ASYMPTOTIC EXPANSIONS FOR THE PROFILE OF
RANDOM TREES
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Trees of interest

e data structures
e analysis of algo.

e real-world networks

Comparison-based: binary (m-ary) search trees, random recursive
trees, preferential attachment trees

Multidimensional: quadtrees, K-d trees
Digital: digital search trees, tries

Trees are flat (i.e. logarithmic) and wide.



Quantities of interest

Global quantities:

e typical depths and distances,

e maximal depths and distances,

e total pathlength (sum over all node depths),
e mode and width.

Local quantities:

e degree distribution,

e fringe subtrees.

Put simply, the profile.
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The binary search tree

Input: numbers 0.6,0.9,0.3,0.7,0.5,0.8,0.1,0.2
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The binary search tree

Input: numbers 0.6,0.9,0.3,0.7,0.5,0.8,0.1,0.2

Model: Use iid unif[0, 1] random variables Ui, Us, Us, . ..



The binary search tree - a Markov chain

N
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The binary search tree - a Markov chain

Xn(k) = #{nodes with depth k}, k>0,
Un(k) = #{boxes with depth k}, k >0.



The binary search tree - a Markov chain

X, =(1,2,4,6,5,0,0,...)
U, = (0,0,0,2,7,10,0,...)



The binary search tree - three simulations
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The binary search tree - Logplot
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The random recursive tree



The random recursive tree



The random recursive tree
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The random recursive tree
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The random recursive tree
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The random recursive tree



The random recursive tree - three simulations

%108

45
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The plane-oriented recursive tree
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The plane-oriented recursive tree



The plane-oriented recursive tree

weight of v: 1+ d,

degree profile: j—2



One-split branching random walks

Input: random point process ¢ on Z
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Input: random point process ¢ on Z

Zy(k) : # of particles at k at time n

Zo(k) = do.k
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e 1<((Z)<C,P(¢(Z) > 1) >0 and ¢ has bounded support,
e P(¢(cZ) < ¢(Z)) > 0 for all ¢ > 2. (wlog)
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One-split branching random walks

Input: random point process ¢ on Z

Z,(k) : # of particles at k at time n

Zo(k) = do.k
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One-split branching random walks

Input: random point process ¢ on Z

Z,(k) : # of particles at k at time n

Zo(k) = do.k

Z3=(...,0,2,0,,0,0,2,1,0...)
Assumptions:

e 1<((Z) < C,P({(Z) >1) >0 and ¢ has bounded support,
o P(¢(cZ) < ¢(Z)) > 0 for all ¢ > 2. (wlog)



One-split branching random walks

] —
BST: (=(...,0,04,2,0,...) =24 D/\D

RRT: ¢ =(...,0,1,,1,0,...) = 6o + 61 l

PORT: ¢ =(...,0,2,,1,0,...) = 280+ 41 l

Note: ( is deterministic.
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Binary search tree - a rough picture

[ . 2(x) = x — xlog(x/2) — 1.
1 xa_=037...,a, =431...,
(70“ 2 N =1

For k = alog n + o(log n), as n — oo,

Un(k) = n"@+e) o <o < ay.

As n — oo,
D, —2logn d
v2logn
and

Height ~ oy log n,  Fill-up level ~ a_ log n.

DEVROYE 86 -’88



Profile - central regime

Un(k) | __n__
47 log n
Recall: As n — oo, e 2y/2Togn
D, —2logn 4
—_ 5
V2logn
2logn k
With
k—2logn

xn(k) := TR

uniformly over k € N, almost surely and in mean,

n 1.2
Up(k) = ——n— . —3x(k) (1 1)) .
(k) o ologn (1+0(1))

HwaNG 95, CHAUVIN, DRMOTA AND JABBOUR-HATTAB ’01
b



Width and mode

W, .= max{U,(k) : k > 1}
/ \ mp = max{k : Up(k) = W,}

T (1+o)

Open: Limit theorem for W,

W, =

The sequence
(mn —2log n)n21
is tight. DEVROYE AND HWANG ’06

Open: Limit theorem for m, — 2log n



Profile - limit theorem

Theorem (Hwanc ’95)
For C > 0, uniformly in 0 < k < Clogn, as n — oo,

EU-(k 1 n(a) k
I o v Viesn ™

- logn’

Theorem (CuauviN, KLEIN, MARCKERT AND ROUAULT 05)

There exists a random analytic function X on a complex domain G
with (a—, ) € G with E[X(a)] =1 and X > 0 on (a—, ay):

Un(k
sup (k)

M X(ak)| 0.
s B[O,k (@)



The special regimes

The limit X(«) is random if « ¢ {1,2}.
Theorem (Fucus, HWANG AND NEININGER "06)

Let c € {1,2}. For k = clog n+ ¢, with c, = o(log n) and
|ch| = 00, we have

Un(K)" == (X'(c))"
(Un(k)*)n>1 does not converge in distribution if c, = O(1).
For P, := 3" k- Un(k):

P 2% (X'(2))"

REGNIER '89, ROSLER 91



The internal profile

n « - log?2
1 \
L N
(ya—k 2 Q-
| almost full
X(k) = n@)+od), 1<a<as

2K — X, (k) = n"@)e) o <q <1

Analogous mean expansions and limit theorems for

Xn(k) for

Ti
log n € (L@,

2k — X, (k) for

—.1).
Iogne(a 1)

HwanG 95, CHAUVIN, DRMOTA AND JABBOUR-HATTAB '01
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Classical Chebyshev-Edgeworth-Cramér expansion
Let Z1, 2o, ... be iid integer random variables with

o E [etzl} < oo in a neighbourhood of 0,
o £ [Zl] = O,Var(Zl) == 1,

e /1 is not concentrated on a non-trivial sublattice.

Then, with S, = Z1 + -+ - + Zp, xa(k) = % and r € No:

2 Qs Xn
\/7 Z ns/2 ))

where Qs is a polynomial of degree 3s expressed through the
cumulants K2, ..., kst2. @ =1 and

r+1 e
nz sup

kEZ

P (S, = k) — — 0,

2

—Hes(x) + iHe6( x).

R4

Qu(x) = PHes(x).  Qax) =7,

6



Profile expansion for the binary search tree

Theorem (KABLUCHKO, MARYNYCH AND S. ’16)

Let U,(k) be the external profile of a sequence of random binary
search trees. Set

k —alogn k
k) = x,(k; o) = ————— Yk = .
xa(k) = (ki a) Valogn ' K log n
Fix r > 0,K C (a—, ) compact. Uniformly in k € N and o € K
41 U (k) e_; " a.s.
| Ea n - 250
( o8 n) na—1l—akloga/2 27 -« log n Z Iog n 5/2 ’

where F¢(x; «v) is a polynomial in x of degree 3s whose
coefficients are linear combinations of

X(a), ..., XE)(a).



Profile expansion for the binary search tree

(log n)Hz»l Un(k) e

3% k); «)
no—l—au- log /2 o \/mz Iogn 5/2

where Fy(x; @) = X(«) and

Fiay = X(@), X()

a.s.

=0,

Ja X + VH 3(x),
Fa(x; ) = 7X;Ey )Heg(x) + ();ELZ) + Xéj)) Heq(x)
+ );g )He6( ),

and the first Hermite polynomials are

Hes(x) = x* — 1, Hes(x)
Heq(x) = x* — 6x% + 3,

=x3 —3x,

Heg(x) = x°® — 15x* + 45x2 — 15.



External BST profile - central regime

Recall: For k = 2logn + ¢, and ¢, = O(1), the sequence

<U,,(k) —E[U,,(k)]>
Var(Un(k)) ), -4

does not converge in distribution.

Corollary (KaBrLucuko, MARYNYCH AND S. ’16)

Let k = |2logn| + a with a € Z. Then, as n — oo,

og n)3/2 '
U8 M) U () ~ E[Un(0)]) - jﬁgw log n} +a+1/2)
a.s. X — E[X]
— _W7

where {x} := x — | x| and x = X"(2) — X'(2)2.



External BST profile - mode

Recall: m, — 2logn,n > 1 is a tight sequence.

Corollary (KaBrucnko, MARYNYCH AND S. ’16)

For all n sufficiently large, m, takes its value(s) in the set
{|2logn+ X'(2) —1/2],[2logn + X'(2) — 1/2]}.

For a set of asymptotic frequency 1, m, is equal to the integer
closest to

2logn+ X'(2) — 1/2.



The width - more periodicities

. ~ n
Recall: W, Jariogn almost surely.
Corollary (KaBrLucuko, MARYNYCH AND S. ’16)
Let
_ VA4 log nW,
W, :=4logn (1 — 7Tg"> .
n
Then,
Vi 2 a.s.
Wy 0325y — o
where

x = X"(2) = X'(2)?,
— i 159y _1/9 _
Hn—s(n6|2]2logn+X(2) 1/2 — k.



Outline

1. One-split branching random walks

2. Profile of binary search trees: a summary

3. Main result: an asymptotic profile expansion



Discussion - the proof

Fourier inversion using
A) =" Un(k)-e, XeC.
keN

Then,
2er—1

r(2et)

BROWN AND SHUBERT ’84, JABBOUR-HATTAB '01

E[W,(\)] = S(1+0(1), R(\) >0.

Theorem (Cuauvin, KLEIN, MARCKERT, ROUAULT ’05)

There exists a complex domain G with (Iog ,log %) C G such
that, almost surely, uniformly on compact sets K C G with
polynomial rate of convergence,

Wa(A)

B0 YW

and X(a) = W(log 5). BIGGINS '77, 92



Discussion - generalisations

Analogous expansions for
e general profiles A,(k), k € Z,n > 1 with

e PN A K w(N),
keZ

with an analytic function W, where

e w, — 00,

@ is strictly convex on R,

the convergence is exponential in w, on compact subsets of a

domain cIose to the real axis,

o e we(@) .5 L Ay(k) - el0Fmk — 0 for £ < || < 7 with
exponential rate of convergence.

e the profile of one-split branching random walks,
e the expected profile if ((Z) is deterministic,
e standard lattice BRWs GRUBEL AND KABLUCHKO ’15



Summary and conclusion

full uniform asymptotic profile expansion,

precise information on occupation numbers, mode and width
can be extracted almost automatically,

extends to more general profiles A,(k), k € Z,n > 1 upon
controlling

f: An(k) - M.

kEeZ

martingale-free trees? Split trees?

THANK YOU



