for all n in some infinite set,

1 +
sn

rn + sn

< 1 + µ < ρ < 1 + (1 + ε)
sn

rn + sn

.

This choice of µ and ρ together with the choice Pn = pn, Qn = krn(ksn − 1),
mn = rn, and Q′

n = ksn − 1 gives us the desired contradiction. Hence θ is
transcendental.

After having proven the transcendence criterion we now look at the main
focus of this chapter, the Sturmian real numbers. We start with two lemmata
that will bring us to the main result of this section, Theorem 5.5.

Lemma 5.3 If u = u0u1u2 . . . is Sturmian on l letters and not recurrent, u
is ultimately equal to a Sturmian recurrent sequence on l′ < l letters.

Proof. Suppose a word w, of length m, does not occur an infinite number of
times in u; then there exists an N such that the complexity of the sequence
(vn)n≥0 equal to (un)n≥N satisfies p(m) ≤ m+ l− 2; but for each n, Ln(v) ⊂
Ln(u), hence every word in Ln(v) is a prefix of almost one word in Ln+1(v),
except maybe one which is a prefix of two words, and hence p(n+1)−p(n) ≤
1; but also p(n + 1) − p(n) > 0 as this sequence is not ultimately periodic;
hence it must have complexity n + l1 − 1 for all n ≥ 1, for some 0 ≤ l1 < l;
if it is recurrent, the lemma is proved; if it is not recurrent, we iterate the
process, and, after at most l steps, it shows that u is ultimately equal to
some recurrent Sturmian sequence.

The same proof shows that every binary Sturmian sequence is recurrent;
in fact, every binary Sturmian sequence, and, more generally every recurrent
Sturmian sequence, can be shown to be minimal.

The same method can be used to prove that a non-recurrent Sturmian
sequence u is of the form u0 · · ·upv, where v is a recurrent Sturmian se-
quence on an alphabet Σ′, and u0, . . . , up are distinct elements of Σ\Σ′; this
characterizes completetly the non-recurrent Sturmian sequences.

The following lemma is essentially the same as in [12], pp.205–208, though
we need a different labelling of the edges in the graph and a different definition
of what they call a segment; this yields correspondingly different, though of
course equivalent, results.
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Lemma 5.4 If u is a recurrent Sturmian sequence, there exist two words w0

and w1, and a sequence of integers an ≥ 1, n ≥ 1, such that if the words wn,
n ∈ N are given by the recursion formulas

wn+1 = wan
n wn−1

for n ≥ 1. Then, for any N ≥ 1 and n ≥ 1, the word u0u1 · · ·uN−1 is of
the form X0X1 · · ·Xk, where X1, X2, . . . , Xk−1 are equal either to wn or to
wn+1, X0 is a (possibly empty) suffix of either wn or wn+1, Xk is a (possibly
empty) prefix of either wn or wn+1. This decomposition, which is not unique,
is independent of N for fixed n.

Proof. Let Σ be the alphabet of the sequence. Let Ln(u) be the set of
all subwords of u of length n; let Γn be the graph whose vertices are the
elements of Ln(u), and where there is an arrow from E to F , with label
b, whenever E = bH, F = Ha, with b ∈ Σ, a ∈ Σ, and bHa ∈ Ln+1(u).
The property p(n + 1) − p(n) = 1 implies there is one vertex Dn with two
outgoing arrows, and from every other vertex leaves only one arrow; the
property p(n + 1) − p(n) = 1 and the recurrence imply that there is one
vertex Gn with two incoming arrows, and to every other vertex arrives only
one arrow; hence Γn has one of the following forms:

← ←
↓ ↑ ↓ ↑
Gn → Dn or Gn = Dn

↓ ↑ ↑ ↓
→ →

We call an n-segment any finite sequence (E0, . . . , Ek) of vertices of Γn

such that E0 = Gn, Ei → Ei+1, Ek = Gn, and to each Ei, 1 ≤ i ≤ k − 1
arrives only one arrow. The name of an n-segment is the word made with
the labels of the arrows E0 → E1, . . . , Ek−1 → Ek. There are exactly two
n-segments for each n, and their names generate the language Ln(u). Let
Kn and Jn be the names of the two n-segments.

There are two cases for going from Γn to Γn+1: in the first one, Gn 6= Dn.
Then for any word X 6= Dn in Ln(u), there exists a unique word Xa in
Ln+1(u), and if Y b → Xa, then Y → X. We must have Gn+1 = Gnγ
and Dn+1 = δDn, where γ and δ are uniquely determined by the graph Γn.
The graph Γn+1 is then known entirely, and we check that Kn+1 = Kn and
Jn+1 = Jn.

In the second case, Gn = Dn; let the two n-segments be (Gn, G
′
na, . . . , bG

′′
n, Gn)

with name Kn, and (Gn, G
′
nc, . . . , dG

′′
n, Gn), with name Jn. Then Gn+1 =
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Gnγ and Dn+1 = δGn but now Γn does not determine Γn+1. To lift the
indetermination, we suppose for example that γ = a; then, because of the
recurrence of u, we must have Dn+1 = bDn, the other possible choice giving a
non-transitive graph. This implies that Kn+1 = Kn, Jn+1 = KnJn; the other
choice for γ leads to Kn+1 = JnKn, Jn+1 = Jn.

Hence the names of the two n-segments are wn and wn+1, with the re-
cursion formulas we claimed; and now, for any fixed n and N , the word
u0 · · ·uN−1 is the path in Γn starting at u0 · · ·un−1, continuing through
u1 · · ·un, u2 · · ·un+1, . . . and ending at uN+1 · · ·uN+n. So it has the required
decomposition.

With these two lemmata and the transcendence criterion, i.e. Theorem
5.2, we are now ready to prove the main result of this chapter:

Theorem 5.5 If there exists k such that the expansion of θ in base k is a
Sturmian sequence, then θ is a transcendental number.

Proof. As the transcendence does not depend on the initial values of u,
it is enough, because of Lemma 5.3, to prove our claim if θ = Sk(u) for a
recurrent Sturmian sequence u. Let then an and wn be as in lemma 5.4.

Then, for each n, a suitable initial segment of u is X0X1 . . . Xk−1 as in
lemma 5.4; X0 is either a suffix of wn, denoted by Tn, or a suffix of wn+1, which
may be a suffix of wn−1, denoted again by Tn, or is of the form Tnw

cn
n wn−1

with Tn a suffix of wn and 0 ≤ cn ≤ an an integer (every considered suffix
may be empty). Then the first bn words among X1, . . . , Xk−1 are wn for
some integer bn ≥ 0, and then comes one wn+1 (if not, u would be ultimately
periodic).

Hence, for every n, u begins by either

1. the word Tnw
bn+an
n wn−1 or

2. the word Tnw
cn
n wn−1w

bn+an
n wn−1,

where Tn is a suffix of wn or of wn−1 and bn and cn are non-negative integers.
Let qn be the length of wn, satisfying qn+1 = qnan + qn−1. Then

• if, for infinitely many n, the case 2 occurs with cn ≥ 3, Theorem 5.2
applied for this sequence with Un = Tn and Vn = V ′

n = Wn yields the
transcendence of Sk(u);

• if not, we take Un to be the Tn in case 1 and Tnw
cn
n wn−1 in case 2, so

we have ultimately (i.e., for each n large enough) |Un| ≤ 5qn. And

– if an + bn ≥ 3 for infinitely many n, we take Vn = wn and apply
Theorem 5.2, with V ′

n = Vn, which yields the result;
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– if an + bn ≤ 2 ultimately but an + bn = 2 infinitely often, then
qn−1 ≥ qn

3
ultimately, and Theorem 5.2 with Vn = wn and V ′

n =
wn−1 yields the result;

– finally, in the remaining case we must have bn = 0 and an = 1
ultimately. In this case, where one will recognize the Fibonacci
recursion, we have also wnwn−1 = wn−1wn−1wn−4wn−3, and we
apply Theorem 5.2 with Vn = wn−1 and V ′

n = wn−4, as |Vn| = qn−1

is then larger than |Un|
10

and smaller than 8|V ′
n|.

So now we have proven that the Sturmian real numbers, i.e. the real
numbers whose expansion in some base k is a Sturmian sequence, are tran-
scendental.

Note that the method used to prove this uses only the combinatorial
properties of the Sturmian sequences, and that Lemma 5.4, which gives only
an explicit characterization of the language of u but not of the sequence
itself, is sufficient to yield the main result. There exist, however, more precise
results than Lemma 5.4, and they have been used to give the transcendence
result in some particular cases.

There is a characterization due to Morse and Hedlund [37] of Sturmian
sequences on Σ2 = {0, 1}: a sequence (tn)n≥0 is a Sturmian sequence if and
only if it satisfies, for some irrational α ∈ (0, 1) and some real number β,
either tn = b(n+ 1)α+ βc − bnα+ βc for all n ≥ 0 or tn = d(n+ 1)α+ βe −
dnα+ βe for all n ≥ 0. We will use this characterization in chapter 7.

More on algebraic expressions of Sturmian sequences can be found in [34].
There they also give a generalization of the methods used in this chapter
to some sequences that share part of the combinatorial properties of the
Sturmian sequences like the Arnoux-Rauzy sequences. See also [12], [47] and
[68].



Chapter 6

Automatic Real Numbers

In this chapter we will now introduce the concept of the automatic real num-
bers. In Turing [70] the computability of real numbers is discussed, saying
that a real number α is computable if there is a Turing machine that, given
the input i, will compute a rational approximation to α that lies within
[α − 2−i, α + 2−i]. The automatic real numbers are an analogous concept.
A single real number x is associated with a DFAO as follows: Given the
input n represented in base k, the DFAO outputs the nth digit of the base-b
expansion of the fractional part of x. Here we will explore the properties of
such numbers.

6.1 Definition

Here comes a proper definition:

Definition 6.1 (automatic real numbers) Let k, b ∈ N and ≥ 2. Let r
be a real number, and suppose

r = a0 +
∑
i≥1

aib
−i

with ai ∈ Z for i ≥ 0 and 0 ≤ ai < b for i ≥ 1. Then r is (k, b)-automatic
if the sequence of digits (ai)i≥0 is a k-automatic sequence. L(k, b) denotes the
set of all (k, b)-automatic reals.

6.2 Basic Properties

First we will show that Q ⊆ L(k, b) for all k, b ≥ 2.

39
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Theorem 6.2 If r is rational, then r ∈ L(k, b) for all k, b ≥ 2.

Proof. Let r be a rational number. Then by Theorem 2.11 the expansion
of r in base b is ultimately periodic. Hence by Theorem 4.5 , the sequence
(ai)i≥0 is k-automatic.

Now let’s take a look at the other direction:

Theorem 6.3 Let j, k ≥ 2 be multiplicatively independent integers. Then
L(j, b) ∩ L(k, b) = Q.

Proof. ⊇: use Theorem 6.2.
⊆: follows immediately from Cobham’s theorem which states the following:

Let k, l be multiplicatively independet integers, and suppose the sequence
s = (sn)n≥0 is both k- and l-automatic. Then s is ultimately periodic.

A proof of this can be found in [9], 346-350.
And now some theorems that will show that L(k, b) forms a vector space

over Q.

Theorem 6.4 Let k, b ∈ N and ≥ 2. If x ∈ L(k, b), then −x ∈ L(k, b).

Proof. Clearly, this is true for x ∈ Z. For x /∈ Z, we write x = a0 +∑
i≥1 aib

−i with 0 ≤ ai < b for i ≥ 1. Then by hypothesis (ai)i≥0 is a k-
automatic sequence. Now we consider the coding h : {0, 1, 2, . . . , b − 1} →
{0, 1, 2, . . . , b − 1} defined as follows: h(i) = b − 1 − i. Let ci = h(ai+1)
for i ≥ 0, and define y =

∑
i≥0 cib

−(i+1). A simple calculation now gives
y = a0 + 1− x.

The shifted sequence (ai+1)i≥0 is k-automatic because a shifted k-automatic
sequence is still k-automatic. By Theorem 4.6, (ci)i≥0 is k-automatic. Now
we define

di =

{
−(a0 + 1) if i = 0,
ci−1 if i ≥ 1.

Then (di)i≥0 is also k-automatic, since it is nothing more than a shift of
(ci)i≥0 with an arbitrary element as d0.

And
∑

i≥0 dib
−i = −x which concludes the proof.

Theorem 6.5 If r, s ∈ L(k, b), then so is r + s.

Proof. The base-b expansions of r and s can be added digit by digit, using
Theorem 4.8 and the function f(a, c) = a+ c. this gives an “unnormalized”
base-b expansion

∑
n≥0 unb

−n with ui ∈ {0, 1, . . . , 2b − 2} for i ≥ 0. The
results then follows from the fact that for a positive integer C and any k-
automatic sequence (an)n≥1 of integers with 0 ≤ ai ≤ C for all i ≤ 1, the
number y :=

∑
i≥0 aib

−i is a (k, b)-automatic real number.
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Theorem 6.6 Let x ∈ L(k, b), i.e. x is a number whose base-b expansion is
k-automatic. If c is a nonzero integer, then x

c
∈ L(k, b).

Proof. We construct a 1-uniform transducer that transforms the
sequence x1, x2, . . . , xi, . . . into the sequence y1, y2, . . . , yi, . . . , where x =
.x1x2 . . . , y = x

c
= y1y2 · · · in base b. Since automatic sequences are closed

under 1-uniform transducers, it then follows that y = x
c
∈ L(k, b).

Define the transducer T = (Q,Σ, δ, q0,∆, p) by Q = {0, 1, 2, . . . , c − 1},
Σ = {0, 1, 2, . . . , b − 1}, δ(d, a) = (bd + a) mod c for d ∈ Q, a ∈ Σ, q0 = 0,
∆ = {0, 1, . . . , b − 1}, p(d, a) = b bd+a

c
c. Then this transducer essentially

divides its input by c using the ordinary pencil-and-paper method of long
division.

Corollary 6.7 The set L(k, b) forms a vector space over Q.
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6.3 Transcendence

In this section we will now deal with questions concerning the transcendence
of automatic real numbers.

6.3.1 Examples

A simple example

So, let’s start with a simple example. We will show that the automatic real
number F =

∑
n≥0B

−2n
is transcendent.

Theorem 6.8 The real number F =
∑

n≥0B
−2n

is transcendental for all
integers B ≥ 2.

Proof. Assume that F is algebraic and satisfies the polynomial equation

ceF
e + · · ·+ c1F + c0 = 0 (6.1)

where ∀ 0 ≤ i ≤ e : ci ∈ Z and ce > 0. Let H = max0≤i≤e |ci|.
Now rewrite (6.1) in the following way:

ceF
e + · · · = bsF

s + . . . (6.2)

where the coefficients on both sides are ≥ 0 and 0 ≤ s < e.
Now we define f(X) =

∑
n≥0X

2n
. For r, k ≥ 0 let a(r, k) denote the

coefficient of Xr in f(X)k. Note that a(r, k) is the number of ways that r can
be written as a sum of k powers of 2, where different orderings are counted
as distinct.

Lemma 6.9 Let e, m be fixes integers, and let k be an integer with 1 ≤ k ≤
e. Define N = (2e − 1) · 2m. Then for N − (2m−1 − 1) ≤ r ≤ N + 2m − 1 we
have

a(r, k) =

{
e! if r = N and k = e
0 otherwise.

(6.3)

Proof. We have (N)2 = 1e0m. Then for N − (2m−1 − 1) ≤ r < N we
have

(r)2 = 1e−101x,

where the string x contains at least one 1.
For N < r ≤ N + (2m − 1) we have

(r)2 = 1ex′
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where the string x′ also has at least one 1. Hence for all r 6= N in the
specified range, r has at least e + 1 1’s in its binary expansion, and hence
a(r, k) = 0.

If, on the other hand, r = N , then a(r, k) = 0 for 1 ≤ k < e. If k = e,
then a(r, k) = e!, since then N can be written as the sum of e distinct powers
of 2, and all e! permutations of these will work.

Now consider Equation (6.2) as a number in base B, with both sides
thought of for the moment without carries. The left-hand side will have, in
digit positions specified by the interval I := [N − (2m−1 − 1), N + (2m − 1)],
all zeros, except at position N . The right-hand side will have all zeros in
these positions.

It now remains to consider the effect of the carries.

Lemma 6.10 For integers k, r ≥ 1 we have

a(r, k) ≤ (1 + log2 r)
k

Proof. We can use powers from 20 up to 2blog2 rc in the summands to
represent r, which gives 1+blog2 rc different choices; each choice can be used
at most k times.

We now show that, for m sufficiently large, the carries do not extend
significantly into the positions in I.

The term at digit N , on the left-hand side of (6.2), is ce · e!, which is
independent of m. Hence for all large m, its carries are bounded by 1 +
blogB(ce · e!)c, which occupies only a small portion of I.

On the other hand, the carries occurring in positions to the right of those
in I will never come close to position N . For we have, considering a single
term in (6.2),

∑
r≥N+2m

a(r, k)

Br
≤

∑
r≥N+2m

(1 + log2 r)
k

Br

≤
∑

r≥N+2m

r

Br
(for m sufficiently large)

≤ N + 2m

BN+2m−2

which gives carries to at most blogB(N + 2m)c+ 3 positions to the left of
position N + 2m. Now multiply by H and sum e+ 1 terms, to get carries at
most to position blogb(N + 2m)c+ 4 + blogB H(e+ 1)c.

As m→∞, these cannot come close to position N .



44 CHAPTER 6. AUTOMATIC REAL NUMBERS

It follows that the left-hand side of (6.2) looks, in base B, like

. . . 0’s Expression of ce · e! 0’s Spillover from positions to right of N + 2m

while the right-hand side of (6.2) looks like

. . . 0’s 0’s 0’s Spillover from positions to right of N + 2m

(the second block in both cases representing the positions in interval I)
so they cannot be equal.

The Kormornik-Loreti constant

We continue with another example, the so-called Kormornik-Loreti constant.
In [42], Komornik and Loreti proved the existence and uniqueness of a con-
stant q found in Theorem 6.11. It was then shown in [7] that this number is
also transcendental.

So this section is dedicated to the Komornik-Loreti constant. To intro-
duce it we need some basics.

Given a real number 1 < q ≤ 2, by a q-development we mean a series

∞∑
n=1

εnq
−n = 1

where εn = 0 or 1 for every n. One such development can be obtained easily
by the so-called greedy algorithm: we choose εn = 1 whenever it is possible.
More precisely, set ε1 = 1 and then define ε2, ε3 . . . recursively by the formula

εn :=

{
1 if ε1q

−1 + · · ·+ εn−1q
1−n + q−n ≤ 1,

0 otherwise.
(6.4)

If q = 2, then we obtain εn = 1 for all n and obviously this is the only
2-development. On the other hand, it is natural to expect that for each
1 < q < 2 there are many different q-developments because we may drop
infinitely many terms q−n such that the sum of the rest is still greater than
1.

Indeed, for almost all 1 < q < 2 there exist 2ω different q-developments.
However, rather surprisingly, there exist 2ω exceptional q ∈ (0, 1) for which
there is only one q-development: see [30] or [31] for proofs and related results.
We determine the smallest number q having this curious uniqueness property:
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Theorem 6.11 (Komornik-Loreti) There is a smallest number 1 < q < 2
for which there is only one q-development. This q is the unique positive
solution of the equation

1 =
∞∑
i=1

δiq
−i,

where the sequence (δi)i≥1 of zeroes and ones is defined recursively as follows:
First set δ1 = 1. If n ≥ 0 and if δ1, . . . , δ2n are already defined, then set
δ2n+k = 1− δk for 1 ≤ k < 2n and δ2n+1 = 1.

Comparing the definition of the δi with the sequence defined by t0 =
0, ti+2m = 1 − ti if 0 ≤ i < 2m — a definition of the famous Thue-Morse
sequence equivalent the one we introduced in 4.2 — we can see that actually
δi = ti for i ≥ 1 so the δi are nothing else than the Thue-Morse sequence.
We will also show that this definition of the δi is actually equivalent to the
definition of t in 4.2 at the beginning of the proof of Lemma 6.15.

So it is easy to compute the sequence (δi)i≥1: It begins with

1101 0011 0010 1101 0010 1100 1101 0011 0010 1100.

It follows that

1.7872316501 < q < 1.7872316505.

Our proof is based on a characterization of the unique q-developments
by using the lexicographic order. Given two sequences (ηi)i≥1 and (εi)i≥1 of
zeroes and ones, we write (ηi)i≥1 < (εi)i≥1 or η1η2 · · · < ε1ε2 . . . if there exists
an integer n ≥ 1 such that ηi = εi for all 1 ≤ i < n but ηn < εn. This is a
complete ordering.

For example, it follows from (6.4) that if 1 < q < q̃ < 2, then the
corresponding greedy developments satisfy the inequality (εn)n≥1 < (ε̃n)n≥1.

In the sequel we write for brevity εi instead of 1 − εi and also s instead
of ε1ε2 . . . if s = ε1ε2 . . . is a finite or infinite sequence of zeroes and ones.

Let us introduce the following

Definition 6.12 A sequence ε1, ε2, . . . of numbers 0 and 1 is called admis-
sible if the following two conditions are fulfilled:

εn+1εn+2 . . . < ε1ε2 . . . whenever εn = 0 (6.5)

εn+1εn+2 . . . < ε1ε2 . . . whenever εn = 1 (6.6)
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It is easy to construct admissible sequences. For example, if (εi)i≥1 begins
withN ≥ 2 consecutive 1 digits and if there are neitherN consecutive 1 digits
nor N consecutive 0 digits later, then the sequence (εi)i≥1 is admissible.

We recall the following theorem from [31].

Theorem 6.13 The formula (6.4) establishes a strictly increasing bijection
between the numbers q ∈ (1, 2) for which there is only one q-development and
the admissible sequences (εn)n≥1.

In view of this result Theorem 6.11 is equivalent to the

Theorem 6.14 The sequence (δn)n≥1 given in Theorem 6.11 is the smallest
admissible sequence.

So now we can continue with the proof of Theorem 6.14 instead of proving
Theorem 6.11.

Proof. Consider the sequence (δn)n≥1 defined in Theorem 6.11. First we
prove the following lemma.

Lemma 6.15 The sequence (δn)n≥1 is admissible.

Proof.

1. Let us give an equivalent definition of the sequence (δn)n≥1. Considering
the dyadic expansion of the positive integers i given by

i = εl2
l + · · ·+ ε0

with εl = 0 or 1 for every l, we claim that

δi :=

{
1 if εl + · · ·+ ε0 is odd,
0 if εl + · · ·+ ε0 is even.

Denoting temporarily by (∆i)i≥1 the sequence defined by the right-
hand side of this formula, we have ∆2n = 1 for all n ≥ 0 because
εl + · · · + ε0 = εn = 1. Furthermore, changing k to 2n + k, where
1 ≤ k < 2n, the sum εl + · · · + ε0 increases by εn = 1 so its parity
changes. Hence ∆2n+k = ∆k. Using the definition of δi we conclude
that ∆i ≡ δi. So the δi are actually the Thue-Morse sequence.

2. Let δi = 0 for some i. Then εl + · · · + ε0 ≥ 2 and we may write
i = 2n +2m + j with n > m and 0 ≤ j < 2m. Observe that δj(= δi) = 0
if j 6= 0. We claim that

δi+1δi+2 · · · < δj+1δj+2 . . . (6.7)
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We distinguish two cases. If n ≥ m+ 2, then using 1 we obtain that

δi+k = δj+k for 1 ≤ k < 2m − j

and
δi+2m−j = δ2n+2m+1 = 0 < 1 = δ2m = δj+2m−j

so that (6.7) is satisfied. If n = m+ 1, then the same reasoning gives

δi+k = δj+k for 1 ≤ k < 2m+1 − j

and
δi+2m+1−j = δ2m+2+2m = 0 < 1 = δ2m+1 = δj+2m+1−j

which imply (6.7) again. Iterating (6.7) we eventually obtain (6.5) (for
(δi)i≥1).

3. Let δi = 1 for some i ≥ 1 and write i = 2m + j, 0 ≤ j < 2m. Observe
that δj = 0 if j 6= 0. Using 1 we have

δi+k = δj+k for 1 ≤ k < 2m − j

and
δi+2m−j = δ2m+1 = 0 < 1 = δ2m = δj+2m−j.

Hence
δi+1δi+2 . . . < δj+1δj+2 . . . (6.8)

If j = 0, then this proves (6.6) (for (δi)i≥1). If not, then (6.6) follows
from (6.8) combined with (6.5).

For the proof of the minimality of (δi)i≥1 we also use the lexicographic
order r < s between finite sequences r and s having the same length (defined
in the same way as for infinite sequences) and we write r ≤ s if r < s or
r = s. We start by proving the following lemma.

Lemma 6.16 And admissible sequence (εi)i≥1 cannot begin with a block of
the form ss ending with 0.

Proof. Assume on the contrary that there exists such an admissible sequence
and write s = ε1 . . . εn. Then εn = 1 and ε2n = 0. We show that then (εi)i≥1

is necessarily periodic with period ss. However, this is impossible: and
admissible sequence cannot be periodic with a period ε1 . . . εm ending with
εm = 0 because this sequence does not satisfy the condition (6.5) for εm = 0.
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Assume that the (εi)i≥1 begins with k ≥ 1 consecutive blocks of ss fol-
lowed by a block r of n digits. Applying the condition (6.6) for εn = 1 we
find that

ss . . . sssr . . . < ss . . . ssss . . .

=⇒ ss . . . sssr . . . < ss . . . ssss . . .

=⇒ r ≤ s

=⇒ r ≥ s.

Now applying the condition (6.5) for ε2n = 0 we find that

ss . . . ssr . . . < ss . . . sss . . .

=⇒ r ≤ s.

Therefore r = s.
Next assume that (εi)i≥1 begins with k ≥ 1 consecutive blocks of ss

followed by a block sr of 2n digits. Applying the condition (6.6) for εn = 1
we find that

ss . . . ssr . . . < ss . . . sss . . .

=⇒ ss . . . ssr . . . < ss . . . sss . . .

=⇒ r ≤ s

=⇒ r ≥ s.

Now applying the condition (6.5) for ε2n = 0 we find that

ss . . . sr . . . < ss . . . ss . . .

=⇒ r ≤ s.

Therefore r = s.
It follows by induction that (εi)i≥1 is periodic with the period ss.
Now we can proof the

Lemma 6.17 Let (εi)i≥1 be an admissible sequence. Then (εi)i≥1 ≥ (δi)i≥1.

Proof. First we show that ε1 = 1(= δ1). Indeed, otherwise we could conclude
from condition (6.5) that

ε2ε3 · · · < ε1ε2 . . .

implying ε2 = 0. Repeating this argument we could obtain that εi = 0 for
all i. But this is impossible: this sequence does not satisfy condtion (6.5).



6.3. TRANSCENDENCE 49

Now let us assume on the contrary that

(εi)i≥1 < (δi)i≥1.

Then there is an integer n ≥ 0 such that

ε1 . . . ε2n = δ1 . . . δ2n (6.9)

and
ε2n+1 . . . ε2n+1 < δ2n+1 . . . δ2n+1 .

Since δ2n = 1 by definition, (6.9) implies in particular that ε2n = 1.
Using (6.9) and the definition of (δi)i≥1 we deduce from the latter inequal-

ity that
ε2n+1 . . . ε2n+1 ≤ δ1 . . . δ2n−10 = ε1 . . . ε2n . (6.10)

On the other hand, applying (6.6) it follows that

ε2n+1 . . . ε2n+1 ≤ ε1 . . . ε2n . (6.11)

Now (6.10) and (6.11) imply the equality

ε2n+1 . . . ε2n+1 = ε1 . . . ε2n

which contradicts the preceding lemma.
Theorem 6.14 now follows from 6.15 and 6.17.
Having proven the existence and uniqueness of the number q = 1.787231650 . . .we

will now go on to prove that it is not only irrational, but also transcendental,
proven as a simple consequence of a result of Mahler.

Theorem 6.18 The number q = 1.787231650 . . . defined as the smallest
number in (1, 2) for which there exists a unique expansion of 1 as 1 =∑∞

n=1 δnq
−n, with δn ∈ {0, 1}, is transcendental.

Proof. Mahler proved in [48] that F (a) is transcendental for every alge-
braic number a, with 0 < |a| < 1, where F is defined for |z| < 1 by

F (z) =
∞∏

n=0

(1− z2n

) .

It is easy to see that

F (z) = 1 +
∞∑

n=1

(−1)δnzn
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where (δn)n≥1 is the sequence in Theorem 6.11. Since δn takes values 0 and
1, we have (−1)δn = 1− 2δn. Hence

F (z) = 1 +
z

1− z
− 2

∞∑
n=1

δnz
n .

Taking z = q−1, we obtain

F

(
1

q

)
= 1 +

1

q − 1
− 2

∞∑
n=1

δnq
−n = 1 +

1

q − 1
− 2 =

2− q
q − 1

. (6.12)

If q were algebraic, this would imply that the left-hand side of (6.12) is
transcendental (from Mahler’s result), although the right-hand side would
be algebraic.

The Thue-Morse number

Now we will show that the Thue-Morse number is transcendental. The proof
will use the following theorem on analytic functions, which states that zeros
of a non-zero function are always isolated.

Theorem 6.19 Suppose f is an analytic function on some nonempty con-
nected open subset Ω of C. Let

Z(f) = {z ∈ Ω : f(z) = 0} .

Then either Z(f) = Ω, or Z(f) has no limit point in Ω.

And now on to the transcendency of the Thue-Morse number:

Theorem 6.20 Let (an)n≥0 be the Thue-Morse sequence with values 0 and
1. Then the Thue-Morse number T =

∑
n≥0 an2−n is transcendental.

Proof. First, we replace the sequence (an)n≥0 by the sequence (bn)n≥0,
where bn = 1−2an. Now the sequence (bn)n≥0 takes values ±1, and it suffices
to show that the number

∑
n≥0 bn2−n = 2− 2

∑
n≥0 an2−n is transcendental.

For |z| < 1 we define

B(z) =
∑
n≥0

bnz
n , (6.13)

so that the number
∑

n≥0 bn2−n is equal to B
(

1
2

)
.

The proof now consists of three steps. First, we show that the function B
satisfies a functional equation, and can be expressed as an infinite product.
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Next, we show that B is a transcendental function over Q(z). Finally, we
show that the number B

(
1
2

)
is transcendental.

So, let’s first show that the function B satisfies a functional equation.
Since the Thue-Morse sequence (an)n≥0 satisfies, for all n ≥ 0, the relations
a2n = an and a2n+1 = 1 − an, we have, for all n ≥ 0, that b2n = bn and
b2n+1 = −bn. Hence

B(z) =
∑
n≥0

bnz
n =

∑
n≥0

b2nz
2n + z

∑
n≥0

b2n+1z
2n =

∑
n≥0

bnz
2n − z

∑
n≥0

bnz
2n .

Hence
B(z) = (1− z)B(z2) . (6.14)

Now we define, for m ≥ 1 and |z| < 1,

Wm(z) =
∏

0≤j≤m−1

(1− z2j

) (6.15)

Then, iterating Equation (6.14), we have

B(z) = Wm(z)B(z2m

) (6.16)

for all m ≥ 1, and for all z with |z| < 1. Since |z| < 1, limm→∞ z2m
= 0, and

since B is continuous we have limm→∞B(z2m
) = B(0) = 1. So we get

B(z) = lim
m→∞

Wm(z) =
∏
j≥0

(1− z2j

) (6.17)

for all z with |z| < 1. In particular,

B(
1

2
) = lim

m→∞
Wm(

1

2
) =

∏
j≥0

(1− 2−2j

) (6.18)

Now we prove that the function B(z) is transcendental over Q(z). We
give a direct elementary proof based upon the functional Equation (6.14)
satisfied by B.

Suppose that B is algebraic over Q(z). Then there exists an integer d ≥ 1
and d+ 1 polynomials Q0, Q1, . . . , Qd, not all zero, such that∑

0≤k≤d

Qk(z)B
k(z) = 0 (6.19)

for all z with |z| < 1. We can suppose that d is minimal, which implies
that Q0 6= 0. Now, by replacing z by z2 in Equation (6.19) above and using
Equation (6.14) gives∑

0≤k≤d

Qk(z
2)Bk(z2) =

∑
0≤k≤d

Qk(z
2)(1− z)−kBk(z) (6.20)
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and so, by multiplying by (1− z)d, we get∑
0≤k≤d

Qk(z
2)(1− z)d−kBk(z) = 0 (6.21)

for all z with |z| < 1. Now, multiplying Equation (6.19) by Qd(z
2) and

Equation (6.21) by Qd(z), and substracting, we obtain∑
0≤k≤d−1

(Qd(z)Qk(z
2)(1− z)d−k −Qd(z

2)Qk(z))B
k(z) = 0 (6.22)

for all z with |z| < 1. Since d was chosen to be minimal, this implies that
all the coefficients in the sum (6.22) are in fact 0, and in particular, setting
k = 0, we get

Qd(z)Q0(z
2)(1− z)d = Qd(z

2)Q0(z) (6.23)

for all z with |z| < 1. If we define the non-negative integers u and v and the
polynomials P0 and Pd by Q0(z) = (1− z)uP0(z), Qd(z) = (1− z)vPd(z) and
P0(1) 6= 0, Pd(1) 6= 0, then Equation (6.23) implies that

(1− z)u+v+dPd(z)(1 + z)uP0(z
2) = (1− z)u+v(1 + z)vPd(z

2)P0(z) (6.24)

giving a contradiction when we divide this identity by (1 − z)u+v and set
z = 1.

Hence it is proven that B is transcendental over Q(z) and we are ready
to show that the number B(1

2
) is transcendental.

So let us suppose that B(1
2
) is algebraic of degree g. Let N be a fixed inte-

ger such that N > 2g. We claim that it is possible to find N +1 polynomials
P0, P1, . . . , PN , with integer coefficients and not all 0, such that degPk ≤ N
for all k ≤ N and ∑

0≤k≤N

Pk(z)B(z)k = R(z)

for all z with |z| < 1, where the formal power series R can be written R(z) =
zN2∑

k≥0 rkz
k, i.e., the first N2 coefficients of R are zero. This is indeed

possible, since the coefficients of the Pk’s are (N + 1)2 unknowns, and the
condition on R gives rise to N2 linear homogeneous equations with integer
coefficients.

Now we define polynomials Pm,k for m ≥ 1 and 0 ≤ k ≤ N , by

Pm,k(z) = Pk(z
2m

)

The polynomials Pm,k have integer coefficients, and from Equation (6.16) we
have, for all m ≥ 1 ad for all z such that |z| < 1,∑
0≤k≤N

Pm,k(z)Wm(z)−kB(z)k =
∑

0≤k≤N

Pm,k(z)B(z2m

)k =
∑

0≤k≤N

Pk(z
2m

)B(z2m

)k = R(z2m

)

(6.25)
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Now as for a polynomial P , define the norm ||P || as follows

||a0 + a1z + a2z
2 + · · ·+ adz

d|| = max
j
|aj|

Also define the number M by

M = max
0≤k≤N

max
0≤x≤ 1

2

|Pk(x)|

If for m ≥ 1 we define the polynomials

P̃m(z) = 2N2m+1
∑

0≤k≤N

Pm,k(
1

2
)WN−k

m (
1

2
)zk (6.26)

then these polynomials P̃m have their coefficients in Z, since Pm,k is a poly-
nomial with integer coefficients of degree ≤ N22m

, and Wm is a polynomial
with integer coefficients of degree 2m − 1. Hence the product Pm,kW

N−k
m is

a polynomial with integer coefficients of degree < N22m+1
. Furthermore the

polynomials P̃m satisfy ||P̃m|| ≤M2N2m+1
for m ≥ 1.

Then, defining β = B(1
2
), and putting z = 1

2
in Equation (6.25) and

z = B(1
2
) = β in Equation (6.26), we have

P̃m(β) = 2N2m+1
∑

0≤k≤N

Pm,k(
1

2
)WN−k

m (
1

2
)B(

1

2
)k = 2N2m+1

WN
m (

1

2
)R(2−2m

)

(6.27)
Since the formal power series R(z) begins with a term in zN2

, we can
define

M ′ = max
0≤x≤ 1

2

|R(x)|
xN2

Then we have

||P̃m||g−1|P̃m(β)| ≤ (M2N2m+1

)g−12N2m+1

WN
m (

1

2
)|R(2−2m

)| ≤M g−1M ′2gN2m+1

2−2mN2

Hence
||P̃m||g−1|P̃m(β)| ≤M g−1M ′2(2g−N)N2m

(6.28)

Since we chose N > 2g, Equation (6.28) shows that

lim
m→∞

||P̃m||g−1|P̃m(β)| = 0 (6.29)

But P̃m(β) 6= 0 for m large enough. For if P̃m(β) were equal to zero for
infinitely many m, then Equation (6.27) would imply that R(2−2m

) was zero
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for infinitely many values of m. Then, by Theorem 6.19, R would be zero,
which, in view of the definition of R, would contradict the transcendence of
the function B. This fact, the fact that deg P̃m = N , Equation (6.29) and
Lemma 2.8 together proof that β cannot be an algebraic number of degree
g.

Now, after looking at some examples of transcendent automatic real num-
bers, we will start with a more general approach.

6.3.2 Algebraic Irrational Binary Numbers and Mor-
phisms

Now we will show that an algebraic irrational number cannot be a fixed point
of a morphism of non-trivial constant length or one that is primitive. This
will be done by proving that a positive real number whose binary expansion
is a fixed point of a morphism on the alphabet {0, 1} that is either of constant
length ≥ 2 or primitive is either rational or transcendental.

Theorem 6.21 Let x be a positive real number whose binary expansion is
a fixed point of a morphism on the alphabet Σ2 = {0, 1}. If the morphism
is either of constant length ≥ 2 or primitive, then the number x is either
rational or transcendental.

Proof. We begin with a nice result due to Séébold.

Theorem 6.22 The only overlap-free fixed points of non-trivial binary mor-
phisms are the Thue-Morse sequence beginning in 0 and the Thue-Morse se-
quence beginning in 1, i.e., the two fixed points of the morphism µ : Σ2 → Σ2

defined as follows (cf. 4.2):

µ(0) = 01

µ(1) = 10

A proof of this theorem can be found in [15]. Define a morphism to be
overlap-free if and only if the image of any overlap-free word is itself overlap-
free. Thue proved in 1912 that the only binary overlap-free morphisms are
µk and E ◦ µk, with k ≥ 0, where µ is defined as above and E the morphism
defined by E(0) = 1 and E(1) = 0. The proof of Berstel and Séébold in
[15] consists of first showing that if a morphism h has the property that the
word h(01101001) is overlap-free, then the morphism is either equal to µk
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or to E ◦ µk for some k ≥ 0. Thue’s result can easily be deduced from this
theorem. Two other corollaries are, first that a morphism h over a two-letter
alphabet {a, b} is overlap-free, if and only if the word h(abbabaab) is overlap-
free, second Séébold’s result, i.e. Theorem 6.22. So let’s start with the actual
proof of Theorem 6.21.

If the binary expansion of x does not contain an overlap, then, apply-
ing Theorem 6.22, the sequence of binary digits of x must be either the
Thue-Morse sequence beginning in 0 or the Thue-Morse sequence begin-
ning in 1. Replacing, if necessary, x by 1 − x, we can suppose that its
binary digits are given by the Thue-Morse sequence beginning in 0, namely
x = 0.110100110010110 . . . We have proven the transcendence of this number
in theorem 6.20, see page 50.

If the binary expansion of x contains an overlap, we will prove that x is
either rational or transcendental, using the following three theorems.

The first one is a combinatorial translation of Ridout’s theorem, given by
Ferenczi and Mauduit in [34]. It is Theorem 5.2 that we have proven in the
last chapter. We shortly repeat it here to have it at hand.

Theorem 6.23 Let θ be an irrational number, such that its k-ary expansion
begins, for every integer n ∈ N, in 0.UnVnVnV

′
n, where Un is a possibly empty

word and where Vn is a non-empty word admitting V ′
n as a prefix. If |Vn|

tends to infinity, lim sup
(
|Un|
|Vn|

)
< +∞, and lim inf

(
|V ′

n|
|Vn|

)
> 0, then θ is a

transcendental number.

The second one is a immediate consequence of Theorem 6.23.

Theorem 6.24 If the k-ary expansion of a real number θ is a non-ultimately
periodic fixed point of a primitive morphism σ, and contains a word of the
form V 2+β, with β > 0, then the number θ is transcendental.

This follows from Theorem 6.23 by setting Vn = σn(V ). To ensure that |Vn|
tends to infinity and that the conditions on lim sup and lim inf above are
satisfied, it suffices to know that there exists a real number λ > 1 such that,
for every word w,

lim
n→∞

|σn(w)|
λn

= c(w) > 0,

where c(w) may depend on w. This condition is well known to hold for
primitive morphisms with λ equal to the Perron-Frobenius eigenvalue of the
incidence matrix of σ, the condition λ > 1 being satisfied for the dominant
eigenvalue of a primitive matrix with coefficients in N.
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On the other hand, this expression also holds for morphisms of constant
length ≥ 2. In this case λ is the length of the morphism, c(w) = |w|, and
the morphism need not be primitive.

Obviously the existence of a word V 2+β for some β > 0 is equivalent to
the existence of the overlap V V a where a is the first letter of V , which finally
yields the following third theorem.

Theorem 6.25 Let θ be a positive real number whose k-ary expansion is a
non-ultimately periodic fixed point of a morphism on {0, 1, . . . , k − 1} which
is either primitive or of constant length ≥ 2. If the expansion contains an
overlap, then θ is transcendental.

This last theorem shows that in this case where the binary expansion of x
contains an overlap x is either rational or transcendental, and Theorem 6.21
is finally proved.

So now we have looked at the connection between algebraic irrational
numbers and some morphisms. In the next section we will examine the
complexity of those numbers.

6.3.3 Irrational Automatic Numbers

In this section we will prove that the b-adic (b ≥ 2) expansion of any irrational
algebraic number cannot have low complexity. And we will also show that
irrational automatic numbers are transcendental.

The transcendence criterion used is Theorem 6.28.
First, we define a property of sequences that will be used in the transcen-

dence criterion.

Definition 6.26 (Condition (∗)) A sequence a = (an)n≥1 satisfies Condi-
tion (∗) if a is not eventually periodic and if there exists a real number w > 1
and two sequences of finite words (Un)n≥1, (Vn)n≥1 such that:

1. For any n ≥ 1, the word UnV
w
n is a prefix of the word a;

2. The sequence(|Un|/|Vn|)n≥1 is bounded from above;

3. The sequence (|Vn|)n≥1 is strictly increasing.

A sequence satisfying Condition (∗) for some w > 1 may be called a
stammering sequence.

And now follows the definition of two kind of numbers also used in the
transcendence criterion.
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Definition 6.27 (Pisot and Salem numbers) A real algebraic integer α >
1 is a Salem number if all its conjugate roots have absolute value no greater
than 1, and at least one has absolute value exactly 1.

A Pisot number, or Pisot-Vijayaraghavan number, is an algebraic integer
a which is real and exceeds 1, but such that its conjugate elements are all less
than 1 in absolute value.

Theorem 6.28 (transcendence criterion) Let β be a Pisot or a Salem
number. Let k be an integer. Let a = (an)n≥1 be a sequence taking its values
in {−k, . . . ,−1, 0, 1, . . . , k}. If a satisfies Condition (∗), then the real number

α :=
+∞∑
i=1

ai

βi

is transcendental.

Proof.
The proof rests on the p-adic generalization of the Schmidt Subspace

Theorem 2.13. Recall the definitions of absolute value |x|v and height of x
from page 22 and 23.

In the sequel, we assume that the algebraic closure of K is Q. We choose
for every place v in M(K) a continuation of | · |v to Q, that we denote also
by | · |v.

Now we will continue using the notation and the hypothesis of Theorem
6.28. Assume that the parameter w is fixed, as well as the sequences (Un)n≥1

and (Vn)n≥1, occurring in the definition of Condition (∗) (6.26). Set also rn =
|Un| and sn = |Vn|, for any n ≥ 1. We want to proof that the real number
α :=

∑+∞
i=1

ai

βi is transcendental. The key fact is the observation that α admits

infinitely many good approximants in the number field Q(β) obtained by
truncating its expansion and completing by periodicity. Precisely, for any
positive integer n, we define the sequence (b

(n)
k )k≥1 by

b
(n)
k = ak for 1 ≤ k ≤ rn + sn,

b
(n)
rn+k+jsn

= arn+k for 1 ≤ k ≤ sn and j ≥ 0.

The sequence (b
(n)
k )k≥1 is eventually periodic, with preperiod Un and with

period Vn. Set

αn =
+∞∑
k=1

b
(n)
k

βk

and observe that

α− αn =
+∞∑

k=rn+sn+1

ak − b(n)
k

βk
. (6.30)
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Lemma 6.29 For any integer n, there exists an integer polynomial Pn(X)
of degree at most rn + sn such that

αn =
Pn(β)

βrn(βsn − 1)
.

Furthermore, the coefficients of Pn(X) are bounded in absolute value by 3`.

Proof. By definition of αn, we get

αn =
rn∑

k=1

ak

βk
+

+∞∑
k=rn+1

b
(n)
k

βk
=

rn∑
k=1

ak

βk
+

1

βrn

+∞∑
k=1

b
(n)
k+rn

βk

=
rn∑

k=1

ak

βk
+

1

βrn

sn∑
k=1

arn+k

βk

(
+∞∑
j=0

1

βjsn

)

=
rn∑

k=1

ak

βk
+

sn∑
k=1

arn+k

βrn+k−sn(βsn − 1)
=

Pn(β)

βrn(βsn − 1)
,

where we have set

Pn(X) =
rn∑

k=1

akX
rn−k(Xsn − 1) +

sn∑
k=1

arn+kX
sn−k.

The last assertion of the lemma is clear.
So now we turn to the proof of Theorem 6.28. Set K = Q(β) and denote

by d the degree of K. We assume that α is algebraic, and we consider the
following linear forms, in three variables and with algebraic coefficients. For
the place v corresponding to the embedding of K defined by β → β, set
L1,v(x, y, z) = x, L2,v(x, y, z) = y, and L3,v(x, y, z) = αx+ αy + z. It follows
from Equation (6.30) and Lemma 6.29 that

|L3,v(β
rn+sn ,−βrn ,−Pn(β))|v = |α(βrn(βsn − 1))− Pn(β)|δ � 1

βδ(w−1)sn
,

(6.31)
for a positive real number δ which only depends on our choice of the con-
tinuation of | · |v to Q. Here and throughout this section, the constants
implied by the Vinogradov symbol � depend (at most) on α, β and `, but
are independent of n.

Denote by S ′∞ the set of all other infinite places on K and by S0 the set
of all finite places on K dividing β. Observe that S0 is empty if β is an
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algebraic unit. For any v in S0 ∪ S ′∞, set L1,v(x, y, z) = x, L2,v(x, y, z) = y,
and L3,v(x, y, z) = z. Denote by S the union of S0 and the infinite places
on K. Clearly, for any v in S, the forms L1,v, L2,v and L3,v are linearly
independent.

To simplify the exposition, set

xn = (βrn+sn ,−βrn ,−Pn(β)).

We want to estimate the product

Π :=
∏
v∈S

3∏
i=1

|Li,v(xn)|v
|xn|v

=
∏
v∈S

|βrn+sn|v|βrn|v
|L3,v(xn)|v
|xn|3v

from above. By the product formula and the definition of S, we immediately
get that

Π =
∏
v∈S

|L3,v(xn)|v
|xn|3v

(6.32)

Since the polynomial Pn(X) has integer coefficients and since β is an al-
gebraic integer, we have |L3,v(xn)|v = |Pn(β)|v ≤ 1 for any place v in S0.
Furthermore, as the conjugates of β have moduli at most 1, we have for any
infinite place v in S ′∞

|L3,v(xn)|v � (rn + sn)
dv
d ,

where dv = 1 or 2 according as v is real infinite or complex infinite, respec-
tively. Together with (6.31) and (6.32), this gives

Π � (rn + sn)
d−1

d β−δ(w−1)sn
∏
v∈S

|xn|−3
v

� (rn + sn)
d−1

d β−δ(w−1)snH(xn)−3,

since |xn|v = 1 if v does not belong to S.
Furthermore, it follows from Lemma 6.29 and from the fact that the

moduli of the complex conjugates of β are at most 1 that

H(xn)� (rn + sn)β
rn+sn

d .

Consequently, we infer from Condition (∗) that

Π :=
∏
v∈S

3∏
i=1

|Li,v(xn)|v
|xn|v

� (rn + sn)κH(xn)
−dδ(w−1)sn

rn+sn H(xn)−3

� H(xn)−3−ε,
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for some positive real numbers κ and ε. If rn ≤ Csn for any n ≥ 1, one
can take ε = dδ(w−1)

2(C+1)
. It then follows from Theorem 2.13 that the points

(βrn+sn ,−βrn ,−Pn(β)) lie in a finite number of proper subspaces of K3.
Thus, there exist a triple (x0, y0, z0) ∈ K3 and infinitely many integers n

such that

x0 − y0
βrn

βrn+sn
− z0

Pn(β)

βrn+sn
= 0.

Taking the limit along this sub-sequence and noting that (sn)n≥1 tends to
infinity, we get x0 = z0α and α belongs to K = Q(β). Write then

α =
Q(β)

q
, with Q(X) ∈ Z[X] and q ∈ Z.

For any n ≥ 1, set Qn(β) := βrn(βsn − 1)Q(β)− qPn(β). For any embedding
σ : K→ C with σ(β) 6= β, we have

|Qn(σ(β))| � L(Q) + q(rn + sn),

where L(Q) denotes the sum of the absolute values of the coefficients of the
polynomial Q(X). Since Qn(β) is a non-zero algebraic integer, its norm is at
least equal to 1, thus

|Qn(β)| � (L(Q) + q(rn + sn))−d+1.

Furthermore, we infer from (6.30) and 1 of Condition (∗) that

|Qn(β)| � β−(w−1)sn .

Since (sn)n≥1 tends to infinity, the two last estimates yield a contradiction if
n is large enough. Consequently, the real number α must be transcendental.

Now that the transcendence criterion has been proven we will deal with
the complexity of the numbers we are interested in. Recall that the com-
plexity of a real number written in some integer base b ≥ 2 is measured by
counting, for any positive integer n, the number p(n) of distinct blocks of n
digits (on the alphabet {0, 1, . . . , b − 1}) occurring in its b-adic expansion,
where the function p is called complexity function. It follows from results from
Ferenczi and Mauduit [34] that the complexity function p of any irrational
algebraic number satisfies

lim inf
n→∞

(p(n)− n) = +∞ (6.33)

The following theorem is an improvement of (6.33).
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Theorem 6.30 Let b ≥ 2 be an integer. The complexity function of the
b-adic expansion of an irrational algebraic number satisfies

lim inf
n→∞

p(n)

n
= +∞

Proof. Let α be an irrational number. Without loss of generality, we assume
that α is in (0, 1) and we denote by 0.u1u2 . . . un . . . its b-adic expansion. The
sequence (un)n≥1 takes its values in {0, 1, . . . , b−1} and is not ultimately pe-
riodic. We assume that there exists an integer κ ≥ 2 such that the complexity
function p of (un)n≥1 satisfies

p(n) ≤ κn for infinitely many integers n ≥ 1

and we shall derive that Condition (∗) is then fulfilled by the sequence
(un)n≥1. By Theorem 6.28, this will imply that α is transcendental.

Let nk be an integer with p(nk) ≤ κnk. Denote by U(`) the prefix of
u := u1u2 . . . of length `. By the Dirichlet Schubfachprinzip, there exists
(at least) one word Mk of length nk which has (at least) two occurrences in
U((κ + 1)nk). Thus, there are (possibly empty) words Ak, Bk, Ck and Dk,
such that

U((κ+ 1)nk) = AkMkCkDk = AkBkMkDk and |Bk| ≥ 1.

We observe that |Ak| ≤ κnk. We have to distinguish three cases:

1. |Bk| > |Mk|;

2. d |Mk|
3
e ≤ |Bk| ≤ |Mk|;

3. 1 ≤ |Bk| < d |Mk|
3
e.

So now we will look at each case seperately:

1. Under this assumption, there exists a word Ek such that

U((κ+ 1)nk) = AkMkEkMkDk

Since |Ek| ≤ (κ − 1)|Mk|, the word Ak(MkEk)
s with S = 1 + 1

κ
is a

prefix of u Furthermore, we observe that

|MkEk| ≥ |Mk| ≥
|Ak|
κ
.
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2. Under this assumption, there exist two words Ek and Fk such that

U((κ+ 1)nk) = AkM
1
3
k EkM

1
3
k EkFk.

Thus, the word Ak(M
1
3
k Ek)

2 is a prefix of u. Furthermore, we observe
that

|M
1
3
k Ek| ≥

|Mk|
3
≥ |Ak|

3κ
.

3. In the present case, Bk is clearly a prefix of Mk, and we infer from
BkMk = MkCk that Bt

k is a prefix of Mk, where t is the integer part

of |Mk|
|Bk|

. Observe that t ≥ 3. Setting s = b t
2
c, we see that Ak(B

s
k)

2 is a
prefix of u and

|Bs
k| ≥

|Mk|
4
≥ |Ak|

4κ
.

In each of the three cases above, we have proved that there are finite
words Uk, Vk and an absolute (i.e., independent of k) real number w > 1
such that UkV

w
k is a prefix of u and:

• |Uk| ≤ κnk;

• |Vk| ≥ nk

4
;

• w ≥ 1 + 1
κ
> 1.

Consequently, the sequence
(
|Uk|
|Vk|

)
k≥1

is bounded from above by 4κ. Furhter-

more, it follows from the lower bound |Vk| ≥ nk

4
that we may assume that

the sequence (|Vk|)k≥1 is strictly increasing. This implies that the sequence u
satisfies Condition (∗). By applying Theorem 6.28 with β = b and ` = b− 1,
we conclude that α is transcendental.

It immediately follows from Theorem 6.30 that any irrational real number
with sub-linear complexity (i.e., such that p(n) = O(n)) is transcendental.

Since the complexity function p of any autmatic sequence satisfies p(n) =
O(n) (see [22]), Theorem 6.30 implies straightforwardely the following result.

Theorem 6.31 Irrational automatic numbers are transcendental.

Even though Theorem 6.31 is a direct consequence of Theorem 6.30, we
will now give a short proof of it, resting on a result of [22].

Proof. Let a = (an)n≥1 be a non-eventually periodic automatic sequence
defined on a finite alphabet Σ. Recall that a morphism is called k-uniform or
just uniform if the images of each letter have the same length. Following [22],
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there exist a letter-to-letter morphism ϕ from an alphabet ∆ = {1, 2, . . . , r}
to the alphabet Σ and an uniform morphism σ from ∆ into itself such that
a = ϕ(u), where u is a fixed point for σ. Observe first that the sequence a
satisfies Condition (∗) if this is the case for u. Further, the prefix of length
r+1 of u can be written under the form W1uW2uW3, where u is a letter and
W1,W2,W3 are (possibly empty) finite words. We check that the assumptions
of Theorem 6.30 are satisfied by u with the sequences (Un)n≥1 and (Vn)n≥1

defined for any n ≥ 1 by Un = σn(W1) and Vn = σn(uW2). Indeed, since σ
is a morphism of constant length, we get, on the one hand, that

|Un|
|Vn|

≤ |W1|
1 + |W2|

≤ r − 1

and, on the other hand, that σn(u) is a prefix of Vn of length at least 1
r

times
the length of Vn. It follows that Condition (∗) with w = 1 + 1

r
is satisfied by

the sequence u, and thus by our sequence a. Let b ≥ 2 be an integer. By
applying Theorem 6.28 with β = b, we conclude that the automatic number∑+∞

k=1 akb
−k is transcendental.

So the irrational automatic reals are transcendental. It is a widely be-
lieved conjecture that a wider class of numbers, the irrational morphic num-
bers, are transcendental. This has not yet been proven in all its generality,
but there are results for a wide class of morphisms. For example, as we have
show in Section 6.3.2, an algebraic irrational number cannot be a fixed point
of a morphism of non-trivial constant length or one that is primitive. The
following theorem is a more general result.

Theorem 6.32 Binary algebraic irrational numbers cannot be generated by
a morphism.

Proof. Let a be a sequence generated by a morphism ϕ defined on a finite
alphabet Σ. For any positive integer n, there exists a letter an satisfying

|ϕn(an)| = max{|ϕn(j)| : j ∈ Σ}.

This implies the existence of a letter a ∈ Σ and of a strictly increasing
sequence of positive integers (nk)k≥1 such that for every k ≥ 1 we have

|ϕnk(a)| = max{|ϕnk(j)| : j ∈ Σ}.

Assume from now on that Σ has two elements. Since the sequence a is
not eventually periodic there exist at least two occurrences in a of the two
elements of Σ. In particular, there exist at least two occurrences of the letter
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a in the sequence a. We can thus find two (possibly empty) finite words W1

and W2 such that W1aW2a is a prefix of a. We check that the assumptions
of Theorem 6.28 are satisfied by a with the sequences (Un)n≥1 and (Vn)n≥1

defined by Un = ϕn(W1) and Vn = ϕn(aW2) for any n ≥ 1. Indeed, by
definition of a, we have

|Un|
|Vn|

≤ |W1|

and ϕn(a) is a prefix of Vn of length at least 1
|W2|+1

times the length of Vn. It

follows that Condition (∗) is satisfied by the sequence a with w = 1+ 1
|W2|+1

.
We conclude by applying Theorem 6.28.



Chapter 7

Continued Fractions
Expansions

In this chapter we will take a look at continued fractions. It is widely believed
that the continued fraction expansion of every irrational algebraic number α
either is eventually periodic (and we know that this is the case if and only if
α is a quadratic irrational), or it contains arbitrarily large partial quotients.
But we seem to be very far from a proof (or a disproof, for that matter).

Although we are still lacking such general results, there are some results
for more modest approaches. We may expect that if the sequence of partial
quotients of an irrational number α is, in some sense, ‘simple’, then α is
either quadratic or transcendental. The term ‘simple’ can of course lead to
many interpretations. It may denote real numbers whose continued fraction
expansion has some regularity, or can be produced by a simple algorithm (by
a simple Turing machine, for example), or arises from a simple dynamical
system etc.

This chapter is organized as follows.

We prove, using a theorem of W.M. Schmidt which is a generalization of
the Thue-Siegel-Roth Theorem, that if the sequence of partial quotients of the
continued fraction expansion of a positive irrational real number takes only
two values, and begins with arbitrary long blocks which are almost squares,
then this number is either quadratic or transcendental. This result applies in
particular to real numbers whose partial quotients form a Sturmian (or quasi-
Sturmian) sequence, or are given by the sequence (1 + (bnαc mod 2))n≥0, or
are a ‘repetitive’ fixed point of a binary morphism satisfying some technical
conditions.

Furthermore, we establish two transcendence criteria for numbers with a
‘stammering’ continued fraction expansion.

65
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7.1 Introduction

It is generally believed that the partial quotients in the continued fraction ex-
pansion of an algebraic real number of degree > 2 are, in some way, random.
In particular it is conjectured that an irrational real number whose contin-
ued fraction expansion has bounded partial quotients is either quadratic—in
which case the sequence of partial quotients is ultimately periodic—or tran-
scendental.

Although this conjecture seems quite out of reach, some particular cases
of it are known to be true, if the sequence of partial quotients has extra
properties. In particular M. Queffélec proved the following theorem in [57].

Theorem 7.1 (Queffélec) Let a and b be two distinct positive integers, and
let (un)n≥0 be the Thue-Morse sequence on the alphabet {a, b}. Then the
number x = [0, u0, u1, u2, . . .] is transcendental.

One of the key ideas in the proof is the use of a theorem of Schmidt in
[65], which roughly says that an algebraic nonquadratic real number cannot
be approximated too closely by quadratic numbers. The methods used in the
proof where inspired by a paper of Davison [25],where the following result is
proved.

Theorem 7.2 (Davison) Let α be a positive irrational number. Define the
sequence of integers (un)n≥0 on {1, 2} by un = 1 + (bnαc mod 2). If the con-
tinued fraction expansion of α has an infinite number of even-indexed conver-
gents that have even numerators, then the real number x(α) := [0, u0, u1, u2, . . .]
is transcendental.

In [25] it is asked whether the condition “to have an infinite number of
even-indexed convergents that have even numerators” is verified by almost
all irrational numbers α. This question was answered positively in [35]. The
main theorem of the next section shows in particular that all numbers x(α),
for α irrational, are transcendental. Before stating this theorem we recall
some more definitions and notations.

• Recall that the block-complexity p of a finitely-valued sequence is de-
fined by: for all n ≥ 1, p(n) is the number of blocks of length n that
occur in the sequence.

• A finitely-valued sequence is called quasi-Sturmian if it is not ultimately
periodic, and if its block-complexity p has the property that there exist
two positive integers n0 and c such that p(n) ≤ n+ c for n ≥ n0.
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• Here we will use the characterization of Sturmian sequences mentioned
on page 38: A sequence (tn)n≥0 is called Sturmian if and only if it
satisfies, for some irrational α ∈ (0, 1) and some number β ∈ R, either
tn = b(n+ 1)α+ βc − bnα+ βc for all n ≥ 0 or tn = d(n+ 1)α+ βe −
dnα + βe for all n ≥ 0. (as usual, byc and dye denote the lower and
upper integer parts of y.)

• If the partial quotients of a positive real number x are 0, a1, a2, . . ., we
note as usual x = [0, a1, a2, . . .]. We denote the convergents by pn

qn
, i.e.

pn

qn
:= [0, a1, a2, . . . , an].

7.2 Transcendence of Sturmian Continued Frac-

tions

Now follows the main theorem of this section, summarizing our conclusions
on Sturmian sequences and continued fractions. The rest of this section is
dedicated to the proof of this theorem.

Theorem 7.3 Let a and b be two distinct positive integers. Let u = (un)n≥0

be a sequence on {a, b}. Then the number y := [0, u0, u1, u2, . . .] is transcen-
dental if one of the following conditions holds:

• the sequence u is quasi-Sturmian. This is in particular the case if the
sequence u is obtained from a Sturmian sequence by replacing 0’s by
a’s and 1’s by b’s,

• the sequence u is obtained from the sequence (1 + (bnαc mod 2))n≥0,
where α is any irrational number, by replacing 1’s by a’s and 2’s by
b’s,

• the sequence u is a non-ultimately periodic fixed point of a (not neces-
sarily primitive) morphism, such that the frequencies of a and b in u
exist, and such that u begins in a square UU ,

• the sequence u is a non-ultimately periodic fixed point of a (not neces-
sarily primitive) morphism of constant length, such that the frequencies
of a and b in u exist, and such that u begins with a word UV , where
V is a prefix of U , and either inf{a, b} ≥ 2 and |V | > 0.64803|U |, or
inf{a, b} = 1 and |V | ≥ 0.7|U |.
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7.2.1 A Combinatorial Consequence of Schmidt’s The-
orem

In this section we give a combinatorial condition on the continued fraction
expansion of an irrational number ξ which, via a nice theorem of Schmidt in
[65], implies the transcendence of ξ. Before stating Schmidt’s theorem [65],
we first recall a definition.

Definition 7.4 Let ξ be a root of the minimal equation aξ2 + bξ + c = 0,
with a, b, c ∈ Z, and gcd(|a|, |b|, |c|) = 1. The height of ξ, denoted by H(ξ),
is defined by H(ξ) = max(|a|, |b|, |c|).

The following theorem of Schmidt is a generalization of the Thue-Siegel-
Roth Theorem about the approximation to algebraic numbers by rational
numbers. In that theorem the number ξ is approximated by rational numbers
and the constant B must be > 2. Here, ξ is approximated by quadratic
irrational numbers and B > 3.

Theorem 7.5 (W.M. Schmidt) Let ξ be a real number in (0, 1). We sup-
pose that ξ is neither rational, nor quadratic irrational. If there exists a real
number B > 3, and infinitely many quadratic irrational numbers ξk such that

|ξ − ξk| < H(ξk)
−B

then ξ is transcendental.

We will need the following lemma on continued fraction expansions.

Lemma 7.6 1. Let ξ ∈ (0, 1) be a number with periodic continued fraction
expansion

ξ = [0, a1, a2, . . . , ak, a1, a2, . . . , ak, . . .]

and convergents pn

qn
. Then the (quadratic irrational) number ξ satisfies

H(ξ) ≤ qk.

2. If x, y ∈ (0, 1] have the same first k partial quotients a1a2 · · · ak (hence
the same first k convergents), then

|x− y| ≤ 1

q2
k

Proof.
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1. We have ξ = [0, a1, a2, . . . , ak,
1
ξ
]. Hence ξ =

1
ξ
pk+pk−1

1
ξ
qk+qk−1

, which gives

qk−1ξ
2 + ξ(qk − pk−1)− pk = 0

Since ξ ∈ (0, 1], we have pn ≤ qn for every n ≥ 1, hence, since the
sequence (qn)n≥0 is nondecreasing,

H(ξ) ≤ max(qk−1, |qk − pk−1|, pk) ≤ qk.

2. Since pk

qk
= [0, a1, a2, . . . , ak], we have, denoting by

p′k+1

q′k+1
the next con-

vergent of x and by
p′′k+1

q′′k+1
the next convergent of y,∣∣∣∣x− pk

qk

∣∣∣∣ ≤ 1

qkq′k+1

≤ 1

q2
k

and

∣∣∣∣y − pk

qk

∣∣∣∣ ≤ 1

qkq′′k+1

≤ 1

q2
k

.

Furthermore x − pk

qk
and y − pk

qk
have same sign and this sign depends

only on k. Hence

|x− y| =
∣∣∣∣∣∣∣∣x− pk

qk

∣∣∣∣− ∣∣∣∣y − pk

qk

∣∣∣∣∣∣∣∣ ≤ 1

q2
k

.

Lemma 7.6 and Schmidt’s theorem will permit us to prove the following
result.

Theorem 7.7 Let ξ ∈ (0, 1) be an irrational number whose continued frac-
tion expansion ξ = [0, a1, a2, . . . , an, . . .] is non ultimately periodic. Let pn

qn

be the convergents of ξ. We suppose that, for an infinite number of k’s, the
sequence (an)n≥1 begins with the word UkVk, where

• limn→∞ |Uk| = +∞

• the word Vk is a prefix of Uk.

Let γ = lim infk→∞
|Uk|+|Vk|
|Uk|

, let M = lim supk→∞ q
1

|Uk|
|Uk| and m = lim infk→∞ q

1
|UkVk|
|UkVk| .

If the inequality γ > 3 log M
2 log m

holds, then the number ξ is transcendental.

Proof. Let ξk have the periodic continued fraction expansion

ξk = [0, a1, a2, . . . , a|Uk|, a1, a2, . . . , a|Uk|, . . .].
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Then, from assertion 1 in Lemma 7.6, we have H(ξk) ≤ q|Uk|. Noting that the
continued fraction expansion of ξk begins with [0, a1, a2, . . . , a|Uk|, a1, a2, . . . , a|Vk|, . . .],
as does the continued fraction expansion of ξ, we obtain from assertion 2 in
Lemma 7.6,

|ξ − ξk| ≤
1

q2
|UkVk|

.

In order to apply Schmidt’s theorem, it suffices to prove that there exists
a real number B > 3, such that qB

|Uk| < q2
|UkVk|. In fact this will then give

|ξ − ξk| ≤
1

q2
|UkVk|

<
1

qB
|Uk|
≤ H(ξk)

−B.

Now, in order to prove the existence of such a B, it suffices to prove that the
inequality 3 log q|Uk| < 2 log q|UkVk| holds: we have

2 lim inf
k→∞

log q|UkVk|

log q|Uk|
= 2 lim inf

k→∞

|UkVk|
|Uk|

log q|UkVk|

|UkVk|
|Uk|

log q|Uk|
≥ 2γ logm

logM
> 3.

7.2.2 A Semigroup of Matrices

In this section we study a semigroup of matrices.

Definition 7.8 Let a and b be positive integers with b > a ≥ 1. Let A and
B be the 2× 2 matrices given by

A =

(
a 1
1 0

)
B =

(
b 1
1 0

)
.

We denote by S(A,B) the semigroup under matrix multiplication generated
by A and B. We also define

S+(A,B) := {X ∈ S(A,B) : detX = +1}
S−(A,B) := {X ∈ S(A,B) : detX = −1}.

Finally, we denote by ΦX the map defined by

if X =

(
α β
γ δ

)
∈ S(A,B), then ΦX(x) =

δx+ γ

βx+ α
.

Some remarks before we continue.
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• We denote the trace of a matrix M by tr(M), its spectral radius by
ρ(M), and its L2-Norm by ‖M‖. Note that for any real square matrix
we have ‖M‖ =

√
ρ(M tM). Hence, since the matrices A and B are

symmetric, we have ‖A‖ = ρ(A) and ‖B‖ = ρ(B).

• We have S(A,B) = S+(A,B) ∪ S−(A,B) (the determinant of every
matrix X in S(A,B) is equal to ±1).

• X ∈ S(A,B) if and only if X can be expressed as the product of
elements of a word on the alphabet {A,B} with even length ≥ 2.

• If X ∈ S+(A,B), then X has two distinct real eigenvalues (a matrix
X ∈ S+(A,B) necessarily satisfies tr(X) > 2).

• For any X ∈ S+(A,B), the equation ΦX(x) = x has two distinct solu-
tions that we denote by xX and yX , with xX < yX . It is clear that, if
xX < x < yX , then x < ΦX(x) < yX , and if x > yX , then ΦX(x) < x.

• ΦMN = ΦM ◦ ΦN , for any M,N ∈ S(A,B).

We now state the main theorem of this section.

Theorem 7.9 Let a and b be two integers with b > a ≥ 1. Let (un)n≥1 be a

sequence with values in {a, b} such that limN→∞
]{n∈{1,2,...,N},un=a}

N
= δ. Let

(qn)n≥−1 be the sequence defined by q−1 := 0, q0 := 1, and for n ≥ 1, qn :=

unqn−1 + qn−2. Then, if A =

(
a 1
1 0

)
and B =

(
b 1
1 0

)
, we have

if 0 ≤ δ ≤ 1

2
, then ρ(AB)δρ(B)1−2δ ≤ lim inf

n→∞
q

1
n
n ≤ lim sup

n→∞
q

1
n
n ≤ ρ(A)δρ(B)1−δ,

and

if
1

2
≤ δ ≤ 1, then ρ(AB)1−δρ(B)2δ−1 ≤ lim inf

n→∞
q

1
n
n ≤ lim sup

n→∞
q

1
n
n ≤ ρ(A)δρ(B)1−δ.

Before proving this theorem (we start with the proof on page 75) we need
six lemmata describing properties of the semigroup S(A,B).

Lemma 7.10 If X =

(
α β
γ δ

)
∈ S(A,B), then the following inequalities

hold

α ≥ β, α ≥ δ, α+ γ ≥ β + δ.
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Proof. We write X as a word of length say n on the alphabet {A,B}. The
inequalities clearly hold if n = 1, since then X = A or X = B. The general
case is provided by induction on n.

Lemma 7.11 Let X =

(
α β
γ δ

)
∈ S(A,B) and M =

(
m1 m2

m3 m4

)
∈

S+(A,B). Suppose that

1. βxM + α < 0,

2. ΦX(xM) < yM .

Then tr(MX) > ρ(M)tr(X).

Proof. As noted, the matrix M has real distinct eigenvalues. It is easy to
see that

xM + yM =
m4 −m1

m2

, xMyM = −m3

m2

, and ρ(M) = m1 +m2yM .

Now tr(X) = α+ δ, and tr(MX) = αm1 + βm3 + γm2 + δm4. Hence

tr(MX)− ρ(M)tr(X) = m2(βxM + α)(ΦX(xM)− yM) > 0.

Lemma 7.12 We have the following inequalities

• xAB < xB < xA < xBA < 0 < yBA < yB < yA < yAB

• ΦB(xAB) = xBA

• xBA < ΦA(xAB) < 0

• xBA > −(a+ 1
b
).

Proof. We have: xA = −a−
√

a2+4
2

, xB = −b−
√

b2+4
2

, xAB =
−b−
√

b2+ 4b
a

2
, xBA =

−a−
√

a2+ 4a
b

2
.

• Since 1 ≤ a < b, we have xAB < xB < xA < xBA < 0.

• Similarly 0 < yBA < yB < yA < yAB. (to prove for example the

inequality yBA < yB, consider the function x→
√
x2 + 4x

b
− x.)
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• The equality ΦB(xAB) = xBA and the inequality xBA > −(a + 1
b
) are

straightforward.

• We have ΦA(xAB) = 1
a+xAB

> 1
b+xAB

= xBA. Furhtermore a + xAB <

a+ xA = a−
√

a2+4
2

< 0, hence ΦA(xAB) = 1
a+xAB

< 0.

Lemma 7.13 For all X =

(
α β
γ δ

)
∈ S−(A,B) we have

1. βxAB + α < 0,

2. xBA ≤ ΦX(xAB) ≤ yAB.

Proof. The proof is by induction on the (odd) length of X as a word on
the alphabet {A,B}.

• If X = A (resp.B), condition 1 of the lemma reads xAB < −a (resp.
xAB < −b) which is true since

xAB =
−b−

√
b2 + 4b

a

2
< xB < −b < −a.

Now condition 2 reads xBA ≤ ΦA(xAB) ≤ yAB (resp. xBA ≤ ΦB(xAB) ≤
yAB). This is a consequence of lemma 7.12 above which gives xBA < ΦA(xAB) <
0 < yAB (resp. ΦB(xAB) = xBA).

Suppose now that X∗ = MX, where M ∈ {A2, B2, AB,BA}. Write

M =

(
m1 m2

m3 m4

)
, X =

(
α β
γ δ

)
. We have

β∗xAB + α∗ = (βxAB + α)(m1 +m2ΦX(xAB)).

The possible values of (m1 +m2ΦX(xAB)) are (a2 +1)+aΦX(xAB), (b2 +1)+
bΦX(xAB), (ab+1)+aΦX(xAB), (ab+1)+bΦX(xAB). These four numbers are
positive: namely, using the induction hypothesis we have ΦX(xAB) ≥ xBA,
and the claim is a consequence of the inequality (see lemma 7.12)

xBA > −(a+
1

b
) = min{a+

1

a
, a+

1

b
, b+

1

a
, b+

1

b
}.

Hence β∗xAB+α∗ and βxAB+α have the same sign, which gives β∗xAB+α∗ <
0.
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Now, Φ∗
X(xAB) = ΦMX(xAB) = ΦM(ΦX(xAB)). It is easily seen that

xM ≤ xBA. Hence, using Lemma 7.12, the remark that xA2 = xA and
xB2 = xB, and the induction hypothesis, we have

xM ≤ xBA ≤ ΦX(xAB) ≤ yAB. (7.1)

Since ΦX is increasing (M belongs to S+(A,B)), we have

ΦM(ΦX(xAB)) ≤ ΦM(yAB).

But M ∈ S+(A,B) and yAB ≥ yM (Lemma 7.12). Hence, ΦM(yAB) ≤ yAB

(see the second last remark on page 71), which implies

ΦX∗(xAB) = ΦM(ΦX(xAB)) ≤ yAB

Now, using Equation (7.1) again, we have two cases

• if xM ≤ ΦX(xAB) ≤ yM , then (from the second last remark on page
71) ΦM(ΦX(xAB)) ≥ ΦX(xAB) ≥ xBA;

• if ΦX(xAB) > yM , then ΦM(ΦX(xAB)) > ΦM(yM) = yM > xBA.

Hence, finally,
ΦX∗(xAB) = ΦM(ΦX(xAB)) ≥ xBA

and the lemma is proved.
Lemmata 7.11 and 7.13 easily give the following lemma.

Lemma 7.14 For all X ∈ S−(A,B), we have tr(ABX) > ρ(AB)tr(X).

The previous lemma will imply the following result.

Lemma 7.15 Let n be an odd integer ≥ 3. Let Wn(A,B) be an element
in S(A,B) given by a word on {A,B} of length n, and where the matrix A
occurs k times. We have

• if 0 ≤ k < n
2
, then tr(Wn(A,B)) ≥ ρ(AB)ktr(Bn−2k);

• if n
2
< k ≤ n, then tr(Wn(A,B)) ≥ ρ(AB)n−ktr(A2k−n).

Proof. If k = 0, then Wn(A,B) = Bn, and if k = n, then Wn(A,B) =
An. In either cases the result is clear.

If k ≥ 1, we can write tr(Wn(A,B)) = tr(ABWn−2(A,B)), whereWn−2(A,B) ∈
S(A,B) is given by a word of length n− 2 where the matrix A occurs k − 1
times (the trace of a product of matrices is invariant when the matrices are
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cyclically permuted). Hence, using Lemma 7.14, we have tr(Wn(A,B)) >
ρ(AB)tr(Wn−2(A,B)). An easy recurrence on n odd ends the proof.

We are now ready for the proof of Theorem 7.9:
Proof. We first write(
qn
qn−1

)
=

(
un 1
1 0

)(
qn−1

qn−2

)
= · · · = Wn(A,B)

(
q0
q−1

)
= Wn(A,B)

(
1

0

)
,

where Wn(A,B) is an element of S(A,B) of length n.
We now prove the upper bound. Let k be the number of A’s in Wn(A,B),

we have

q
1
n
n ≤

∥∥∥∥( qn
qn−1

)∥∥∥∥ 1
n

≤
(
‖Wn(A,B)‖

∥∥∥∥(1

0

)∥∥∥∥) 1
n

≤ ‖A‖
k
n‖B‖1−

k
n .

Hence
lim sup

n→∞
q

1
n
n ≤ ‖A‖δ‖B‖1−δ = ρ(A)δρ(B)1−δ.

Let us prove the lower bound, i.e., if 0 ≤ δ < 1
2
, then ρ(AB)δρ(B)1−2δ ≤

lim infn→∞ q
1
n
n (the cases δ = 1

2
and 1

2
< δ ≤ 1 are similar). Since the sequence

(qn)n≥0 is nondecreasing we may take the lim inf over odd integers. Let n be
a large odd integer. Suppose that ]{j ∈ {0, 1, . . . , n}, uj = a} = k < n

2
. We

have (
qn
qn−1

)
= Wn(A,B)

(
1

0

)
:=

(
αn βn

γn δn

)(
1

0

)
;

hence, using Lemma 7.10 and 7.15,

qn = αn ≥
αn + δn

2
=

tr(Wn(A,B))

2
≤ ρ(AB)ktr(Bn−2k)

2
.

Let λ > µ be the (real) eigenvalues of the matrix B. We have λ > 1 and
|µ| < 1. Hence

q
1
n
n ≥ 2−

1
nρ(AB)

k
n (λn−2k + µn−2k)

1
n = ρ(AB)

k
nλ1− 2k

n θn,

where

θn := 2−
1
n

(
1 +

(µ
λ

)n−2k
) 1

n

.

Hence 2−
1
n ≤ θ ≤ 1, and θn → 1 as n→∞, which gives

lim inf
n odd→∞

q
1
n
n ≥ ρ(AB)δρ(B)1−2δ.
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7.2.3 Transcendence of Binary Continued Fractions

In this section we combine Theorem 7.7 and 7.9 to obtain transcendence
results for real numbers whose infinite continued fraction expansion contains
only two different partial quotients.

A General Theorem

We begin with a general theorem.

Theorem 7.16 Let a and b be two integers with b > a ≥ 1. Let A and B be

the 2× 2 matrices defined by A =

(
a 1
1 0

)
and B =

(
b 1
1 0

)
. Let x be an

irrational real number in (0, 1) such that the partial quotients in its continued
fraction expansion x = [0, u0, u1, u2, . . .] only take values a and b. Suppose
that the frequencies of a’s and b’s in the sequence (un)n≥0 exist. Suppose also
that, for an infinite number of k’s, the sequence (un)n≥0 begins with the word
UkVk, where

• limk→∞ |Uk| = +∞,

• the word Vk is a prefix of Uk.

Let γ = lim infk→∞
|Uk|+|Vk|
|Uk|

. If the inequality γ > 3
2

log(ρ(A)ρ(B))
log ρ(AB)

holds, then the

number x is either quadratic (if the sequence (un)n≥0 is ultimately periodic)
or transcendental.

This inequality is in particular satisfied, if either a ≥ 2 and γ > 1.64803,
or a = 1 and γ ≥ 1.7.

Proof. Let δ be the frequency of a’s in the sequence (un)n≥0. Using
Theorems 7.7 and 7.9, we see that if suffices to prove that

if 0 ≤ δ ≤ 1

2
, then γ >

3 log(ρ(A)δρ(B)1−δ)

2 log(ρ(AB)δρ(B)1−2δ)
=

3

2
H(δ)

and

if
1

2
≤ δ ≤ 1, then γ >

3 log(ρ(A)δρ(B)1−δ)

2 log(ρ(AB)1−δρ(A)2δ−1)
=

3

2
H(δ),

where H(δ) is defined for 0 ≤ δ ≤ 1 by

if 0 ≤ δ ≤ 1

2
, then H(δ) =

rδ + s(1− δ)
tδ + s(1− 2δ)
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and

if
1

2
≤ δ ≤ 1, then H(δ) =

rδ + s(1− δ)
t(1− δ) + r(2δ − 1)

with r = log ρ(A), s = log ρ(B), and t = log ρ(AB).
Using that t = log ρ(AB) ≤ log ‖AB‖ ≤ log(‖A‖‖B‖) = log(ρ(A)ρ(B)) =

r + s, and that r < s (since a < b), we see that H(δ) is nondecreasing for
0 ≤ δ ≤ 1

2
and nonincreasing for 1

2
≤ δ ≤ 1. Hence

H(δ) ≤ H

(
1

2

)
=
r + s

t
=

log(ρ(A)ρ(B))

log ρ(AB)
.

Now it is easy to compute the spectral radii of A,B and AB,

ρ(A) =
a+
√
a2 + 4

2
, ρ(B) =

b+
√
b2 + 4

2
, ρ(AB) =

ab+ 2 +
√
a2b2 + 4ab

2
.

We thus have γ > 3
2

log(ρ(A)ρ(B))
log ρ(AB)

if and only if

2γ log

(
ab+ 2 +

√
a2b2 + 4ab

2

)
−3 log

(
a+
√
a2 + 4

2

)
−3 log

(
b+
√
b2 + 4

2

)
> 0.

Define the function Φ(x) for a ≤ x < +∞ by

Φ(x) := 2γ log

(
ax+ 2 +

√
a2x2 + 4ax

2

)
−3 log

(
a+
√
a2 + 4

2

)
−3 log

(
x+
√
x2 + 4

2

)
.

Clearly Φ(a) = (2γ− 3) log
(

a2+2+a
√

a2+4
2

)
, and Φ(x) ∼ (2γ− 3)x as x→∞.

Furthermore computing Φ′(x) shows that it has the same sign as x2a2(4γ2−
9)− 36ax+ 16a2γ2 We then distinguish two cases:

• If a ≥ 2, we suppose that γ > 1.64803.

The discriminant of the trinomial x2a2(4γ2−9)−36ax+16a2γ2 is equal
to 4a2(81− 4a2γ2(4γ2− 9)). Hence it is negative provided 4a2γ2(4γ2−
9)− 81 > 0. This is true if 16γ2(4γ2 − 9)− 81 > 0. Now the trinomial
64z2−144z−81 is positive if z > 9

8
(1+
√

2). This finally gives that the
trinomial x2a2(4γ2−9)−36ax+16a2γ2 is positive, and hence that Φ(x)

is increasing for a ≤ x <∞ as soon as γ > 3
4

√
2 + 2

√
2 = 1.6480262 . . ..

Since we have Φ(a) > 0 and Φ(+∞) > 0 for γ > 3
2
, we thus have

Φ(x) > 0 for a ≤ x < +∞.
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• If a = 1 (hence b ≥ 2), we suppose that γ ≥ 1.7.

Since Φ(x) is of the form γΦ1(x) + Φ2(x), with Φ1(x) > 0, it suffices to
show that Φ(x) is positive for γ = 1.7 and 1 ≤ x < +∞. We still have
Φ(1) > 0 and Φ(+∞) > 0. The derivative Φ′(x) now has the same sign

as 16x2 − 225x + 289, the roots of which are 225±
√

32129
32

. The smaller
root belongs to (1, 2) and the larger to (12, 13). It then suffices to show
that Φ(12) and Φ(13) are positive, which is straightforward.

A remark: The constants given in Theorem 7.16 are not optimal. A more
precise computation shows for example that the constant 1.7 in the second
case can be improved to 1.69333.

Sturmian Sequences and Binary Sequences of Subaffine Block-Complexity

Recall the characterization of Sturmian sequences on two letters mentioned
in the introduction of this chapter on page 67. A sequence u = (un)n≥0 is
called characteristic Sturmian (or homogeneous Sturmian) if it is Sturmian
with β = α. It can be proved that the sequence u = (un)n≥0 is characteristic
Sturmian if and only if there exists an irrational number α ∈ (0, 1) such that

u = (bα(n+ 1)c − bαnc)n≥1 = (dα(n+ 1)e − dαne)n≥1.

As mentioned earlier, Sturmian sequences on two letters are exactly the
sequences whose complexity function satisfies p(n) = n+1 for all n ≥ 1 (i.e.,
the sequences containing exactly n + 1 subwords of length n for all n ≥ 1).
Recall that Sturmian sequences are the ”simplest” sequences on two letters
that are not ultimately periodic.

The following theorem yields some propositions we will need in the proof
of Theorem 7.18.

Theorem 7.17 Let α ∈ (0, 1) be an irrational real number with continued
fraction expansion α = [0, a1, a2, a3, . . .]. Let (Xn)n≥−1 be the sequence of
words on {0, 1} defined by X−1 = 1, X0 = 0, X1 = 0a1−11, and, for n ≥
2, Xn = Xan

n−1Xn−2. We further define, for n ≥ 2, the words Zn and Tn by
Xn = ZnTn and |Tn| = 2. We then have the following properties.

1. For n ≥ 1, we have T2n = 10 and T2n+1 = 01.

2. For n ≥ 3, we have
XnZn−1 = Xn−1Zn.

3. For n ≥ 3, the word Xn+2 begins with X1+an+1
n Zn−1.
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4. For every n ≥ 1, the word Xn is the prefix of length qn (qn is the denom-
inator of the n-th partial quotient of α) of the characteristic Sturmian
sequence (b(n+ 1)αc − bnαc)n≥1.

5. For every n ≥ 5 the characteristic Sturmian sequence (b(n + 1)αc −
bnαc)n≥1 begins with the square XnXn whose length is arbitrarily large
as n→∞.

Proof.

1. This is clear from the definition of Xn.

2. (cf. [41].) We prove this relation by induction. We first check it for
n = 3:

X3Z2 = ((0a1−11)a20)a30a1−11(0a1−11)a2−10a1−1

= ((0a1−11)a20)a3(0a1−11)a20a1−1

=

{
((0a1−11)a20)a3+10a1−2 if a1 6= 1,
(1a20)a31a2 if a1 = 1,

which is exactly X2Z3.

Now we suppose that, for some n ≥ 3,

XnZn−1 = Xn−1Zn.

We note that

Zn+1Tn+1 = Xn+1 = Xan+1
n Xn−1 = Xan+1

n Zn−1Tn−1;

hence, since Tn+1 = Tn−1,

Zn+1 = Xan+1
n Zn−1.

We thus have

XnZn+1 = Xn(Xan+1
n Zn−1) = Xan+1

n (XnZn−1)

= Xan+1
n (Xn−1Zn) = (Xan+1

n Xn−1)Zn,

i.e.,
XnZn+1 = Xn+1Zn.

3. We have
Xn+2 = X

an+2

n+1 Xn = (Xan+1
n Xn−1)

an+2Xn.

Hence Xn+2 begins with Xan+1
n Xn−1Xn (remember an+2 and an+1 are

both ≥ 1), i.e., with Xan+1
n Xn−1Zn which, from the previous assertion,

is equal to Xan+1
n XnZn−1 and we are done.
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4. This is very classical and goes back to Smith [67].

5. This assertion is an easy consequence of assertions 3 and 4.

So now we have proven that a characteristic Sturmian sequence begins
in arbitrarily long squares. We prove now that this repetition property is
actually true for all Sturmian sequences.

Theorem 7.18 Any Sturmian sequence u begins in arbitrarily long squares.

Proof. Let u be a Sturmian sequence. We can assume that u takes
values 0 and 1. We recall that a subword of w of the sequence u is called right
special if both w0 and w1 are subwords of u. It is called left special if both
0w and 1w are subwords of u. It is called bispecial if it is both right and left
special. Since the complexity of our sequence u satisfies p(n+ 1)− p(n) = 1,
there is for each n exactly one right special subword of length n and exactly
one left special subword of length n. Hence for each left special subword w
of the sequence u there exists a unique letter a ∈ {0, 1} such that wa is also
a left special subword.

If u is a characteristic Sturmian sequence the result holds from Theo-
rem 7.17. If the sequence u is not characteristic, then it begins in only
finitely many left special subwords. (if infinitely many prefixes were left spe-
cial subwords, then both sequences 0u and 1u would be Sturmian, and it is
easy to see that this implies that the sequence u is a characteristic sequence).

Since u is not ultimately periodic and since it is uniformly recurrent (each
subword occurring in u occurs infinitely many times and with bounded gaps),
it follows that u begins in an infinite number of right special subwords. Thus
u begins in infinitely many right special subwords (wn) which are not left
special. Let w be a right special subword of u. By a first return to w we mean
a subword z of u with exactly two occurrences of w, one at the beginning of
the word and one at the end of the word. We will need the following lemma.

Lemma 7.19 Let w be right special and let z be a first return to w. Then
|z| ≤ 2|w|+ 1.

Proof. Since u contains exactly |w|+ 1 many subwords of length |w|, if
|z| > 2|w| + 1 there would exist a subword v 6= u of u of length |w| which
occurs at least twice in z. Hence z contains a subword t which is a first
return to v. It follows that w does not occur in t and hence no prefix of t
of length greater than or equal to the length of v is right special. But then
every occurence of v in u is an occurence of t in u. Since v is a suffix of t it
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follows that u is ultimately periodic, a contradiction. Hence |z| ≤ 2|w| + 1.

It follows from the above lemma that a first return to w is either of the
form wv for some subword v of length |v| ≤ |w| or of the form waw for some
letter a ∈ {0, 1}. Each right special subword w has exactly two first returns,
and exactly one is right special.

Now suppose w is a prefix of u which is right special but not left special.
Then u begins in a first return to w. If u begins in a first return to w of
length ≤ 2|w| then u begins in a square. Otherwise u begins in a first return
to w of the form waw for some letter a ∈ {0, 1}. Note in this case the other
first return to w is of the form wv with |v| ≤ |w|. In fact, if the other first
return to w were of the form wbw with b 6= a, then w would be left special
contrary to hypothesis.

Case 1 waw is right special. If u begins in a first return to waw of length
≤ 2|waw| then u begins in a square. Otherwise u begins in a first
return to waw of the form wawbwaw. Since w is not left special, a = b
and hence u begins in the square wawa.

Case 2 waw is not right special. In this case wv (the other first return to
w) is right special, every occurrence of waw is an occurrence of wawv
(otherwise u would be ultimately periodic) and there exists n ≥ 1 so
that wawvn is right special and u begins in wawvn.

In this case we claim that each first return to wawvn is of length ≤
2|wawvn|. In fact suppose to the contrary that a first return to wawvn

is of the form wawvnbwawvn. Since w is not left special, a = b and
so we have that u contains the subword wawvnawawvn. Since w is
a suffix of wvn (in fact w is a suffix of wv), the word wawvnawawvn

contains wawaw as a subword. But since we are in the case where waw
is not right special, the word wawaw cannot occur in u for otherwise u
would be ultimately periodic. Thus u begins in a first return to wawvn

of length ≤ 2|wawvn| and hence u begins in a square.

Thus we proved that u always begins in a square. But since the right spe-
cial subwords w can be taken to be arbitrarily long, it follows that the squares
generated at the beginning of u are also arbitrarily long. This concludes the
proof of Theorem 7.18.

A remark to Theorem 7.18: For squares anywhere in Sturmian sequences
see [54]. In Chapter 5 we discussed “almost cubes” anywhere in Sturmian
sequences in relation with a transcendence result.

The next theorem states that a quasi-Sturmian sequence is a simple trans-
formation of a Sturmian sequence. First it is not hard to see that a sequence
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is quasi-Sturmian if and only if there exist two positive integers n1 and c′

such that p(n) = n + c′ for n ≥ n1 (see [23], Lemma 1.3). The following
result is due to Paul [52] in the uniformly recurrent case, and to Coven [23]
in the general case (see also [34] and [38]).

Theorem 7.20 A sequence u on the alphabet Σ is quasi-Sturmian if and
only if it can be written as u = wψ(v), where w is a finite word, v is a
Sturmian sequence on the binary alphabet {0, 1}, and ψ is a morphism from
{0, 1}∗ to Σ∗, such that ψ(01) 6= ψ(10).

We can now state a theorem that addresses the first assertion in the main
Theorem 7.3 of this section.

Theorem 7.21 Let a and b be two distinct positive integers. Let (un)n≥0

be a quasi-Sturmian sequence on the alphabet {a, b}. Then the real number
x := [0, u0, u1, . . .] is transcendental. The result holds in particular if the
sequence (un)n≥0 is Sturmian.

Proof. The theorem is a consequence of Theorem 7.16, 7.18 and 7.20.

Sequences (1 + ([nα] mod 2))n≥1

We prove here the second assertion in this section’s main Theorem 7.3. We
first need the following theorem.

Theorem 7.22 Let α be an irrational real number. Let (vn)n≥0 be the se-
quence defined by vn = (bnαc mod 2). This sequence begins with infinitely
many words UkVk, such that: |Uk| → ∞, the word Vk is a prefix of the word

Uk, and lim infk→∞
|UkVk|
|Uk|

≥ 2+
√

2
2

= 1.70710 . . .

Proof. First note that, if α = 2d+β with d integer, then (bnαc mod 2) =
(bnβc mod 2). We thus can restrict ourselves to 0 < α < 2. We distinguish
two cases, 0 < α < 1 and 1 < α < 2.

• If 0 < α < 1, define the sequence (un)n≥1 by un := b(n+ 1)αc − bnαc.
Then clearly

n−1∑
k=1

uk ≡ vn mod 2.

If the sequence u = (un)n≥1 begins with a squareXX, and ifX contains
an even number of 1’s, then the sequence v = (vn)n≥1 also begins with
a square of same length. Taking the notations of Theorem 7.17 above,
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we have that u begins with XnXn. The number of 1’s in Xn, say rn,
satisfies a recurrence relation coming from the recurrence relation of
Xn, namely

∀n ≥ 2, rn+2 = an+2rn+1 + rn

We thus see that if all rn are odd for n large enough, then all an are
even for n large enough. Hence we have two cases:

– either there are infinitely many n’s such that rn is even. For these
n’s the square XnXn in the sequence u gives rise to a square of
same length in the sequence v, and we are done.

– or all rn are odd from some point on. This implies that all an are
even for n large enough. Hence either the an’s are all equal to 2
from some point on, or there are infinitely many n’s such that an

is larger than or equal to 4.

∗ Suppose there are infinitely many n’s such that an is larger
or equal to 4. For these n’s, the sequence u begins with
XnXnXnXn (actually XnXnXnXnXn, from Theorem 7.17).
We proceed as above, replacing Xn in the previous case by
(XnXn) that does contain an even number of 1’s.

∗ Suppose that all an are equal to 2 for n large enough. From
Theorem 7.17 we know that the sequence u begins withX3

nZn−1

for n large enough. Write X3
nZn−1 = (XnXn)(XnZn−1). The

word Zn−1 is a prefix of Xn−1 (hence of Xn) of length qn−1 −
2. Since (XnXn) contains an even number of 1’s, the word
(XnXn)(XnZn−1) gives rise to a word VnWn in the sequence
v such that Wn is a prefix of Vn, and

|VnWn|
|Vn|

=
|XnXnXnZn−1|
|XnXn|

=
3qn + qn−1 − 1

2qn
.

Since all an’s are equal to 2 from some point on, this quantity
converges to 2+

√
2

2
= 1.70710 . . . > 1.7 (remember that qn+2 =

an+2qn+1 + qn = 2qn+1 + qn for n large enough) and we can
apply Theorem 7.16.

• If 1 < α < 2, let α′ = α − 1 ∈ (0, 1). Define the sequence (un)n≥1 by
un := b(n+ 1)α′c − bnα′c. Then,

n−1∑
k=1

uk + n ≡ bnαc mod 2.
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In order to ensure that a square (or an “almost-square”) in the se-
quence u gives rise to a square (or an “almost-square”) in the sequence
v, it suffices that the number of 1’s and the length of the word that is
(almost) repeated have the same parity. Taking the notations of Theo-
rem 7.17 above, we have that u begins with XnXn. Let again rn be the
number of 1’s in the word Xn, and let `n be the length of Xn. These
quantities satisfy the (same) recurrence relations

∀n ≥ 2, rn+2 = an+2rn+1 + rn,

∀n ≥ 2, `n+2 = an+2`n+1 + `n.

Hence their sum R = r + ` also satisfies the same recurrence relation

Rn+2 = an+2Rn+1 +Rn.

Thus we can argue exactly as above, replacing rn by Rn.

We are now ready for the following theorem.

Theorem 7.23 Let α be a positive irrational number and let (un)n≥1 be the
sequence defined by un := 1 + (bnαc mod 2). Then the number

x(α) := [0, u1, u2, . . .]

is transcendental. Furthermore the same result holds for the sequence ob-
tained by replacing each 1 by a and each 2 by b in the sequence (un)n≥1,
where a and b are any two distinct positive integers.

Proof. The theorem is a consequence of the Theorems 7.16 and 7.22.

Some Sequences Generated by Morphisms

Theorem 7.16 can be easily applied to infinite sequences that are fixed points
of binary morphisms provided frequencies of letters exist and provided the
conditions on Uk, Vk and γ are satisfied. Note that, if a sequence (un)n≥0 on
two letters a and b is a fixed point of a morphism σ, and if this sequence begins
with a word UV where V is a prefix of U , then the sequence (un)n≥0 begins
with σk(U)σk(V ), where σk(V ) is a prefix of σk(U). This gives immediately
the following result as a corollary of Theorem 7.16.

Theorem 7.24 Let a and b be two integers such that b > a ≥ 1. Let (un)n≥0

be a sequence on {a, b}, such that the frequencies of a and b in this sequence
exist. Suppose that the sequence (un)n≥0 is a fixed point of a (not necessarily
primitive) morphism σ, and that
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• either the sequence (un)n≥0 begins in a square UU where U is a word
on {a, b},

• or the morphism σ has constant length, and the sequence (un)n≥0 begins
with a word UV such that V is a prefix of U , with either a ≥ 2 and
|UV |
|U | > 1.64803, or a = 1 and |UV |

|U | ≥ 1.7.

Then the real number x := [0, u0, u1, u2, . . .] is quadratic or transcendental.

Some remarks to this theorem.

• As noted in the remark after the proof of Theorem 7.16 on page 78,
the constant 1.7 in Theorem 7.24 above is not optimal. In particular
it can be replaced by 1.69333.

• This theorem applies for example to the doubling period sequence de-
fined as the fixed point of the morphism 1→ 12, 2→ 11, where 1 and
2 can be replaced by any two distinct integers. Namely, this sequence
begins with (1211)(121) and 7

4
= 1.75 > 1.7.

• This theorem applies to the Thue-Morse sequence on any alphabet
{a, b} provided inf{a, b} ≥ 2. Recall that the Thue-Morse sequence on
{a, b} is the fixed point beginning in a of the morphism a→ ab, b→ ba.
Hence it begins with (abb)(ab) and 5

3
> 1.64803. But this theorem does

not apply to the Thue-Morse sequence on {1, b} for any b > 1. In this
case a more precise computation is needed (see [57], for example).

• In the example above, the existence of frequencies is a consequence of
the primitivity of the morphisms. But the primitivity is not needed.
It is easy to slightly modify the arguments above to prove that the
result holds for the Chacon sequence that is the infinite fixed point
of the non-primitive morphism 1 → 1121, 2 → 2, where 1 and 2 can
be replaced by any two distinct integers. Namely this sequence begins
with arbitrarily large squares (since it begins with 11). Furthermore the
frequencies exist, this is for example a consequence of a result proved
in [33]: the Chacon sequence can be obtained by first taking the fixed
point beginning with C of the primitive morphism on the alphabet
{A,B,C} defined by A → AB,B → CAB,C → CCAB, second by
taking the pointwise image of this fixed point by the map A→ 2, B →
1, C → 1.

As proved in [56], the denominators qn of the convergents of the real
number x := [0, 2, 1, 1, 2, 1, 2, 2, 1, . . .] (whose partial quotients are given by
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the Thue–Morse sequence on {1, 2}) have the property that the limit of

q
1
n
n for n → ∞ exists. Define the Lévy constant of the real number x :=

[a, a0, a1, a2, . . .] to be the limit, if it exists, limn→∞
log(qn)

n
, where qn is the

denominator of the n-th convergent of the continued fraction of x. It is
known [45] that almost all positive real numbers have a Lévy constant, equal
to π2

12 log 2
. M. Queffélec proved in [56] the existence of the Lévy constant

for any positive real number whose continued fraction expansion is a fixed
point of a primitive morphism. Combined with Theorem 7.7, this statement
implies the following result.

Theorem 7.25 Let x ∈ (0, 1) be a positive real number with continued frac-
tion expansion x := [0, u1, u2, . . .]. If the sequence (un)n≥1 is a fixed point of
a primitive morphism of constant length, and if this sequence begins with UV
where V is a prefix of U , and |UV |

|U | >
3
2
, then the number x is either quadratic

or transcendental.

So in this section we focused on real numbers whose continued fraction
expansion is a Sturmian sequence or a fixed point of a morphism. In the next
section we will take a more general approach and also improve the results of
this section.
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7.3 Complexity of Continued Fraction Expan-

sions

The main result of this section are two combinatorial transcendence criteria,
which improve considerably upon those from the last section (cf.[8]), [27]
and [14].

7.3.1 Transcendence criteria

In this section we give two transcendence criteria for stammering continued
fractions expansions which we will prove in the next section. First, we define
a condition similar to the one in the last chapter, see page 56.

Definition 7.26 (Condition (?)w) Let a = (a`)`≥1 be a sequence of ele-
ments of an alphabet Σ. Let w be a rational number with w > 1. We say that
a satisfies Condition (?)w if a is not eventually periodic and if there exists a
sequence of finite words (Vn)n≥1 such that:

1. For any n ≥ 1, the word V w
n is a prefix of the word a;

2. The sequence (|Vn|)n≥1 is increasing.

Roughly speaking, a satisfies Condition (?)w if a is not eventually periodic
and if there exist infinitely many ’non-trivial’ repetitions (the size of which
is measured by w) at the beginning of the infinite word a1a2 · · · a` · · ·

Our transcendence criterion for ‘purely’ stammering continued fractions
can be stated as follows.

Theorem 7.27 Let a = (a`)`≥1 be a sequence of positive integers. Let(
p`

q`

)
`≥1

denote the sequence of convergents to the real number

α := [0, a1, a2, . . . , a`, . . .].

If there exists a rational number w ≥ 2 such that a satisfies Condition (?)w,
then α is transcendental. If there exists a rational number w > 1 such that a

satisfies Condition (?)w, and if the sequence
(
q

1
`
`

)
`≥1

is bounded (which is in

particular the case when the sequence a is bounded), then α is transcendental.

The interesting thing with the first statement of Theorem 7.27 is that
there is no condition on the growth of the sequence (q`)`≥1. The second
statement improves upon Theorem 7.7 from the last section, which requires,
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together with some extra rather constraining hypothesis, the stronger as-
sumption w > 3

2
.

The condition that the sequence
(
q

1
`
`

)
`≥1

has to be bounded is in general

very easy to check, and is not very restrictive, since it is satisfied by almost
all real numbers (in the sense of Lebesgue measure). Apart from this assump-
tion, Theorem 7.27 does not depend on the size of the partial quotients of α.
This is in a striking contrast to our results in the previous section, in which,
rougly speaking, the size of w of the repetition is required to be all the more
large than the partial quotients are big. Unlike these results, Theorem 7.27
can be easily applied even if α has unbounded partial quotients.

Unfortunately, in the statement of Theorem 7.27, the repetitions must
appear at the very beginning of a. Results from [27] allow a shift, whose
length, however, must be controlled in terms of the size of the repetitions.
Similar results cannot be deduced from our Theorem 7.27. However, many
ideas from the proof of Theorem 7.27 can be used to deal also with this situa-
tion, under some extra assumptions, and to improve upon the transcendence
criterion from [27].

The following Condition (??)w,w′ is essentially the same as Condition (∗)
in the last chapter (see 6.26 on p.56). We explicitely use the upper bound
w′ in the second statement and add this to the name of the condition so it
is easier to distinguish it from Condition (?)w.

Definition 7.28 (Condition (??)w,w′) Let w and w′ be non-negative ratio-
nal numbers with w > 1. We say that a = (an)n≥1 satisfies Condition (??)w,w′

if a is not eventually periodic and if there exist two sequences of finite words
(Un)n≥1, (Vn)n≥1 such that:

1. For any n ≥ 1, the word UnV
w
n is a prefix of the word a;

2. The sequence
(
|Un|
|Vn|

)
n≥1

is bounded from above by w′;

3. The sequence (|Vn|)n≥1 is increasing.

We are now ready to state our transcendence criterion for (general) stam-
mering continued fractions.

Theorem 7.29 Let a = (a`)`≥1 be a sequence of positive integers. Let(
p`

q`

)
`≥1

denote the sequence of convergents to the real number

α := [0, a1, a2, . . . , a`, . . .].
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Assume that the sequence
(
q

1
`
`

)
`≥1

is bounded and set M = lim sup`→+∞ q
1
`
`

and m = lim inf`→+∞ q
1
`
` . Let w and w′ be non-negative real numbers with

w > (2w′ + 1)
logM

logm
− w′. (7.2)

If a satisfies Condition (??)w,w′, then α is transcendental.

Here is a immediate consequence of Theorem 7.29.

Corollary 7.30 Let a = (a`)`≥1 be a sequence of positive integers. Let(
p`

q`

)
`≥1

denote the sequence of convergents to the real number

α := [0, a1, a2, . . . , a`, . . .].

Assume that the sequence
(
q

1
`
`

)
`≥1

converges. Let w and w′ be non-negative

real numbers with w > w′ + 1. If a satisfies Condition (??)w,w′, then α is
transcendental.

The main tool for the proofs of Theorems 7.27 and 7.29, given in the next
section, is again the Schmidt Subspace Theorem [63], [64].

7.3.2 Proofs

In this section we prove our transcendence criteria Theorems 7.27 and 7.29.
As said before, the proofs rest on the deep result commonly known as the
Schmidt Subspace Theorem, i.e. Theorem 2.12 (cf. the p-adic generalization
of Evertse [32], used in the last chapter, Theorem 2.13 on p.23).

We further need an easy auxiliary result.

Lemma 7.31 Let α = [a0, a1, a2, . . .] and β = [b0, b1, b2, . . .] be real numbers.
Assume that, for some positive integer m, we have aj = bj for any j =
0, . . . ,m. Then, we have

|α− β| < 1

q2
m

where qm is the denominator of the convergent [a0, a1, . . . , am].

Proof. Since [a0, a1, . . . , am] =: pm

qm
is a convergent to α and β, the real

numbers α − pm

qm
and β − pm

qm
have the same sign and are both in absolute

value less than 1
q2
m

, hence the lemma.
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Now, we have all the tools to establish Theorems 7.27 and 7.29.
Proof of Theorem 7.27.
Keep the notation and the hypothesis of this theorem. Assume that the

parameter w > 1 is fixed, as well as the sequence (Vn)n≥1 occurring in the
definition of Condition (?)w. Set also sn = |Vn|, for any n ≥ 1. We want to
prove that the real number

α := [0, a1, a2, . . .]

is transcendental. We assume that α is algebraic of degree at least three and
we aim at deriving a contradiction. Throughout this section, the constants
implied by � depend only on α.

Let
(

p`

q`

)
`≥1

denote the sequence of convergents to α. Observe first that

we have

q`+1 � q1.1
` , for any ` ≥ 1, (7.3)

by Roth’s Theorem [60].
The key factor for the proof of Theorem 7.27 is the observation that α

admits infinitely many good quadratic approximants obtained by truncating
its continued fraction expansion and completing by periodicity. Precisely, for

any positive integer n, we define the sequence
(
b
(n)
k

)
k≥1

by

b
(n)
h+jsn

= ah for 1 ≤ h ≤ sn and j ≥ 0.

The sequence (b
(n)
k )k≥1 is purely periodic with period Vn. Set

αn = [0, b
(n)
1 , b

(n)
2 , . . .]

and observe that αn is the root of the quadratic polynomial

Pn(X) := qsn−1X
2 + (qsn − psn−1)X − psn .

By Rolle’s theorem and Lemma 7.31, for any positive integer n, we have

|Pn(α)| = |Pn(α)− Pn(αn)| � qsn|α− αn| �
qsn

q2
[wsn]

, (7.4)

since the first [wsn] partial quotients of α and αn are the same. Furthermore,
we clearly have

|qsnα− psn| ≤
1

qsn

(7.5)
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and we infer from (7.3) that

|qsn−1α− psn−1| ≤
1

qsn−1

� 1

q0.9
sn

. (7.6)

Consider now the four linearly independent linear forms:

L1(X1, X2, X3, X4) = α2X2 + α(X1 −X4)−X3,

L2(X1, X2, X3, X4) = αX1 −X3,

L3(X1, X2, X3, X4) = X1,

L4(X1, X2, X3, X4) = X2.

Evaluating them on the quadruple (qsn , qsn−1, psn , psn−1), it follows from (7.4)
and (7.5) that ∏

1≤j≤4

|Lj(qsn , qsn−1, psn , psn−1)| �
q2
sn

q2
[wsn]

(7.7)

By assumption, there exists a real number M such that log q` ≤ ` logM
for any positive integer `. Furthermore, an immediate induction shows that
q`+2 ≥ 2q` holds for any positive integer `. Consequently, for any integer
n ≥ 3, we get

q[wsn]

qsn

≥
√

2
[(w−1)sn]−1

≥ q(w−1−2/sn)(log
√

2)/ log M
sn

,

and we infer from (7.7) and w > 1 that∏
1≤j≤4

|Lj(qsn , qsn−1, psn , psn−1)| � q−ε
sn

holds for some positive real number ε, when n is large enough.
It then follows from Theorem 2.12 that the points (qsn , qsn−1, psn , psn−1)

lie in a finite number of proper subspaces of Q4. Thus, there exist a non-
zero integer quadruple (x1, x2, x3, x4) and an infinite set of distinct positive
integers N1 such that

x1qsn + x2qsn−1 + x3psn + x4psn−1 = 0, (7.8)

for any n in N1. Observe that (x2, x4) 6= (0, 0), since, otherwise, by letting
n tend to infinity along N1 in (7.8), we would get that the real number α is
rational. Dividing (7.8) by qsn , we obtain

x1 + x2
qsn−1

qsn

+ x3
psn

qsn

+ x4
psn−1

qsn−1

· qsn−1

qsn

= 0. (7.9)
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By letting n tend to infinity along N1 in (7.9), we get that

β := lim
N13n→+∞

qsn−1

qsn

= −x1 + x3α

x2 + x4α
.

Furthermore, observe that, for any n in N1, we have∣∣∣∣β − qsn−1

qsn

∣∣∣∣ =

∣∣∣∣∣x1 + x3α

x2 + x4α
−

x1 + x3
psn

qsn

x2 + x4
psn−1

qsn−1

∣∣∣∣∣� 1

q2
sn−1

� 1

q1.8
sn

, (7.10)

by (7.5) and (7.6). Since qsn−1 and qsn are coprime and sn tends to infinity
when n tends to infinity along N1, this implies that β is irrational.

Consider now the three linearly indpendent linear forms:

L′1(Y1, Y2, Y3) = βY1 − Y2,

L′2(Y1, Y2, Y3) = αY1 − Y3,

L′3(Y1, Y2, Y3) = Y1.

Evaluating them on the triple (qsn , qsn−1, psn) with n ∈ N1, we infer from (7.5)
and (7.10) that ∏

1≤j≤3

|L′j(qsn , qsn−1, psn)| � q−0.8
sn

.

It then follows from Theorem 2.12 that the points (qsn , qsn−1, psn) with n ∈ N1

lie in a finite number of proper subspaces of Q3. Thus, there exist a non-zero
integer triple (y1, y2, y3) and an infinite set of distinct positive integers N2

such that
y1qsn + y2qsn−1 + y3psn = 0, (7.11)

for any n in N2. Dividing (7.11) by qsn and letting n tend to infinity along
N2, we get

y1 + y2β + y3α = 0. (7.12)

To obtain another equation linking α and β, we consider the three linearly
independent linear forms:

L′′1(Z1, Z2, Z3) = βZ1 − Z2,

L′′2(Z1, Z2, Z3) = αZ2 − Z3,

L′′3(Z1, Z2, Z3) = Z1.

Evaluating them on the triple (qsn , qsn−1, psn−1) with n ∈ N1, we infer from (7.6)
and (7.10) that ∏

1≤j≤3

|L′′j (qsn , qsn−1, psn−1)| � q−0.7
sn

.
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It then follows from Theorem 2.12 that the points (qsn , qsn−1, psn−1) with
n ∈ N1 lie in a finite number of proper subspaces of Q3. Thus, there exist
a non-zero integer triple (z1, z2, z3) and an infinite set of distinct positive
integers N3 such that

z1qsn + z2qsn−1 + z3psn−1 = 0, (7.13)

for any n in N3. Dividing (7.13) by qsn−1 and letting n tend to infinity along
N3, we get

z1

β
+ z2 + z3α = 0. (7.14)

Observe that y2 6= 0 since α is irrational. We infer from (7.12) and (7.14)
that

(z3α+ z2)(y3α+ y1) = y2z1.

If then y3z3 = 0, then (7.12) and (7.14) yield that β is rational, which is
a contradiction. Consequently, y3z3 6= 0 and α is a quadratic real num-
ber, which is again a contradiction. This completes the proof of the second
assertion of the theorem.

It then remains for us to explain why we can drop the assumption on the

sequence
(
q

1
`
`

)
`≥1

when w is sufficiently large. We return to the beginning

of the proof, and we assume that w ≥ 2. Using well-known facts from the
theory of continuants (see e.g. [53]), Inequality (7.4) becomes

|Pn(α)| � qsn

q2
2sn

� qsn

q4
sn

� 1

q3
sn

� 1

H(Pn)3
,

where H(Pn) denotes the height of the polynomial Pn, that is, the maximum
of the absolute values of its coefficients. By the main result from [65] (or by
using Theorem 2.12 with m = 3 and the linear forms α2X2 + αX1 +X0, X2

and X1), this immediately implies that α is transcendental.
Proof of Theorem 7.29. Assume that the parameters w and w′ are

fixed, as well as the sequences (Un)n≥1 and (Vn)n≥1 occurring in the definition
of Condition (??)w,w′ . Without any loss of generality, we add in the statement
of Condition (??)w,w′ the following two assumptions:

4. The sequence (|Un|)n≥1 is unbounded;

5. For any n ≥ 1, the last letter of the word Un differs from the last letter
of the word Vn.

We point out that the conditions 4. and 5. do not at all restrict the
generality. Indeed, if 4. is not fulfilled by a sequence a satisfying 1.–3. of
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Condition (??)w,w′ , then the desired result follows from Theorem 7.27. To see
that 5. does not cause any trouble, we make the following observation. Let
a be a letter and U and V be two words such that a begins with Ua(V a)w.

Then, a also begins with U(aV )w and we have trivially |U |
|aV | ≤

|Ua|
|V a| .

Set rn = |Un| and sn = |Vn|, for any n ≥ 1. We want to prove that the
real number

α := [0, a1, a2, . . .]

is transcendental. We assume that α is algebraic of degree at least three

and we aim at deriving a contradiction. Let
(

pn

qn

)
n≥1

denote the sequence of

convergents to α.
Let n be a positive integer. Since w > 1 and rn ≤ w′sn, we get

2rn + sn

rn + wsn

≤ 2w′sn + sn

w′sn + wsn

=
2w′ + 1

w′ + w
<

logm

logM
,

by (7.2). Consequently, there exist positive real numbers η and η′ with η < 1
such that

(1 + η)(1 + η′)(2rn + sn) logM < (1− η′)(rn + wsn) logm, (7.15)

for any n ≥ 1. Notice that we have

q`+1 � q1+η
` , for any ` ≥ 1, (7.16)

by Roth’s Theorem [60].
As for the proof of Theorem 7.27, we observe that α admits infinitely

many good quadratic approximants obtained by truncating its continued
fraction expansion and completing by periodicity. Precisely, for any positive

integer n, we define the sequence
(
b
(n)
k

)
k≥1

by

b
(n)
h = ah for 1 ≤ h ≤ rn + sn,

b
(n)
rn+h+jsn

= arn+h for 1 ≤ h ≤ sn and j ≥ 0.

The sequence
(
b
(n)
k

)
k≥1

is eventually periodic, with preperiod Un and with

period Vn. Set
αn = [0, b

(n)
1 , b

(n)
1 , . . .]

and observe that αn is root of the quadratic polynomial

Pn(X) := (qrn−1qrn+sn − qrnqrn+sn−1)X
2

− (qrn−1prn+sn − qrnprn+sn−1 + prn−1qrn+sn − prnqrn+sn−1)X

+ (prn−1prn+sn − prnprn+sn−1).
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For any positive integer n, we infer from Rolle’s theorem and Lemma 7.31
that

|Pn(α)| = |Pn(α)− Pn(αn)| � qrnqrn+sn|α− αn| �
qrnqrn+sn

q2
rn+[wsn]

, (7.17)

since the first rn + [wsn] partial quotients of α and αn are the same. Fur-
thermore, by (7.16), we have

|(qrn−1qrn+sn − qrnqrn+sn−1)α− (qrn−1prn+sn − qrnprn+sn−1)| � qrnq
−1+η
rn+sn

(7.18)
and

|(qrn−1qrn+sn − qrnqrn+sn−1)α− (prn−1qrn+sn − prnqrn+sn−1)| � q−1+η
rn

qrn+sn .
(7.19)

We have as well the obvious upper bound

|qrn−1qrn+sn − qrnqrn+sn−1| ≤ qrnqrn+sn . (7.20)

Consider the four linearly independent linear forms:

L1(X1, X2, X3, X4) = α2X1 − α(X2 +X3) +X4,

L2(X1, X2, X3, X4) = αX1 −X2,

L3(X1, X2, X3, X4) = αX1 −X3,

L4(X1, X2, X3, X4) = X1.

Evaluating them on the quadruple

zn := (qrn−1qrn+sn − qrnqrn+sn−1, qrn−1prn+sn − qrnprn+sn−1,

prn−1qrn+sn − prnqrn+sn−1, prn−1prn+sn − prnprn+sn−1),

it follows from (7.17), (7.18), (7.19) and (7.20) that

∏
1≤j≤4

|Lj(zn)| �
q2+η
rn

q2+η
rn+sn

q2
rn+[wsn]

�

(
q1+η
rn q1+η

rn+sn

qrn+[wsn]

)2

(qrnqrn+sn)η

Assuming η sufficiently large, we have

qrn ≤M (1+η′)rn , qrn+sn ≤M (1+η′)(rn+sn), and qrn+[wsn] ≥ m−(1−η′)(rn+wsn),

with η′ as in (7.15). Consequently, we get

q1+η
rn

q1+η
rn+sn

qrn+[wsn]

≤M (1+η)(1+η′)(2rn+sn)m−(1−η′)(rn+wsn) ≤ 1,
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by (7.15). Thus, we get the upper bound∏
1≤j≤4

|Lj(zn)| � 1

(qrnqrn+sn)η

for any positive integer n.
It then follows from Theorem 2.12 that the points zn lie in a finite number

of proper subspaces of Q4. Thus, there exist a non-zero integer quadruple
(x1, x2, x3, x4) and an infinite set of distinct positive integers N1 such that

x1(qrn−1qrn+sn − qrnqrn+sn−1) + x2(qrn−1prn+sn − qrnprn+sn−1)

+ x3(prn−1qrn+sn − prnqrn+sn−1) + x4(prn−1prn+sn − prnprn+sn−1) = 0,(7.21)

for any n in N1.
Divide (7.21) by qrnqrn+sn−1 and observe that prn

qrn
and prn+sn

qrn+sn
tend to α

as n tends to infinity along N1. Taking the limit, we get that either

x1 + (x2 + x3)α+ x4α
2 = 0 (7.22)

or

qrn−1qrn+sn

qrnqrn+sn−1

tends to 1 as n tends to infinity along N1 (7.23)

must hold. In the former case, since α is irrational and not quadratic, we
get that x1 = x4 = 0 and x2 = −x3. Then, x2 is non-zero and, for any n
in N1, we have qrn−1prn+sn − qrnprn+sn−1 = prn−1qrn+sn − prnqrn+sn−1. Thus,
the polynomial Pn(X) can simply be expressed as

Pn(X) := (qrn−1qrn+sn − qrnqrn+sn−1)X
2

−2(qrn−1prn+sn − qrnprn+sn−1)X + (prn−1prn+sn − prnprn+sn−1).

Consider now the three linearly independent linear forms:

L′1(Y1, Y2, Y3) = αY 2
1 − 2αY2 + Y3,

L′2(Y1, Y2, Y3) = αY1 − Y2,

L′3(Y1, Y2, Y3) = Y1.

Evaluating them on the triple

z′n := (qrn−1qrn+sn − qrnqrn+sn−1, qrn−1prn+sn − qrnprn+sn−1,

prn−1prn+sn − prnprn+sn−1),
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it follows from (7.17), (7.18) and (7.20) that∏
1≤j≤3

|L′j(z′n)| �
q3
rn
q1+η
rn+sn

q2
rn+[wsn]

�
q2
rn
q2+η
rn+sn

q2
rn+[wsn]

� 1

(qrnqrn+sn)η
,

by the above computation.
It then follows from Theorem 2.12 that the points z′n lie in a finite

number of proper subspaces of Q3. Thus, there exist a non-zero integer
triple (x′1, x

′
2, x

′
3) and an infinite set of distinct positive integers N2 included

in N1 such that

x′1(qrn−1qrn+sn − qrnqrn+sn−1) + x′2(qrn−1prn+sn − qrnprn+sn−1)

+x′3(prn−1prn+sn − prnprn+sn−1) = 0, (7.24)

for any n in N2.
Divide (7.24) by qrnqrn+sn−1 and observe that prn

qrn
and prn+sn

qrn+sn
tend to α

as n tends to infinity along N2. Taking the limit, we get that either

x′1 + x′2α+ x′3α
2 = 0 (7.25)

or
qrn−1qrn+sn

qrnqrn+sn−1

tends to 1 as n tends to infinity along N2 (7.26)

must hold. In the former case, we have a contradiction since α is irrational
and not quadratic.

Consequently, to conclude the proof of our theorem, it is enough to de-
rive a contradiction from (7.23) (resp. from (7.26)), assuming that (7.22)
(resp. from (7.25)) does not hold. To this end, we observe that (7.21) (resp.
from (7.24)) allows us to control the speed of convergence of Qn := qrn−1qrn+sn

qrnqrn+sn−1

to 1 along N1 (resp. along N2).
Thus, we assume that the quadruple (x1, x2, x3, x4) obtained after the

first application of Theorem 2.12 satisfies x1 +(x2 +x3)α+x4α
2 6= 0. Divid-

ing (7.21) by qrnqrn+sn−1, we get

x1(Qn − 1) + x2

(
Qn

prn+sn

qrn+sn

− prn+sn−1

qrn+sn−1

)
+ x3

(
Qn

prn−1

qrn−1

− prn

qrn

)
+x4

(
Qn

prn−1

qrn−1

prn+sn

qrn+sn

− prn

qrn

prn+sn−1

qrn+sn−1

)
= 0, (7.27)

for any n in N1. To shorten the notation, for any ` ≥ 1, we put R` := α− p`

q`
.

We rewrite (7.27) as

x1(Qn − 1) + x2 (Qn(α−Rrn+sn)− (α−Rrn+sn−1)) + x3 (Qn(α−Rrn−1)− (α−Rrn))

+x4 (Qn(α−Rrn−1)(α−Rrn+sn)− (α−Rrn)(α−Rrn+sn−1)) = 0,
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This yields

(Qn − 1)(x1 + (x2 + x3)α+ x4α
2)

= x2QnRrn+sn − x2Rrn+sn−1 + x3QnRrn−1 − x3Rrn − x4QnRrn−1Rrn+sn(7.28)

+x4RrnRrn+sn−1 + α(x4QnRrn−1 + x4QnRrn+sn − x4Rrn − x4Rrn+sn−1).

Observe that |R`| ≤ 1
q2
`

for any ` ≥ 1. Furthermore, for n large enough,

we have 1
2
≤ Qn ≤ 2, by our assumption (7.23). Consequently, we derive

from (7.28) that

|(Qn − 1)(x1 + (x2 + x3)α+ x4α
2)| � |Rrn−1| �

1

q2
rn−1

.

Since we have assumed that (7.22) does not hold, we get

|Qn − 1| � 1

q2
rn−1

. (7.29)

On the other hand, observe that the rational number Qn is the quotient of
the two continued fractions [arn+sn , arn+sn−1, . . . , a1] and [arn , arn−1, . . . , a1].
By assumption 4. from Condition (??)w,w′ , we have arn+sn 6= arn , thus ei-
ther arn+sn − arn ≥ 1 or arn − arn+sn ≥ 1 holds. A simple calculation then
shows that

|Qn − 1| � 1

arn

min{ 1

arn+sn−1

+
1

arn−2

,
1

arn+sn−2

+
1

arn−1

} � 1

arnqrn−1

,

since qrn−1 ≥ max{arn−1, arn−2}. Combined with (7.29), this gives arn �
qrn−1 and

qrn ≥ arnqrn−1 � q2
rn−1. (7.30)

Since η < 1 and (7.30) holds for infinitely many n, we get a contradiction
with (7.16).

We derive a contradiction from (7.26) in an entirely similar way. This
completes the proof of our theorem.



Bibliography

[1] B. Adamczewski, Y. Bugeaud & F. Luca. On the complexity of algebraic
numbers. (Sur la complexité des nombres algébriques.) C. R., Math., Acad.
Sci. Paris 339, No.1 (2004), 11–14.

[2] B. Adamczewski & Y. Bugeaud. On the complexity of algebraic numbers
I. Expansions in integer bases. Preprint.

[3] B. Adamczewski & Y. Bugeaud. On the complexity of algebraic numbers
II. Continued fractions. Acta Math. 195 (2005), 1–20.

[4] B. Adamczewski & J. Cassaigne. On the transcendence of real numbers
with a regular expansion. J. Number Theory 103, No.1 (2003), 27–37.

[5] W. W. Adams & J.L. Davison. A remarkable class of continued frac-
tions.Proc. Am. Math. Soc. 65 (1977), 194–198.

[6] J.-P. Allouche & M. Cosnard. Itérations de fonctions unimodales et suites
engendrées par automates. C. R. Acad. Sci., Paris, Sér. I 296 (1983), 159–
162.

[7] J.-P. Allouche & M. Cosnard. The Komornik-Loreti constant is transcen-
dental. Amer. Math. Monthly 107 (2000), 448–449.

[8] J.-P. Allouche, J.L. Davison, M. Queffélec & L. Q. Zamboni. Transcen-
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[29] J.M. Deshouillers. La répartition modulo 1 des puissances de rationnels
dans l’anneau des séries formelles sur un corps fini. Semin. Theor. Nombres
1979-1980, Expose No.5, 22 P. (1980).
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[55] E. Prouhet. Mémoire sur quelques relations entre les puissances des nom-
bres. C. R. Acad. Sci. Paris Sér. I 33 (1851), 225.
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