Andrei Asinowski
Email address: [my family name] @ gmail.com
Academic positions:
20052006: Research associate at Bielefeld University, Germany
(Department of Mathematics,
Information Theory and Complexity working group,
supervisor Rudolf Ahlswede).
20062008: Postdoctoral position at University of Haifa, Israel
(CRI  Caesarea Rothschild Institute for Interdisciplinary
Applications of Computer Sciences,
host Toufik Mansour).
20082010: Postdoctoral/teaching position at Technion  Israel Institute of Technology, Haifa, Israel
(Department of Mathematics).
20102011: Research staff member at Technion  Israel Institute of Technology, Haifa, Israel
(CGGC  The Center for Graphics and Geometric Computing,
host Gill Barequet).
20122015:
Research associate at Free University of Berlin (Freie Universität Berlin)
(Institut of Computer Science,
Theoretical Computer Science working group,
host Günter Rote);
member of Collaborative Research Programme
Graphs in Geometry and Algorithms (EuroGIGA),
project Combinatorics of Point Sets and Arrangements of Objects (ComPoSe).
2015 :
Research associate at Vienna University of Technology (Technische Universität Wien)
(Institute of Discrete Mathematics and Geometry,
host Bernhard Gittenberger);
member of Special Research Program Algorithmic and Enumerative Combinatorics (SFB F50),
project Combinatorics of TreeLike Structures and Enriched Trees.
M. Sc. Thesis:
A. Asinowski. Geometric permutations for planar families of disjoint
translates of a
convex set.
Supervisor M. Katchalski.
Technion 
Israel Institute of Technology,
1999. [pdf]
Ph. D. Thesis:
A. Asinowski. Geometric permutations in the plane and in Euclidean
spaces of higher dimension.
Supervisor M. Katchalski.
Technion  Israel
Institute of
Technology,
2005. [pdf]
Publications:
 A. Asinowski, A. Holmsen, and M. Katchalski.
The triples of geometric permutations for families of disjoint translates.
Discrete Mathematics,
241 (2001), 2332.
 A. Asinowski, A. Holmsen, M. Katchalski, and H. Tverberg.
Geometric permutations of large families of translates.
In: Discrete and
Computational Geometry: The GoodmanPollack Festschrift, B. Aronov, S.
Basu, J. Pach, M. Sharir (eds.), vol. 25 of Algorithms and
Combinatorics,
SpringerVerlag, Germany, 2003, 157176.
 A. Asinowski and M. Katchalski.
Forbidden families of geometric permutations in R^{ d}.
Discrete and Computational Geometry,
34 (2005), 110.
 A. Asinowski and M. Katchalski.
The maximal number of geometric permutations for n disjoint translates of a convex set in
R^{ 3} is Ω(n).
Discrete and Computational Geometry,
35 (2006), 473480.
 A. Asinowski and T. Mansour.
Dyck paths with coloured ascents.
European Journal of Combinatorics,
29 (2008), 12621279.
 A. Asinowski.
Suballowable sequences and geometric permutations.
Discrete Mathematics,
308 (2008), 47454762.
 A. Asinowski and A. H. Suk.
Edge intersection graphs of a system of paths in a grid.
Discrete Applied Mathematics,
157 (2009), 31743180.
 A. Asinowski and T. Mansour.
Separable dpermutations and guillotine partitions.
Annals of Combinatorics,
14 (2010) 1743.
 A. Asinowski and B. Ries.
Some properties of edge intersection graphs of singlebend paths on a grid.
Discrete Mathematics,
212 (2012), 427440.
 G. Aleksandrowicz, A. Asinowski, and G. Barequet.
A polyominoespermutations
injection and counting treelike convex polyominoes.
Journal of Combinatorial Theory (Series A),
119 (2012), 503520.
 A. Asinowski, E. Cohen, M. C. Golumbic, V. Limouzy,
M. Lipshteyn, and M. Stern.
Vertex Intersection Graphs of Paths on a Grid.
Journal of Graph Algorithms and Applications,
16:2 (2012), 129150.
 A. Asinowski, G. Barequet, R. Barequet, and G. Rote.
Proper ncell polycubes in n3 dimensions.
Journal of Integer Sequences,
15:8 (2012), Article 12.8.4.
 G. Aleksandrowicz, A. Asinowski, and G. Barequet.
Permutations with forbidden patterns and polyominoes on a twisted cylinder of width 3.
Discrete Mathematics,
313:10 (2013), 10781086.
 A. Asinowski, G. Barequet, M. BousquetMélou, T. Mansour, and R. Y. Pinter.
Orders
induced by segments in floorplan partitions and (2143, 3412)avoiding
permutations.
Electronic Journal of Combinatorics,
20:2 (2013), Paper P35.
 A. Asinowski, G. Barequet, T. Mansour, and R. Y. Pinter.
Cut equivalence of ddimensional guillotine partitions.
Discrete Mathematics,
331 (2014), 165174.
 O. Aichholzer, A. Asinowski, and T. Miltzow.
Disjoint
compatibility graph of noncrossing matchings of points in convex position.
Electronic Journal of Combinatorics,
22:1 (2015), #P1.65.
 A. Asinowski, T. Miltzow, and G. Rote.
Quasiparallel segments and characterization of unique bichromatic matchings.
Journal of Computational Geometry,
6:1 (2015).

A. Asinowski and A. Regev.
Triangulations with few ears: Symmetry classes and disjointness.
Integers,
6 (2016), Paper A5.

A. Asinowski, B. Keszegh, and T. Miltzow.
Counting houses of Pareto optimal matchings in the house allocation problem.
Discrete Mathematics,
339:12 (2016), 29192932.
 A. Asinowski, C. Krattenthaler, and T. Mansour.
Counting triangulations of some classes of subdivided convex polygons.
European Journal of Combinatorics,
62 (2017), 92114.
 A. Asinowski and G. Rote.
Point sets with many perfect matchings.
Computational Geometry: Theory and Applications,
in press (Available online 10 May 2017).
[arXiv preprint]
 G. Aleksandrowicz, A. Asinowski, G. Barequet, and R. Barequet.
Recovering highlycomplex linear recurrences of integer
sequences.
Information Processing Letters,
127 (2017), 6266.
Submitted / proceedings / arXiv preprints / in preparation / manuscripts / etc.:
 G. Aleksandrowicz, A. Asinowski, G. Barequet, and R. Barequet.
Formulae for polyominoes on twisted cylinders.
2012.
 A. Asinowski, J. Cardinal, N. Cohen, S. Collette, T. Hackl, M. Hoffmann, K. Knauer, S. Langerman, M. Lasoń, P. Micek, G. Rote, and T. Ueckerdt.
Coloring hypergraphs induced by dynamic point sets and bottomless rectangles.
In Proc. Workshop on Algorithms and Data Structures (WADS),
vol. 8037 of Lecture Notes in Computer Science, 7384, 2013.
arXiv:1302.2426
 A. Asinowski.
The number of noncrossing perfect plane matchings is minimized (almost) only by point sets in convex position.
2015.
arXiv:1502.05332
 A. Asinowski, G. Barequet, and Yufei Zheng. Enumerating polyominoes with fixed perimeter defect.
Electronic Notes in Discrete Mathematics Volume 61 (2017), 6167 (Proc. EuroComb 2017)