
When is it worthwhile to propagate a constraint?
A probabilistic analysis of AllDifferent∗

Jérémie du Boisberranger† Danièle Gardy‡ Xavier Lorca§ Charlotte Truchet¶

Abstract

This article presents new work on analyzing the behaviour

of a constraint solver, with a view towards optimization. In

Constraint Programming, the propagation mechanism is one

of the key tools for solving hard combinatorial problems.

It is based on specific algorithms: propagators, that are

called a large number of times during the resolution process.

But in practice, these algorithms may often do nothing:

their output is equal to their input. It is thus highly

desirable to be able to recognize such situations, so as to

avoid useless calls. We propose to quantify this phenomenon

in the particular case of the AllDifferent constraint

(bound consistency propagator). Our first contribution is

the definition of a probabilistic model for the constraint and

the variables it is working on. This model then allows us

to compute the probability that a call to the propagation

algorithm for AllDifferent does modify its input. We give

an asymptotic approximation of this probability, depending

on some macroscopic quantities related to the variables

and the domains, that can be computed in constant time.

This reveals two very different behaviors depending of the

sharpness of the constraint. First experiments show that the

approximation allows us to improve constraint propagation

behaviour.

1 Constraint Solvers and Complexity Analysis.

1.1 Constraint Programming. This article ex-
plores a mathematical way to predict the behavior of
some algorithms, called propagators, used in Constraint
Programming [9].

Constraint Programming (CP) aims at solving hard
combinatorial problems expressed as Constraint Satis-
faction Problems (CSP). A CSP is made of three parts:
the first one is a set of variables that represents the

∗Supported by the ANR-BOOLE project, France.
†Université de Versailles, PRiSM UMR 8144, FR-78035 Ver-

sailles, France, Jeremie.Du-Boisberranger@prism.uvsq.fr
‡Université de Versailles, PRiSM UMR 8144, FR-78035 Ver-

sailles, France, Daniele.Gardy@prism.uvsq.fr
§École des Mines de Nantes, LINA UMR CNRS

6241, INRIA, FR-44307 Nantes Cedex 3, France,

Xavier.Lorca@mines-nantes.fr
¶Université de Nantes, LINA UMR CNRS 6241, INRIA, FR-

44322 Nantes, France, Charlotte.Truchet@univ-nantes.fr

unknowns of the problem; the second part is a set of
finite domains describing the possible (usually integer)
values of each variable; the third part contains the con-
straints which express a combinatorial relation between
the variables. A constraint can be built on classical
logical predicates, for instance x = y + 2, or on spe-
cific relations called global constraints [2]. Some global
constraints extend the language expressivity by adding
predicates that could not be formulated with basic pred-
icates. Others could be reformulated as classical con-
straints, but they encapsulate a global relationship that
can be used to improve the algorithms implementing
the constraints and the resolution process. For instance,
the AllDifferent constraint forces a list of variables
to take different values; it is semantically identical to
n(n− 1)/2 constraints of the type xi 6= xj on all the
possible couples of the variables. A solution for a CSP
is an assignment of each variable to a value in its do-
main such that all the constraints are simultaneously
satisfied.

CP operational nature is based on the propagation-
search paradigm. The propagation mechanism detects
and suppresses inconsistent parts of the domains, i.e.
values that cannot appear in a solution. For instance,
let us consider the constraint x = y + 2: assuming that
the domain for x is Dx = [1...20] and the domain for
y is Dy = [3...30], it is obvious that only the values
[5...20] for x and [3...18] for y must be considered; the
other values in Dx and Dy cannot appear in a solution,
and are thus inconsistent. 1 For each particular con-
straint, a specific algorithm, called propagator, removes
inconsistent values from the domains: it takes as an
input the domains of the variables involved in the con-
straint, and outputs the corresponding consistent do-
mains, which are called globally arc-consistent domains
(GAC). In practice and depending on the constraint, a
propagator does not always remove all the inconsistent
values. When reaching GAC is too costly, propagators
may only consider the bounds of the domains, and only

1A problem may be consistent without having a solution.
Consider for example the constraints x 6= y, y 6= z and z 6= x

with the domains Dx = Dy = Dz = {1, 2}: we cannot suppress
values in the domains; yet no solution exists.

those bounds are ensured to be consistent. This weaker
property is called bound-consistency (BC). More gener-
ally, the efficiency of propagators is decomposed in dif-
ferent classes [5]. Because there are several constraints
in the problem, all the constraints are iteratively propa-
gated until a fixed point is reached, i.e. all the domains
are stable for all the propagators; see for example [1]
for an overview of constraint propagation and questions
relative to confluence.

It is obvious that, most of the time, propagation
is not sufficient to solve the CSP. The domains can
be stable, but still contain more than one value. A
search engine then iteratively instantiates values to the
variables, until either a solution or a failure (constraint
always false, empty domains) is found. In case of a
failure, a special mechanism, called backtracking, allows
to return to the last choice point and try another
value for the variable under consideration. Every time
a choice is made (e.g. a particular value has been
instantiated to a variable) propagation is run in order
to remove the inconsistent values of the domains as
soon as possible and to avoid useless computation.
Due to the combinatorial nature of the problems, this
makes the worst-case number of calls to the propagators
exponential in the number of variables.

1.2 Motivating Example. We illustrate the way a
constraint solver works on the following toy scheduling
problem. Consider a construction site where six differ-
ent tasks, each one lasting one day, have to be sched-
uled (eventually in parallel) within a given duration of
5 days. They are represented by their starting time,
which is an integer value between 1 and 5. We have six
variables T1...T6, with domains D1...D6 initially equal
to [1...5]. The construction starts at time S = 0 and
ends at E = 6.

Some tasks need to be finished before some other
tasks begin (e.g. the walls need to be built before
the roof). This is modeled by precedence constraints,
which are inequalities between the two involved tasks.
In addition, some tasks may be done in parallel, but
others require the same equipments, so they cannot
be executed at the same time (e.g. there is only one
concrete mixer, required to build both the walls and the
floor). This is modeled by AllDifferent constraints
on the involved tasks.

This leads to a so-called scheduling problem with
precedence constraints. We will detail the example
shown on Figure 1 where the variable are the nodes, the
precedence constraints the edges in red (C1 to C10) and
the AllDifferent constraint the green ellipse around
the variables it involves (C11).

Let us work out in detail the initial propagation.

T1

S

T6

T5

T4

T3

T2
E

C3

C2
C1

C4

C5

C7

C8

C9

C10

C6

C11

Figure 1: Example of a scheduling problem with prece-
dence constraints and an AllDifferentconstraint.

First, D4, D5 and D6 are reduced to [2...5] by prop-
agation of C4, C5, C6 and C7. Conversely, propagat-
ing these precedence constraints from the end yields
D1 = D2 = D3 = [1...4]. At this stage, the AllD-
ifferent constraint C11 should be propagated as well
but it cannot reduce the domains in practice.

Then the search begins, and a variable, say T4, is
assigned a value, say 3. The precedence constraint C4 is
propagated to reduce D1 to [1...2], but no propagation
of C11 can be done: it can be checked that the remaining
problem is still consistent. Thus a second choice is
made, say T5 is assigned to 4. Again, the remaining
problem is already consistent and C11 is not propagated
– although propagation of C5 and C6 reduces both
D2 and D3 to [1...3]. So a third choice is made, say
T6 is assigned to 3. Now C7 can be propagated and
D3 = [1...2]. No other propagation of precedence
constraints can be done. Now the C11 constraint is not
bound-consistent: [1...2] is equal to the union of the two
domains D1 and D3, and we have two values to allocate
to two variables T1 and T3; this leads to reducing D2 to
[4], hence assigning T2.

This very simple example shows that the propaga-
tion of AllDifferent constraints may have an effect
on the variables’ domains only quite late in the search
(here, after the third assignment on a problem with six
variables), and is unlikely to have any effect on the do-
mains when they are large enough, as is the case at the
beginning of the search.

1.3 Cost of Propagation and Complexity
Trade-offs. The propagators have an algorithmic cost
which, most of the time, is a sizeable part of the prop-
agation engine computing time. Practical experiments
highlight that the algorithmic effect (i.e., reduction of
the variables’ domains) of the propagators is not uni-
formly distributed during the resolution process. In
other words, these algorithms are frequently called when
solving a hard combinatorial problem, but often do

nothing. This phenomenon is rarely explored by the
CP community, where most of the research efforts on
propagation algorithms are focused on their worst-case
time complexity; we refer the reader to [9] for a global
reference and further studies.

In [7], Katriel identifies one of the major issues in
studying propagation: the pursuit of a fair balance be-
tween efficiency (time complexity) and effective perfor-
mance (number of inconsistent values detected by the
propagators). The author proposes a particular mecha-
nism to decrease the number of calls to the propagators
in the case of the global cardinality constraint during
the search process. She shows that only subsets of the
values in the variable domains are important for the
propagation engine, and proposes to delay the propaga-
tion algorithm calls until a certain number of values are
removed from the domains. The main limit of this work
remains the algorithmic cost related to the detection of
these important values, which is never amortized during
the search process.

Obviously, observing the worst-case complexity of
a propagator does not give enough information on its
usefulness. Average time complexity is certainly very
difficult to obtain and has never been studied. As
shown by Katriel, the problem of freezing calls to
useless propagators (a weak, yet interesting way of
measuring the algorithm efficiency) is tricky for two
reasons. Firstly, missing an inconsistent value leads to
important needless computations afterwards. Secondly,
in order to know whether a propagator is useful or not,
we need to have an indicator that can be computed
much faster than the evaluation of the propagator itself.

We propose here a theoretical study of the behav-
ior for a specific propagator, the one associated to the
AllDifferent constraint. Given a set of variable
domains, we provide a probabilistic indicator that al-
lows us to predict if the AllDifferent propagator for
bound-consistency will detect and remove some incon-
sistent part of these variable domains. We then show
that such a prediction can be asymptotically estimated
in constant time, depending on some macroscopic quan-
tities related to the variables and the domains. Exper-
iments show that the precision is good enough for a
practical use in constraint programming. Compared to
[7], we tackle on the same question but provide, within
another model, a computable approximation for the ef-
fective performance of the algorithm, measured as the
probability it does remove at least one value.

In the next Section we first give a formal definition
of the bound consistency for the constraint AllDiffer-
ent, then consider how we can characterize situations
where the constraint AllDifferent will not restrict
any of the variables’ domains and propagation should

be avoided, and finally present a probabilistic model for
variables and their domains. Section 3 presents exact
and asymptotic formulae for the probability that the
propagation of the constraint AllDifferent will have
no effect on the domains, and deals with some issues
related to the computation of this probability. Finally,
Section 4 considers applying our results to an actual
solver, what we can hope to gain, and the problems
that we face. Sketches of proofs can be found in the
Appendix.

2 A Probabilistic Model for AllDifferent.

The AllDifferent constraint is a well-known global
constraint for which many consistency algorithms have
been proposed. The reader can refer to the surveys of
Van Hoeve [10] or Gent et al. [6] for a state of the art.

The property of being bound consistent (BC) ap-
plies to all global constraints. Intuitively, a constraint
on n variables is bound consistent if, assuming the do-
mains of the n variables to be intervals, whenever we
choose to affect any variable to either its minimal or
maximal value, it is possible to find a global affectation
of the remaining n− 1 variables that satisfies the global
constraint. This intuition can be formalized, and we
give below a mathematical characterization of bound
consistency for AllDifferent. We next introduce a
probabilistic model for Bound Consistency of AllD-
ifferent and consider how we can check whether an
AllDifferent constraint, initially BC, remains so af-
ter an instantiation.

2.1 Definitions and Notations. Consider an
AllDifferent constraint on n variables V1...Vn, with
respective domains D1...Dn of sizes di, 1 ≤ i ≤ n. We
assume the size of each domain to be greater than
or equal to 2, otherwise the corresponding variable
is already instanciated. We focus here on bound
consistency, as proposed by [8], and we assume that all
the domains Di are integer intervals.

We now introduce some notations.

• The union of all the domains is E =
⋃

1≤i≤nDi.
Notice that, up to a relabelling of the values of
the Di, their union E can also be assumed to be an
integer interval without loss of generality.

• For a set I, we write I ⊂ E as a shortcut for :
I ⊂ E and I is an integer interval.

• For an interval I ⊂ E, we write I for its minimum
bound and I for its maximum bound; hence I =
[I...I].

With these notations, we can now give the classical
definition of bound-consistency for AllDifferent.

Figure 2: Unconsistent domain configuration for an
AllDifferent constraint.

Definition 2.1. Let AllDifferent(V1...Vn) be a
constraint on n variables. It is bound-consistent iff for
all i 6= j, 1 ≤ i, j ≤ n, the two following statements
hold:

• ∃vj ∈ [Dj ...Dj] s.t.

AllDifferent(v1...vi−1, Di, vi+1...vn);

• ∃v′j ∈ [Dj ...Dj] s.t.

AllDifferent(v′1...v
′
i−1, Di, v

′
i+1...v

′
n).

An example of non bound-consistent domains for an
AllDifferent constraint with four variables is shown
on Figure 2: the domains for V1...V4 are respectively
[1...2], [2...3], [1...3] and [1...5], and it can be checked
that the value 1, the lowest bound of D4, cannot ap-
pear in a solution.

For the example of Figure 3, the domains
[1...2], [2...3], [1...4] and [1...5] are bound-consistent,
since all the extremal values of the domains can be ex-
tended to a solution.

Definition 2.2. Let I ⊂ E. We define KI as the set
of variables for which the domains are subintervals of I:
KI = {i such that Di ⊂ I}.

For instance, on Figure 2 we have K[1...3] = {1, 2, 3},
K[3...5] = ∅ and K[1...2] = {1}.

Some subintervals of E play a special rôle: they
contain just enough values to ensure that every variable
of KI can be assigned a value. 2 Consequently the
variables that do not belong to KI cannot take their
values in I. This leads to the following proposition,
from [10].

2The subintervals I of E s.t. |KI | = |I| are called Hall

intervals; they frequently appear in characterizations of bound
cosnsistency for AllDifferent.

Figure 3: Consistent domain configuration for an
AllDifferent constraint.

Proposition 2.1. An AllDifferent constraint on a
set of variables V1...Vn with a set of domains D1...Dn

is bound-consistent if and only if the two following
conditions are true:

1. for all I ⊂ E, |KI | ≤ |I|,

2. and for all I ⊂ E, |KI | = |I| implies ∀i /∈ KI , I ∩
{Di, Di} = ∅.

For example, on Figure 2 the domain D3 = [1...3] is
of size 3, and so isK[1...3]; hence this interval satisfies the
first condition of Prop. 2.1. But it does not satisfies the
second condition, since the lowest bound of D4, which
is 1, has a non-empty intersection with [1...3]. On the
contrary, on Figure 3 all the subintervals of E satisfy the
proposition, since every I ⊂ E is strictly bigger than the
associated set KI .

For technical reasons, we reformulate Proposition
2.1 into the equivalent

Proposition 2.2. An AllDifferent constraint on a
set of variables V1...Vn with a set of domains D1...Dn

is bound-consistent if and only if for all I ⊂ E, one of
the following condition is true:

1. |KI | < |I|,

2. |KI | = |I| and ∀i /∈ KI , I ∩ {Di, Di} = ∅.

This property is useful to determine BC of an
AllDifferent constraint as a whole, at the beginning
of the resolution for instance. In practice, the problem
(or rather the data) is constantly modified during
the solving process. Thus we are also interested in
answering the following question:

Knowing that an AllDifferent constraint is
initially BC, under which conditions does it re-
main BC after the instanciation of a variable?

2.2 Bound Consistency After an Instanciation.
We consider here the effect of an instantiation on the
domains and on bound consistency. Up to a renaming
of the variables, we can assume w.l.o.g. that the
instantiation is done for the variable Vn, which is
assigned a value x ∈ Dn. We also assume that the
binary constraints 6= have been propagated (that is, the
x value has been removed from the other domains when
applicable).

After the instanciation, the situation is thus the
following: Dn has disappeared (or is reduced to {x}),
and for i 6= n, two cases can occur. If x /∈ Di, then
the domain remains unchanged, and if x ∈ Di, the
domain Di is now the union of the two disjoint intervals
[Di...x − 1] and [x + 1...Di]. The question of bound
consistency thus seems no longer relevant, because the
domains are no longer intervals. However, we can define
new domains D

′

i=Di \ {x}, which are not subintervals
of E, but of

E
′

:= [E...x− 1] ∪ [x+ 1...E]

because all the values of E
′

between Di and Di are in

D
′

i. This leads to the following

Definition 2.3. The AllDifferent constraint re-
mains BC after the instanciation of Vn iff AllDiffer-
ent is BC with respect to the new domains D

′

1...D
′

n−1.

Moreover, for every subinterval I
′ ⊂ E

′
, we define an

associated interval I ⊂ E as

I =

{
I

′ ∪ {x} if it is a subinterval of E;
I otherwise.

The following Proposition details in which cases the
constraint, being BC on V1...Vn, remains BC (as defined
above) after the instantiation of Vn. This result,
although not usually explicitly stated as such, belongs
to the folklore of CP; we present it for the sake of
completeness.

Proposition 2.3. With the above notations, the
AllDifferent constraint remains BC after the instan-
ciation of Vn to a value x iff for all I

′ ⊂ E′
, such that

I = I
′ ∪ {x} and Dn 6⊂ I, none of the two following

statement holds:

(i) |KI | = |I|,

(ii) |KI | = |I| − 1 and there exists i /∈ KI such that
Di ∈ I or Di ∈ I.

2.3 A Probabilistic Model for Variables and
Domains. The key ingredients that determine the con-
sistency of an AllDifferent constraint are the do-
main sizes and their relative positions. But we do not

always need to know precisely the domains, to decide
whether the constraint is consistent or not. For in-
stance, an AllDifferent constraint on three variables
with domains of size 3 is always BC, whatever the exact
positions of the domains. If the domains are of size 2,
then the constraint may be BC or not, depending on
the relative positions of the domains. But if their union
E is also of size 2, the constraint is always inconsistent.

Such basic remarks show that a partial knowledge
on the domains sometimes suffices to determine consis-
tency properties. This is the basis of our probabilistic
model: we assume that we know the union E of the
domains (which can indeed be observed in usual cases),
but the domains themselves become discrete random
variables with a uniform distribution on the set I(E)
of subintervals of E, of size ≥ 2: they are not fully de-
termined. Their exact sizes and positions are unknown;
only some macroscopic quantities are known.

We consider first the union E =
⋃n
i=1Di of the

domains, which is assumed to satisfy the following
assumption:

A1. E is an integer interval of known size m;
w.l.o.g. we take E = [1...m].

Assume from now on that the domains D1, ..., Dn

are replaced by random variables D1, ...,Dn, as follows.

A2. The variables Di are independent and
uniformly distributed on I(E) = {[a...b], 1 ≤
a < b ≤ m}.

As a consequence of Assumption A2, the sample
space I(E) has size m(m−1)/2 (we recall that we forbid
domains of size 1). For J ⊂ E and 1 ≤ i ≤ n, we have
P [Di = J] = 2/m(m− 1). Indeed, there are m − 1
possible subintervals of size 2, m − 2 of size 3, ..., 1 of
size m.

3 The Probability of Remaining BC.

This Section details the evaluation of the probability
that an AllDifferent constraint remains BC after
an instantiation, under the assumptions A1 and A2
of Section 2.3. We establish a general formula for
this probability, then compute its asymptotic value in
the case where the observable variables are large; we
also show that this asymptotic approximation can be
computed in constant time.

3.1 Exact Results. We first consider some interme-
diate probabilities that we shall use in order to write
down the probability of remaining BC.

Proposition 3.1. For a given interval I ⊂ E and a
domain D drawn with a uniform distribution on I(E),

with m = |E| and l = |I|, let pl and ql be the respective
probabilities that D ⊂ I, and that either D ∩ I = ∅, or
D < I < I < D. Then

pl =
l(l − 1)

m(m− 1)
; ql =

(m− l)(m− l − 1)

m(m− 1)
.

In order to compute the probability that the con-
straint remains BC, we now inject into Proposition 2.3
the quantities we have just obtained, which leads to the
following result.

Theorem 3.1. Consider an AllDifferent con-
straint on variables V1, ..., Vn, initially BC. Let E and
the domains Di, 1 ≤ i < n, satisfy the assumptions
A1 and A2. Furthermore, assume that we know the
domain Dn = [a...b]. Then the probability Pm,n,x,a,b
that the constraint remains BC after the instanciation
of the variable Vn to a value x is

Pm,n,x,a,b =

n−2∏
l=1

(1− P (1)
m,n,l − P

(2)
m,n,l)

Φ(m,l,x,a,b)

where the function Φ(m, l, x, a, b) is defined as

min(x,m− l)−max(1, x− l) + 1

if l < b− a and as

min(x,m−l)−max(1, x−l)−min(a,m−l)+max(1, b−l)

otherwise, and where

P
(1)
m,n,l =

(
n− 1

l + 1

)
pl+1
l+1(1− pl+1)n−l−2,

P
(2)
m,n,l =

(
n− 1

l

)
pll+1

(
(1− pl+1)n−l−1 − qn−l−1

l+1

)
,

with pl and ql given by Proposition 3.1.

3.2 Asymptotical Approximation. We recall that
n is the number of variables and that the union of their
domains has size m. From the expression of Pm,n,x,a,b
given in Theorem 3.1, we can compute the probability
Pm,n,x,a,b in time O(n). However, if we are to use a
probabilistic indicator for the bound consistency as part
of a solver, this indicator will be computed repeatedly,
and we must be able to do this in a reasonably short
time even when n and m are both large. Thus the
formula of Theorem 3.1 cannot be used as such, and
we need an approximation of it, both precise and that
can be computed “quickly enough”. The following
proposition gives such an asymptotic approximation in
a scale of powers of 1/m. Two different behaviors
arise, depending on how n compares to m. In the

first case n is proportional to m, which corresponds
to an AllDifferent constraint with many values
and few variables. In the second case m − n =
o(m), which corresponds to a sharp AllDifferent
constraint where there are nearly as many values as
variables.

Theorem 3.2. Consider an AllDifferent con-
straint on n variables V1, ..., Vn. Assume that the
domains D1, ...,Dn−1 follow a uniform distribution on
E. Let Dn = [a...b]. Define a function Ψ(m,x, a, b),
for 1 ≤ a ≤ x ≤ b ≤ m and a 6= b, by

• Ψ(m,x, a, a + 1) = 1, except Ψ(m, 1, 1, 2) =
Ψ(m,m,m− 1,m) = 0;

• If b > a + 1 then Ψ(m,x, a, b) = 2, except
Ψ(m, 1, 1, b) = Ψ(m,m, a,m) = 1.

Then the probability Pm,n,x,a,b that the constraint re-
mains BC after the instanciation of Vn to the value x
has asymptotic value

• if n = ρm, ρ < 1,

1−Ψ(m,x, a, b)
2ρ(1− e−4ρ)

m
+O

(
1

m2

)
;

• if n = m− i, i = o(m),

eCi

(
1−Ψ(m,x, a, b)

2(1− e−4) +Di

m
+O

(
1

m2

))
.

When n = m − i with i = o(m), the constants Ci and
Di (which also depend on x and a) can be expressed as∑

a−i≤j<x−i

(j + i+ 1− a)εi,j + (x− a)
∑
j≥x−i

εi,j ,

with εi,j equal to log(1−fi,j) for Ci and to gi,j/(1−fi,j)
for Di, where we set

fi,j = λi,j

(
1 +

j

2(i+ j)

)
and

gi,j = λi,j

(
i(i+ 1) +

j

4
(3i+ 5) +

j(i2 − 1)

4(i+ j)

)
with

λ(i, j) =
(i+ j)j2je−2(i+j)

j!
.

Theorem 3.2 is important for two reasons. In the
first place, it gives the quickly-computable probabilistic
indicator that we expected (see the discussion in the

next Section). Then, it also exhibits two different
behaviors for an AllDifferent constraint. It thus
formalizes and gives a rigorous proof of what is folklore
knowledge in CP: the sharpness of the AllDifferent
constraint (the ratio of n over m) is a key ingredient for
the efficiency of its propagation. It can be seen from
the expression of Theorem 3.2 that the probability of
remaining BC has an asymptotic limit equal to 1 in
the first case, and to a constant strictly smaller than 1
in the second case. Thus, for large m, propagation of
AllDifferent is almost surely useless unless m−n =
o(m), that is, unless m and n are very close.

3.3 Practical Computation of the Indicator.
We have just seen that Theorem 3.2 gives an asymp-
totic approximation (when m becomes large) for the
probability of remaining BC.

When n = ρm for fixed ρ, we have a closed-form
expression for the approximation, that can be computed
in constant (small) time. In the case n = m − i the
constants Ci and Di, although not depending on m
and n (they do depend on a and x), have no closed-
form expressions but are given as limits of infinite sums.
Nevertheless, a good approximation can be obtained
with a finite number of terms. Indeed, the terms fi,j
and gi,j are exponentially small for fixed i and j → +∞.
E.g., the value log(1 − fi,j) is roughly of exponential
order (2/e)j , and so is the general term of the series:
the convergence towards the limit is quick enough for
fast computation.

Another practical question is: how do we choose
between the two cases of the formula? that is, how do
we decide when n is “close enough” to m? Theorem 3.2
is valid for m→∞, but splits into two cases according
to whether n is such thatm/n remains roughly constant,
or m− n = o(m).

A numerical example is shown on Fig. 4, where
the theoretical probability (plain) and its approximation
(dashed) are plotted for m = 25 and m = 50, and for
a varying ratio n/m. (In both figures, the values x, a
and b were arbitrarily fixed at 15, 3 and 9 respectively.)
The dashed curve actually has a discontinuity at some
point: we applied Case 1 for n ≤ m− 2

√
m and Case 2

for n > m−2
√
m, which appears from our computations

to be the best compromise. Even though m = 50 is not
a large value, the approximation already fits closely the
actual values.

In practice, numerical evaluations for varying values
of m and n do indicate that the best compromise is
indeed to set a threshold at n = m − 2

√
m and to use

it to distinguish between the two cases of Theorem 3.2.
Notice that this threshold can be used as a quantitative
definition for the sharpness of the constraint, which

0.0 0.2 0.4 0.6 0.8 1.0
n�m

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
n�m

0.2

0.4

0.6

0.8

1.0

Figure 4: Numerical evaluation of the theoretical (plain)
and approached (dashed) probability P25,n,15,3,19 for
m = 25 (top) or 50 (bottom), and for n varying from 1
to m.

leads us to propose the following

Definition 3.1. An AllDifferent constraint on n
variables and m values is sharp iff m− n < 2

√
m.

4 Conclusion and Further Work.

We have presented here a probabilistic framework for
modeling the AllDifferent constraint and for check-
ing whether it is worthwhile to propagate it. We have
obtained the probability that the constraint does reduce
the sizes of domains, and given an asymptotical formula
that can be computed in constant time.

Like all models, ours relies on a simplified view
of reality, and this simplification is expressed by our
mathematical hypotheses A1 and A2. A fundamental
point is whether these hypotheses (union of domains
an a specific interval, independance of the domains,
identically distributed and uniform distribution) are
valid in real-life situations, and what is the robustness
of our results if not.

The first assumption presents no difficulty: it can
always be satisfied by a renaming of the values of the
domains.

As long as we limit ourselves to the single constraint
AllDifferent, the assumption that the domains can

be modelized as independent variables seems reasonable
(the interaction of the variables is restricted to this
constraint). Of course such independence may no
longer hold, should we wish to take into account several
constraints: extending our model would require us
to consider precisely how different constraints might
interact.

The next point we wish to discuss: the identical,
uniform distribution for the domains, is due to the
modelization choices we have made. Our approach
can be extended to other kinds of distributions; indeed
we considered in the technical report [3] the situation
where domains have a common, fixed size. Such a
case happens quite often, for instance in problems
coming from Artificial Intelligence (a classical example
is the n-queens puzzle). To our knowledge, these two
cases should be sufficient to model a lot of real-life
scenarios. The extension of our results to situations
where domains follow different probability distributions
alos seems possible.

We are currently working on implementing our re-
sults into the Choco constraint solver [4]. This inte-
gration raises several practical questions. Theorem 3.2,
which gives a quick approximation of the probability of
remaining BC, is valid in the limit for m→∞. In prac-
tice, this means that m is required to be large, i.e. our
result holds at the beginning of the search process. The
next issue is the characterization of a threshold value for
the probability of remaining BC: the AllDifferent
constraint would be propagated when the probability
falls under this value, and not propagated when above.
Another important point is, when should the evaluation
of the probability be undertaken by the solver? If this
is done every time a variable appearing in the AllDif-
ferent constraint is modified, this quickly leads to an
important number of evaluations (typically, 105 to 106

calls for a standard problem). Indeed, most of the time
the modification that can arise on a variable domain is a
value removal, without direct impact on the probability
that the constraint remains consistent. Thus, the eval-
uation of the probability should take place only when a
variable is instantiated to a value. Finally we observe
that, even if computing the probability is theoretically
done is constant time, the practical computation cost
still has to be amortized.

First results seem to indicate that, from an opera-
tional point of view, some problems with an AllDif-
ferent constraint are more efficiently solved when this
constraint is replaced by the equivalent clique of differ-
ence constraints. This means that we have to tackle
problems for which the AllDifferent propagation al-
gorithm is not required all the time. We hope to be able
to answer all these questions in a further paper.

References

[1] K. R. Apt, The Essence of Constraint Programma-
tion, Theoretical Computer Science, 221, 1-2, (1999),
pp. 179-210.

[2] C. Bessière and P. van Hentenryck, To Be or Not to
Be... a Global Constraint, in Principles and Practice of
Constraint Programming (2003), pp. 789-794.

[3] J. du Boisberranger, D. Gardy, X. Lorca, and
C. Truchet, A Probabilistic Study of Bound
Consistency for the Alldifferent Constraint,
http://hal.archives-ouvertes.fr/hal-00588888/en/.

[4] Choco Team, Choco: an Open Source Java Constraint
Programming Library, Ecole des Mines de Nantes,
RR 10-02-INFO (2010).

[5] R. Debruyne and C. Bessière, Domain Filtering Con-
sistencies, J. Artificial Intelligence Research, 14 (2001),
pp. 205-230.

[6] I. P. Gent and I. Miguel and P. Nightingale, Generalised
Arc Consistency for the AllDifferentConstraint:
An Empirical Survey, Artif. Intell., 172/18 (2008),
pp. 1973-2000.

[7] I. Katriel, Expected-Case Analysis for Delayed Filter-
ing, in CPAIOR (2006), Springer Lecture Notes in
Computer Science, vol. 3990, pp. 119-125.

[8] J.-F. Puget, A Fast Algorithm for the Bound Con-
sistency of AllDifferent Constraints, AAAI/IAAI
(1998), pp. 359-366.

[9] F. Rossi and P. van Beek and T. Walsh, Handbook
of Constraint Programming (Foundations of Artificial
Intelligence) (2006), Elsevier Science Inc.

[10] W.J. van Hoeve, The AllDifferent Constraint: A
Survey, CoRR, cs.PL/0105015 (2001).

Appendix.

4.1 Proposition 2.3. We present in Figure 5 a sum-
mary of the different cases that must be checked, orga-
nized into a tree. Let I

′ ⊂ E′
.

First of all, let us remark that I = I
′

implies
|KI′ | = |KI |. By consistency, we have either |KI | < |I|,
or |KI | = |I| and the domains not in KI have no bound
inside. If |KI | < |I|, then |KI′ | < |I

′ | and I
′

satisfies
Proposition 2.2. If |KI | = |I|, all the domains not in KI

have no bound in I, and this also holds for I
′
. Thus, I

′

satisfies again Proposition 2.2.
From now on, let us suppose that I = I

′ ∪ {x}. We
have |I ′ | = |I| − 1. If Dn ⊂ I, then |KI′ | = |KI | − 1.

Again, |KI′ | ≤ |I
′ | and all the domains have no bound in

KI′ , so I
′

satisfies Proposition 2.2. Thus inconsistency

is only possible if I = I
′ ∪ {x} and Dn 6⊂ I.

Let us suppose furthermore that Dn 6⊂ I. If
|KI | < |I|−1, no inconsistency is possible. If |KI | = |I|,
we have |KI′ | = |KI | = |I| = |I ′ | + 1 and I

′
does not

satisfy Proposition 2.2. Finally, if |KI | = |I| − 1, we
have |KI′ | = |KI | = |I| − 1 = |I ′ |, and I

′
satisfies

I = I′∪{x}

|KI | < |I| −1 |KI | = |I| −1 |KI | = |I|

BC Dn b I Dn > I Dn b I Dn > I

BC
∃i < KI s.t.

Di ∈ I ∨ Di ∈ I

∀i < KI

Di ∈ I ∧ Di ∈ I BC not BC

not BC BC

Figure 5: The different subcases of Proposition 2.3.

Proposition 2.2 iff a domain not belonging to KI has no
bound in I (the condition is the same for I and I

′
).

4.2 Proposition 3.1. The probability that a domain
D, following a uniform distribution over I(E), has size
d ≥ 2, is

P [|D| = d] =
2(m− d+ 1)

m(m− 1)
.

The probability that a domain of size d is a subinterval
of I is the number of subintervals of E of size d which
are also subintervals of I, divided by the total number
of subintervals of E of size d. Thus

P [D ⊂ I| |D| = d] = max

(
l − d+ 1

m− d+ 1
, 0

)
.

Then

pl =

m∑
d=2

P [D ⊂ I| |D| = d] ∗ P [|D| = d]

=

l∑
d=2

2(l − d+ 1)

m(m− 1)
=

l(l − 1)

m(m− 1)
.

Besides, we have ql = P [D∩ I = ∅] +P [D < I < I < D]
since both events are incompatible. The first term
P [D ∩ I = ∅] is the probability that D is a subinterval
of [E...I[or a subinterval of]I...E]:

P [D ∩ I = ∅] =
I(I − 1) + (m− l − I)(m− l − I − 1)

m(m− 1)
.

For the second term, the number of domains which
satisfy D < I and D > I is the number of choices for
the lower bound in [E...I[, times the number of choices
for the upper bound in]I...E], i.e. I.(m− l− I), which

gives

P [D < I ∧ D > I] =
2I(m− l − I)

m(m− 1)
.

The formula for ql comes easily by summing the two
contributions.

4.3 Theorem 3.1. Following Proposition 2.3, we
define

P (1)[I] = P (|KI | = |I|);
P (2)[I] = P (|KI | = |I| − 1;∃i 6∈ KI : Di ∈ I ∨Di ∈ I).

We have that

Pm,n,x,a,b =
∏
I

(
1− P (1)[I]− P (2)[I]

)
,

where the product is on the subintervals I of E, such
that x ∈ I and Dn 6⊂ I. Let I

′
= I \ {x}; we have

I
′ ⊂ E′

= E \{x}. Define l = |I ′ | and α as the position
in E of I

′
: as x ∈ I, we have |I| = l + 1.

Now P (1)[I] is the probability that |I| domains are
included in I, that is l+ 1 domains among the domains
D1, ...,Dn−1 are included in I. In the same vein, P (2)[I]
is the probability that |I| − 1 domains are included in I
and at least one of the other domains (not included in
I) has a bound in I, which is equivalent to saying that
l domains among D1, ...,Dn−1 are included in I and all
the others are not included in I, but at least one of them
has a bound inside I. Hence

P (1)(I) =

(
n− 1

l + 1

)
pl+1
l+1 (1− pl+1)

n−l−2
;

P (2)(I) =

(
n− 1

l

)
pll+1

(
(1− pl+1)n−l−1 − qn−l−1

l+1

)
.

The quantities P (1)[I] and P (2)[I] depend only on m, n
and l, hence the probability we seek will be of the type

Pm,n,x,a,b =
∏
l

(1− P (1)[I]− P (2)[I])Φ(l)

where the index l is the length of I
′
, and the exponent

Φ(l) may also depend on the parameters m, x, a,
and b. (We use here the notation Φ(l) for the sake
of conciseness, whereas we write Φ(m, l, x, a, b) in the
statement of Theorem 3.1.) Before computing Φ(l), we
first point out that the product on l ranges from 1 to
n− 2: both P (1)[I] and P (2)[I] are null for l ≥ n− 1.

The set I
′

is characterized by α and l3. What
are the constraints on these values? Obviously, since
|E|′ = m − 1 and I

′ ⊂ E
′
, we must have α > 0

3We remind the reader that I
′

is a subinterval of E
′

but
(generally) not of E.

and α + l ≤ m. The condition x ∈ I corresponds to
α ≤ x ≤ l + α. Both conditions together are equivalent
to

max(x− l, 1) ≤ α ≤ min(x,m− l).(4.1)

Now if l < b − a there is no possibility that Dn ⊂ I;
hence the number of intervals I of length l + 1 is equal
to the number of suitable α, i.e.

Φ(l) = min(x,m− l)−max(x− l, 1) + 1.

The situation is slightly more intricate if l ≥ b− a:
I has length greater than or equal to Dn, and we must
take care that Dn 6⊂ I. This last condition corresponds
to a < α or b > α + l, i.e. b − l ≤ α ≤ a is forbidden.
As 1 ≤ α ≤ m− l, this means that we forbid the values
α such that

max(b− l, 1) ≤ α ≤ min(a,m− l).(4.2)

If we now substract from the possible number of values
for α, given by Equation (4.1), the number of values
that satisfy Equation (4.2), i.e. min(a,m− l)−max(b−
l, 1) + 1, to , we obtain the expression for Φ(l).

4.4 Simplifying Φ. We now give explicit values
for the function Φ(l). We have just proved that
Φ(m, l, x, a, b) is equal to min(x,m−l)−max(1, x−l)+1
if l < b − a, and to min(x,m − l) − max(1, x − l) −
min(a,m − l) + max(1, b − l) otherwise. This can be
further simplified, as follows.

4.4.1 Case l < b− a.

l < m− x l ≥ m− x
l < x l + 1 m− x+ 1
l ≥ x x m− l

4.4.2 Case l ≥ b− a. To compute the explicit value
of Φ, we have to compare l to m − x, m − a, x and
b. This should give 16 cases, but the condition x ∈ I
forbids some of them:

• x ≤ b, hence b ≤ l < x is forbidden.

• a ≤ x which gives m − x ≤ m − a, hence m − a ≤
l < m− x is forbidden.

The value of min(a,m−l)−max(1, b−l)+1 is given
by the following table.

l < m− a l ≥ m− a
l < b a− b+ l + 1 m− b+ 1
l ≥ b a m− l

This gives the following tables (NA stands for those
cases that cannot happen), where we can easily check
that all values are ≥ 0.

l < m− x

l < x

l < m− a l ≥ m− a
l < b b− a NA
l ≥ b NA NA

l ≥ x
l < m− a l ≥ m− a

l < b x+ b− a− l − 1 NA
l ≥ b x− a NA

l ≥ m− x

l < x

l < m− a l ≥ m− a
l < b m+ b− a− x− l b− x
l ≥ b NA NA

l ≥ x
l < m− a l ≥ m− a

l < b m+ b− 2l − a− 1 b− l − 1
l ≥ b m− l − a 0

4.5 Theorem 3.2. Simple asymptotics give the ap-
proximate expression for Pm,n,x,a,b with Ψ(m,x, a, b) =
Φ(m, 1, x, a, b), which can easily be simplified according
to the tables of the preceding Section.

When n = m− i with i = o(m), we have that

Ci = lim
t→∞

√
t∑

j=1

Φ(t, t− i− j − 1, x, a, b) log(1− fi,j);

Di = lim
t→∞

√
t∑

j=1

Φ(t, t− i− j − 1, x, a, b)
gi,j

1− fi,j
.

The constants Ci and Di are both of the type

lim
t

√
t∑

j=1

Φ(t, t− i− j − 1, x, a, b) εi,j ,

with εi,j equal to log(1−fi,j) for Ci and to gi,j/(1−fi,j)
for Di.

We again use the expression of Φ given in Section 4.4
to simplify these constants as follows. We compute them
for fixed x, a, b and i, for large t, and for j ranging from
1 to

√
t. In this range, we can assume that t is large

enough for t − j − (i + 1) to be always larger that (x
and) b. Then

• for j ≤ a− i− 1, we have that Φ = 0;

• for a − i − 1 ≤ j ≤ x − i − 1, we have that
Φ = j + i+ 1− a;

• for j ≥ x− i− 1, we have that Φ = x− a.

This gives

√
t∑

j=1

Φ(t, t− i− j − 1, x, a, b) εi,j

=

x−i−1∑
j=a−i

(j + i+ 1− a) εi,j + (x− a)

√
t∑

j=x−1

εi,j .

In both cases, εi,j is exponentially small for fixed i and
j → +∞ and the sum from x−1 to

√
t converges towards

a finite limit; hence the result.

